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ABSTRACT

While radiosondes have provided atmospheric scientists an accurate high-vertical-resolution profile of the

troposphere for decades, they are unable to provide high-temporal-resolution observations without signifi-

cant recurring expenses. Remote sensing technology, however, has the ability to monitor the evolution of the

atmosphere in unprecedented detail. One particularly promising tool is the Atmospheric Emitted Radiance

Interferometer (AERI), a passive ground-based infrared radiometer. Through a physical retrieval, the AERI

can retrieve the vertical profile of temperature and humidity at a temporal resolution on the order of minutes.

The synthesis of these two instruments may provide an improved diagnosis of the processes occurring in the

atmosphere. This study provides a better understanding of the capabilities of the AERI in environments

supportive of deep, moist convection. Using 3-hourly radiosonde launches and thermodynamic profiles re-

trieved from collocated AERIs, this study evaluates the accuracy of AERI-derived profiles over the diurnal

cycle by analyzing AERI profiles in both the convective and stable boundary layers. Monte Carlo sampling is

used to calculate the distribution of convection indices and compare the impact of measurement errors from

each instrument platform on indices. This study indicates that the nonintegrated indices (e.g., lifted index)

derived from AERI retrievals are more accurate than integrated indices (e.g., CAPE). While the AERI

retrieval’s vertical resolution can inhibit precise diagnoses of capping inversions, the high-temporal-

resolution nature of the AERI profiles overall helps in detecting rapid temporal changes in stability.

1. Introduction

The radiosonde is widely considered to be the gold

standard formeasuring vertical profiles of thermodynamic

and kinematic variables. The in situ nature of radio-

sonde observations allows scientists to obtain a high-

vertical-resolution (roughly every 10m) picture of the

atmosphere. Because of this, radiosondes are used for

several different applications. Meteorologists use these

profiles to understand the current atmospheric state, ini-

tialize models, verify model forecasts, and infer physical

processes that may yield convection. Although the mea-

surements from radiosondes are valuable, they have a high

marginal cost for each additional observation andare rarely

used to create a high-temporal-resolution picture of the

atmosphere.Corresponding author: Greg Blumberg, wblumberg@ou.edu

OCTOBER 2017 B LUMBERG ET AL . 2747

DOI: 10.1175/JAMC-D-17-0036.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

http://journals.ametsoc.org/topic/PECAN
mailto:wblumberg@ou.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


By contrast, automated thermodynamic remote

sensors, such as Atmospheric Emitted Radiance Interfer-

ometers (AERIs; Knuteson et al. 2004a,b), have a higher

initial cost but smaller recurring costs for each additional

observation. The AERI is a passive, ground-based hyper-

spectral infrared remote sensor from which high-temporal-

resolution boundary layer thermodynamic profiles can be

retrieved. Because of the passive nature of the AERI, its

profiles have weaknesses that radiosondes do not possess.

Primarily, the AERI spectra largely only describe the

thermodynamic profile within the lowest 3km of the at-

mosphere, and the retrieved profiles have a much lower

vertical resolution than radiosondes (Turner and Löhnert
2014; Blumberg et al. 2015). Despite these issues, the high-

temporal-resolution AERI profiles have demonstrated the

ability to qualitatively identify destabilization trends in en-

vironments supportive of deep, moist convection when

additional data about the mid- to upper troposphere

are included in the AERI retrieval (e.g., Feltz and

Mecikalski 2002; Feltz et al. 2003; Wagner et al. 2008).

Past studies have demonstrated the usefulness of other

lower-vertical-resolution profiling instruments such as

ground- and spaced-based multichannel microwave radi-

ometers and infrared spectrometers (Feltz et al. 1998; Serio

et al. 2008; Löhnert andMaier 2012; Di Natale et al. 2017).

In particular, studies have analyzedhowconvection indices

derived from these instruments can be used. For example,

Koch et al. (2016) used ground-based multichannel mi-

crowave radiometer (MWR) retrievals to document and

detect rapid changes in instability. Although multiple

studies validating various MWR- and AIRS-derived con-

vection indices against radiosondes have been published

(e.g., Chan and Hon 2011; Madhulatha et al. 2013; Cimini

et al. 2015; Pushpa Saroja et al. 2016; Gartzke et al. 2017),

no study of this type exists in the scientific literature for the

AERI. Currently, the literature only documents brief

evaluations of AERI-derived convection indices (e.g.,

Feltz and Mecikalski 2002; Feltz et al. 2003). In addition,

many of these studies have not looked at how accurately

AERI retrievals depict common structures found in the

boundary layer over the diurnal cycle, which is often crit-

ical to identifying the origins of conditionally unstable

parcels. Filling these knowledge gaps may help reveal how

AERIs and radiosondes may complement each other to

create an improved diagnosis of the atmosphere.

To improve the understanding of AERI-retrieved

profiles in environments supportive of deep, moist

convection, this paper first offers a look at the accuracy

of AERI-derived boundary layer profiles of tempera-

ture and water vapor over the diurnal cycle. After that, a

comparison of the convection indices derived from the

AERI instrument to those derived from radiosondes

is performed. In section 2, we describe the AERI

instrument and the retrieval algorithm used to derive the

thermodynamic profiles from theAERI observations. In

section 3, we describe the data and methods used to

develop this comparison. In section 4, comparisons of

the AERI profiles to radiosondes released over the di-

urnal cycle will reveal where the smooth nature of the

AERI profiles may cause inaccurate representations of

the true thermodynamic profile. Section 5 will assess the

quality of theAERI-derived convection indices over the

diurnal cycle compared with radiosondes and will com-

pare the impact of instrument errors on the convection

indices derived from the AERI and radiosonde in-

struments. The last section will summarize the overall

accuracy of the AERI in these environments and make

suggestions for how the accuracy can be improved.

2. Atmospheric Emitted Radiance Interferometer

a. Instrument description

The AERI is a ground-based remote sensor that

measures downwelling infrared radiation between 520

and 3300 cm21 (3.0–19.2mm) at a resolution of 0.5 cm21

(unapodized; seeKnuteson et al. 2004a,b). Early versions of

the AERI, such as those used in this study, record these

observations at a frequency of every 7.5min, whereas to-

day’s AERIs record observations every 20–30s (Turner

et al. 2016).AERI instrumentsmaintain their calibration by

regularly observing two blackbodies (one at 333K and one

at the ambient temperature) contained within the in-

strument housing. This calibration allows for a spectral ac-

curacy better than 1% of the ambient radiance. The AERI

can operate in clear and cloudy conditions, although the

instrument’s hatch automatically closes to protect the

foreoptics of the instrument when precipitation is present.

b. AERIoe retrieval

Thermodynamic profiles have been retrieved from the

AERI radiance spectra since the mid-1990s using a re-

trieval algorithm called AERIprof (Smith et al. 1999;

Feltz et al. 1998). AERIprof has several limitations:

1) the carbondioxide concentrationwas fixed andnot easily

changed, 2) the fast radiative transfer model used within

AERIprof was tuned for Southern Great Plains (SGP)

conditions andhence had significant errorswhenused in the

tropics or Arctic, 3) uncertainty estimates are not provided

by this algorithm, and 4) the algorithmwas very sensitive to

its first guess and thus was not able to converge to a solution

in cloudy situations. This motivated the development of a

new retrieval algorithm called AERIoe (Turner and

Löhnert 2014) to address these shortcomings.

The AERIoe retrieval algorithm, which is a physi-

cally based iterative retrieval algorithm, uses the
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optimal estimation (OE) framework (Rodgers 2000)

that quantifies the uncertainty of the retrieved variables

and the information content of the observations used in

the retrieval. At its foundation, AERIoe utilizes por-

tions of the AERI-observed spectral range that corre-

spond to atmospheric windows and emissions of CO2

and H2O. AERIoe currently uses the line-by-line radi-

ative transfer model (LBLRTM; Clough et al. 1992),

version 12.2, to relate AERI observations to profiles of

temperature T and water vapor mixing ratio q; this al-

lows AERIoe to continue to use the latest spectroscopy

by simply updating to a newer version of LBLRTM as

needed. In addition, AERIoe retrieves cloud properties

[e.g., liquid water path (LWP)], which enables the al-

gorithm to provide thermodynamic profiles in both clear

and cloudy conditions. As a Bayesian retrieval, AERIoe

uses a priori estimates of the mean Xa and covariance Sa

state of the atmosphere, which for this study was cal-

culated from a 3-month radiosonde climatology gener-

ated using radiosondes regularly released at the ARM

Southern Great Plains site (Sisterson et al. 2016).

The OE equation solves for variables [e.g., T(z), q(z),

LWP] contained within a state vector X by iterating the

following equation n times until the retrieval reaches

some set convergence criteria:

Xn11 5X
a
1 (gS21

a 1KT
nS

21
e K

n
)21KT

nS
21
e [Y2F(Xn)

1K
n
(Xn 2X

a
)] . (1)

Within this equation are the observation vectorY, which

contains observations such as the AERI spectra, and the

forward model F. The Jacobian K describes the linear

sensitivity of variables in the state vector to those in the

observation vector. The final two variables,Se and g, are

the error covariance of the observations and the re-

trieval stability parameter, respectively. Because of the

highly nonlinear nature of infrared radiative transfer,

g is needed to stabilize the retrieval enough to reach

convergence and is critical to overcome a poor first guess

(which was one of the limiting factors of AERIprof).

The retrieval a posterior error covariance matrix S

can be computed directly through the equations

S5B21(g2S21
a 1KT

nS
21
e K

n
)B21 (2)

and

B5 (gS21
a 1KT

nS
21
e K

n
) . (3)

Readers are referred to Turner and Löhnert (2014) and
Blumberg et al. (2015) for a more detailed discussion of

the AERIoe algorithm.

Turner and Löhnert 2014 have shown that the ma-

jority of the AERI’s information content (.95%) is in

the lowest 3 km. This limitation is problematic when

using AERI profiles to understand deep, moist convec-

tion because large errors in the mid- and upper tropo-

sphere can translate into significant errors in the

calculation of the convection indices. To overcome this

problem, AERIoe has undergone substantial revisions to

improve the quality of the entire retrieved tropospheric

profile. In the latest version, AERIoe, version 2.2, surface

layer observations and observations from additional

sources of upper-air thermodynamic profiles (e.g., radio-

sondes, NWP forecast soundings, Raman lidar) can be

included within Y. The inclusion of NWP forecast sound-

ings in the mid- to upper troposphere improves the overall

retrieval as short-term forecast models are often most ac-

curate at these altitudes (Thompson et al. 2003; Benjamin

et al. 2004a,b). The intent of including these observations

in AERIoe is to improve the retrieval in locations within

the profile where the AERI spectra may lack information

and therefore improve the algorithm’s overall estimate of

the entire tropospheric thermodynamic profile.When such

observations are available, they are linearly interpolated to

the AERIoe vertical grid and are treated in the algorithm

as having perfect sensitivity (a value of 1) in K.

3. Data and methods

a. Datasets and quality control

To investigate the performance of the AERI in con-

vective environments, a dataset collected by five ARM

observing facilities during the International H2O Project

2002 (IHOP_2002; Weckwerth et al. 2004) was used

(Fig. 1). IHOP_2002 ran from13May to 25 June 2002 and

aimed to study the 3D distribution of water vapor and its

relationship to precipitation. Each facility hosted an

AERI instrument (Hackel et al. 1994), a Vaisala CL25

ceilometer (Ermold and Morris 1996), a Vaisala RS-90

radiosonde launch station (Kyrouac et al. 1994), and

surface temperature, humidity, wind, and pressure sensors

(THWAPS; Ermold and Kyrouac 1999). Throughout this

field experiment, radiosondes were simultaneously re-

leased from all five sites at 3-h intervals, starting daily at

0200 UTC (2100 local time), resulting in a high temporal

coverage of the atmospheric evolution, while AERI

instruments were operated continuously.

Initially, there were 592 radiosonde profiles that were

coincident withAERI observations. Prior to running the

AERIoe retrieval, both the radiosonde and AERI data

were screened for quality issues. First, comparisons be-

tween the AERI surface pressure sensors and the

THWAPS data at all five sites found that the AERI

pressure sensor was biased by 2–3 hPa. To correct for

this, AERI surface pressure values used in AERIoe

were replaced using the data fromTHWAPS. Second, as
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clouds are relatively opaque in the infrared and thus

hinder AERIoe from accurately retrieving the thermo-

dynamic profile above cloud base, cloudy AERI spectra

with an LWP greater than 6 gm22 are not used in this

study. AERI retrievals that did not converge or

indicated a cloud were removed (166 profiles removed).

This LWP threshold value corresponds roughly to an

optical depth of 1; clouds with larger LWP values (and

hence larger optical depths) have relatively small

transparency, thus greatly limiting the AERI’s ability to

make meaningful measurements above the cloud (i.e.,

the information content above these clouds is relatively

small). Last, radiosonde profiles were removed where

the instrument’s flight terminated below 10km above

ground level (AGL) or was found to have suspicious

lapse rates (e.g., non-surface-based superadiabatic

layers; 23 profiles removed). Any remaining radiosonde

profiles were then linearly interpolated to the AERI

55-level-height grid to facilitate comparison to the

AERI-retrieved profiles (sections 4 and 5d). This fil-

tering process left 403 profiles for comparisons.

b. AERIoe configuration

AERIoe was only run on the AERI data collected

nearest to the radiosonde launch time (roughly610min

relative to launch time). Retrievals were run using

AERIoe, version 2.2, which utilized several different

observation types to produce a best estimate of the

tropospheric temperature and water vapor mixing ratio

profile. Previous AERIoe analyses used only AERI ra-

diances and cloud-base height from a collocated ceil-

ometer as input; here, output from the Rapid Update

Cycle (RUC) model (Benjamin et al. 2004a,b) and sur-

face meteorology observations were also used as part of

the retrieval. Table 1 summarizes the input data used in

the Y vector of the AERIoe retrievals.

The AERI spectral bands used in AERIoe corre-

spond to emission by carbon dioxide, water vapor, and

cloud properties (Feltz et al. 1998; Löhnert et al. 2009;
Turner and Löhnert 2014; Blumberg et al. 2015). These

past studies have established that use of the channels

listed in Table 1 in AERI retrievals results in a largely

unbiased low-level (0–3 km) thermodynamic profile.

Figure 2a illustrates an example AERI spectra high-

lighting the various channels listed in Table 1. To im-

prove the information content and hence the accuracy

of the temperature retrieved aloft, the less opaque

713–722-cm21 carbon dioxide channels were included in

theAERIoe retrieval. Figure 2b showsY2 F(X), where

Y is the AERI channels highlighted in Fig. 2a used in an

example AERIoe retrieval and F(X) is the forward

calculation of the retrieved state vector that was found

using AERIoe. Although these channels could theo-

retically be extended further into the wings of the

15.0-mmCO2 band to 770 cm21 to provide an improved

thermodynamic profile, it currently is not recom-

mended. Experiments including these channels in the

AERIoe retrieval have revealed inconsistencies be-

tween the LBLRTM and AERI that may be attribut-

able to issues in the calibration of the AERI (and, in

FIG. 1. Locations of the five ARM AERI observing facilities used

during IHOP_2002.

TABLE 1. Observations utilized in the Y vector in version 2.2 of

the AERIoe retrieval. Superadiabatic layers were restricted in the

retrieval to only the lowest 500m of the thermodynamic profile.

Noise values for AERI channels are described in Turner and

Löhnert (2014) and Blumberg et al. (2015). The 1-s observation

errors listed for temperature T and water vapor mixing ratio q for

theRUCand THWAPS shown are themedian values for the entire

dataset; z represents the heights over which these data are used in

the retrieval.

AERI bands 20-km RUC THWAPS

538–588 cm21 z 5 4–18 km AGL z 5 2m AGL

612–618 cm21 sT 5 ;18C sq 5 ;0.7 g kg21

624–660 cm21 sq 5 decreasing from

0.7 to near 0 g kg21

over the altitudes

from 4 to 18 km AGL

sT 5 5K

674–713 cm21

713–722 cm21

860.1–864.0 cm21

872.2–877.5 cm21

898.2–905.4 cm21
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particular, the finite field-of-view correction; see

Knuteson et al. 2004b) or the spectroscopy within the

LBLRTM. The ceilometer provided information about

the location of a cloud base in a manner similar to the

method outlined in Turner and Löhnert (2014) and

Blumberg et al. (2015).

Both surface meteorological observing systems and

NWP profiles were used in the retrieval to improve the

overall estimate of the tropospheric thermodynamic

profile. For the surface meteorological observations,

only water vapor mixing ratio values from THWAPS

were used in the retrieval. A 1-sigma error of approxi-

mately 0.7 g kg21 for q was used, which is roughly a

2%–3% error in relative humidity (RH; ARM Climate

Research Facility 2011). A large error of sT 5 5K was

used to reduce the influence of the THWAPS temper-

ature measurement in the retrieval, as the AERI’s

spectra contain information about the surface temper-

ature, and inconsistencies between the THWAPS mea-

surement and AERI spectra can prevent AERIoe from

converging. For the NWP profile, hourly 20-km RUC

analysis files obtained through the ARM archive were

used (Wagener et al. 2002; Benjamin et al. 2004a,b).

From these files, both the vertical thermodynamic pro-

file from the grid point nearest to the AERI location

and a measure of the mesoscale spatial uncertainty of

the profile were extracted. This spatial uncertainty was

determined by calculating the 1-sigma standard de-

viation of each vertical point in the profile from a dis-

tribution of RUC profiles. This distribution was

obtained by using a 200 km 3 200 km horizontal space

window centered on the AERI observation in space and

time. Within AERIoe, this uncertainty was treated as

the RUC model profile ‘‘observation error’’ within the

retrieval Se matrix. The 1-s errors for RUC T and q

values for the 4–18-km layer were roughly 18C and be-

tween 0 and 0.7 g kg21, respectively. These uncertainties

are similar to the magnitude of RUC errors found in

Thompson et al. (2003). A similar method of calculating

the uncertainty of the model profile for the AERIoe

retrieval has been used by Bonin et al. (2015).

c. Convection indices and parcel types

Convection indices used in this study were calculated

using the Sounding andHodographAnalysis andResearch

Program in Python (SHARPpy; Blumberg et al. 2017),

FIG. 2. (a) SampleAERI spectra from the Purcell, Oklahoma, AERI at 2334UTC 12 Jun 2002

with portions of the spectra used in the AERIoe retrieval highlighted in orange, green, and red

colors. (b) The residuals between the observedAERI spectra and the spectra calculated using the

LBLRTM and the retrieved profile (see Fig. 3a). The red lines in (b) indicate the AERI 1-sigma

observational error used in the retrieval. Here, 1 RU5 1 mW (m2 sr cm21)21.
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version 1.3. SHARPpy is an open-source software

package that is a direct rewrite of the sounding analysis

routines managed and developed at the NOAA Storm

Prediction Center. In the present study, only the indices

CIN, CAPE, 500-hPa lifted index LI5, and the buoyancy

minimum Bmin calculated from SHARPpy are evalu-

ated. The Bmin is the minimum buoyancy experienced

by a parcel lifted from a specific height and is a relatively

new index that has been shown to help understand how

mesoscale thermodynamic processes destabilize parcels

(Trier et al. 2014a,b, 2015). The Bmin provides similar

but less complete information compared to CIN and

does not require vertical integration or the presence of

an LFC. Three common parcel types are used in this

study: the surface-based (SB) parcel, 100-hPa mixed-

layer (ML) parcel, and the most unstable (MU) parcel.

TheMUparcel is found by determining the parcel with the

highest equivalent potential temperature ue within the

lowest 400 hPa of the sounding. All parcel-lifting cal-

culations utilize the virtual temperature correction to

account for the impact of water vapor on calculations of

buoyancy (Doswell and Rasmussen 1994).

d. Calculating the uncertainty of convection indices

The method we use to calculate convection indices

considers conditional stability in a probabilistic sense,

per the recommendation in Moller (2001) that fore-

casters use parameter measures (e.g., CAPE) in a

probabilistic manner. While accounting for sampling

errors due to balloon drift on indices is beyond the

goals of the present work, quantifying the impact of

random and systematic errors on the calculation of each

index is possible. We do this by using Monte Carlo

sampling of the profile error covariance matrix S to

produce a distribution of possible thermodynamic

profiles. Parcels are then lifted in each profile to

produce a distribution of convection indices. This dis-

tribution will allow for a comparison of the uncertainty

inherent in the indices derived from both AERIoe

and the radiosonde instrument.

To derive the distribution of indices from a single

profile, each instrument’s thermodynamic profile is

Monte Carlo sampled 500 times using the equation

X̂5S1/2Z1X , (4)

where S is the error covariance matrix for each mea-

surement,1 Z is a normally distributed random number

with the same dimensions as the state vector, and X̂ is

the perturbed profile. Parcels are lifted from each profile

calculated from this method to calculate a distribution of

convection indices. As distributions from convection

indices with bounds (e.g., CAPE, CIN, andBmin) exhibit

non-Gaussian behavior as they approach their bounds,

the median and interquartile range (IQR) statistics are

used to describe the central tendency and variability of

each index. For the analyses in sections 5a, 5b, 5c, and

5e, the full 2-s-resolution profiles are used with this

method to calculate the radiosonde convection indices.

4. AERI-derived boundary layer profiles

As the lower vertical resolution of the AERI may act

as a hindrance in detecting destabilization trends in the

atmosphere, it is important to understand how common

boundary layer structures relevant to deep, moist con-

vection (e.g., inversions) appear to the AERI. To do

this, radiosonde profiles were separated into two data-

sets: convective boundary layer (CBL) profiles and sta-

ble boundary layer (SBL) profiles. CBL profiles were

selected by first calculating the CBL top from the ra-

diosonde potential temperature profile u(z). The CBL

top zi was found by searching for the height where a

surface parcel lifted dry adiabatically intersected with

the original u profile (Stull 1988). Profiles where zi
was above 300m AGL were considered CBL profiles

(n 5 206). This threshold was determined subjectively

by analyzing the individual radiosonde profiles to make

sure that profiles included in the CBL category had a

surface-based mixed layer. Profiles that did not meet

these criteria were considered SBL profile candidates.

These candidates were subject to a SBL top-finding al-

gorithm. This algorithm started at 30m AGL and iter-

ated level by level until the temperature was no longer

found to increase with height (n 5 119). The choice to

begin the search at 30m AGL aimed to avoid utilizing

the questionable near-surface temperature profiles (e.g.,

›T/›z , 0Kkm21) discovered in nocturnal AERI pro-

files during this study. Profiles where the temperature

did not increase with height were rejected from the SBL

dataset (Stull 1988), and the final level h found by the

algorithm was considered the SBL top.

To compare the CBL and SBL AERI retrievals with

the radiosonde profiles, two datasets were created. The

first dataset contained the interpolated 55-level radio-

sonde profiles Xsonde, with both the AERI and radio-

sonde u(z) and q(z) profiles normalized by their

determined radiosonde PBL top values (zi, h). In the

second dataset, the radiosonde profiles were smoothed

using the averaging kernel A (see Turner and Löhnert
2014). The rows of A describe the smoothing of the re-

trieved thermodynamic profile as a function of altitude

1 Creation of a radiosonde error covariancematrix is discussed in

the appendix.
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that is caused by the level-to-level covariance described

in the retrieval a priori dataset and the broad weighting

functions of each channel used. Each smoothed radio-

sonde profile Xsmoothed
sonde was calculated by the equation

Xsmoothed
sonde 5A(X

sonde
2X

a
)1X

a
. (5)

These smoothed profiles were then normalized by the

PBL top values determined from their unsmoothed

profile. This second dataset was created to produce ra-

diosonde observations that could be compared to the

AERI profile that would demonstrate the impact of the

AERIoe vertical resolution on accuracy. Figure 3 de-

picts the AERI and radiosonde comparison for two ex-

ample soundings from the CBL and SBL datasets and

illustrates how the averaging kernel acts to smooth the

strong gradients present in the radiosonde profile.

a. Evaluation of AERI-derived CBL profiles

Figure 4 illustrates the AERI thermodynamic re-

trieval accuracy with respect to the CBL structure using

the metrics of bias2 (Fig. 4a), 1-sigma standard deviation

(STD; Fig. 4b), and Pearson’s correlation coefficient r

(Fig. 4c). Within the lowest half of the CBL, the bias

(Fig. 4a) is less than 0.58C for potential temperature and

0.5 g kg21 for water vapor mixing ratio, and the STD is

0.58C and 0.7 g kg21 (Fig. 4b), respectively. In addition,

the r values are at a maximum in this lowest half, with

u(z) having a slightly larger r (;0.99) than q(z) (0.97;

Fig. 4c). However, as the profile approaches the top of

the radiosonde CBL (z/zi 5 1), the AERI potential

temperature profile exhibits a warm bias that peaks at

the top of the CBL. Likewise, the water vapor mixing

ratio profile develops a dry bias that nearly reaches

1 g kg21 at the top of the CBL. This is because the AERI

retrieval is unable to resolve the rapid change in the

profile shape at the top of the CBL and therefore aver-

ages through the rapid changes instead (see Fig. 3a). The

increases in bias near the top of the CBL are accompa-

nied by increases of the potential temperature and water

vapor mixing ratio STD to 1.48C and 1.7 g kg21. Above

the CBL top, the sign of the water vapor mixing ratio

bias reverses, changing to a 20.7 g kg21 moist bias but

returns to nearly 0 g kg21 at a height twice that of the

CBL depth. The AERI u(z) bias, however, returns

quickly to 08C immediately above the CBL top but

exhibits a slight warm bias where z/zi 5 3. The u(z) and

q(z) r value and STD reach their respective minimum

and maximum just above the CBL top. The u(z) profile

exhibits a much smaller peak in STD and correlation

coefficients compared to q(z). These profiles do not

decrease in accuracy with height above the CBL top

because of the use of the RUC profile in the retrieval. It

is important to mention that the r values shown in this

study for the q(z) profiles are much higher than those

reported in Weckwerth et al. (2016). This is related

to the temporal resolution of the comparisons; the

Weckwerth et al. analysis used 5-min resolution, and

thus, the changes in q(z) with time were small relative to

the AERIoe retrieval uncertainty, whereas in our study,

the resolution of 3 h allows for much larger differences

FIG. 3. Example soundings from the (a) CBL and (b) SBL datasets used in the study. Both the temperature and

dewpoint profiles are shown from the AERI retrieval (red), the 2-s radiosonde (RAOB; black), and the RAOB

profile smoothed by the averaging kernel (AKERNAL; blue). The black, red, and blue horizontal lines represent

the PBL top locations from the unsmoothed radiosonde, AERI, and smoothed radiosonde, respectively. In (a), the

RAOB3AKERNELandAERICBL top lines are nearly collocatedwith one another. In (b), all three estimates of

the SBL top are close to one another.

2 All errors are calculated as AERIoe 2 radiosonde.
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in q(z) with time. By using a lower temporal spacing in

our validation dataset, the individual AERI–radiosonde

data points used in calculating the correlation coefficient

have a range of values varying far above the AERI re-

trieval noise and therefore produce a stronger linear

relationship. Themetrics in Fig. 4 overall suggest that on

average, daytimeAERI thermodynamic profiles are less

accurate near the CBL interface than elsewhere in the

profile.

The inaccuracies near the CBL interface are a con-

sequence of the retrieval vertical resolution that results

from the weighting functions broadening with height as

well as the vertical level-to-level correlation imposed by

the prior dataset (which is a critical constraint that al-

lows AERIoe to converge). Figure 4 also depicts the

bias, STD, and r profiles of theAERI when compared to

radiosonde profiles that have been smoothed using the

AERI averaging kernel. From these profiles, the large

biases previously found in theq(z) and u(z) profiles above

and below the CBL top are largely gone. In addition, the

STD for these profiles no longer experiences a rapid

increase as they approach the CBL top. Immediately

above the CBL top, the STD profile with and without

the application of the averaging kernel differ by nearly

0.58C for the u(z) profile and 0.5 g kg21 for the q(z)

profile. For the r profiles, the application of the aver-

aging kernel also removes much of the large vertical

differences between the AERI and radiosonde with

height, with the largest impact being in the q(z) profile.

These reductions in bias, STD, and increase in r support

the idea that these inaccuracies in the AERI thermo-

dynamic profile are largely due to the retrieval’s vertical

resolution.

These vertical-resolution issues also affect assess-

ments of the CBL depth from AERIoe profiles.

Figure 4d illustrates the distribution of CBL depth

values calculated from AERIoe and radiosondes.

AERI-retrieved values of the CBL depth are typically

closer to the ground than radiosonde-observed values,

differing by an average of 130m. This result is due to the

AERI warm bias just below the top of the radiosonde

CBL, which would imply a shallower CBL depth than

FIG. 4. (a) The AERIoe minus sonde u (red; 8C) and q (blue; g kg21) biases for CBL profiles. (b) AERI 1-sigma

STDof theAERIoeminus sonde differences for those same profiles. (c) The correlation coefficient for each level in

the normalized CBL profiles. (d) The distribution of CBL top values from the AERI (green) and the radiosonde

(black) for this dataset. A y-axis value of 1 is the CBL top measured using the radiosonde data zi. For (a), (b), and

(c), the thinner lines are for the same variables and statistics but are for the comparison with radiosondes that have

had the averaging kernel applied (n 5 206), whereas the thicker lines are for the original radiosonde data.
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observed by radiosondes, much like the example profile

in Fig. 3a. In addition, the STD of the CBL depth errors

for this dataset is found to be 370m. AERIoe displays

sensitivity to the radiosonde CBL depth values, with

an r value of 0.7.

b. Evaluation of AERI-derived SBL profiles

Like the CBL, there are noticeable differences be-

tween theAERIoe and radiosonde profiles in bias, STD,

and r in the SBL that can be attributable to howAERIoe

represents the SBL profile (Fig. 5). Beneath the top of

the SBL, AERIoe has a u(z) warm bias that peaks at 18C
at the surface (Fig. 5a). This warm bias rapidly di-

minishes as the thermodynamic profile approaches the

top of the SBL (z/h 5 1) and remains largely unbiased

with height until z/h 5 10. Below the SBL top, the STD

u(z) profile is around 0.58C. Above the SBL top and

within the residual layer, the STD profile for potential

temperature increases to 1.08C (Fig. 5b). Although far

above the SBL top, the u(z) and q(z) profiles are both

unbiased, and water vapor dry biases on the order of

1 gkg21 are present in much of the SBL profile. In ad-

dition, the water vapor STD experiences an increase

from 1 to nearly 2 g kg21 near the top of the residual

layer (5# z/h# 10). In Fig. 5c, maxima in r for both u(z)

and q(z) occur between 0# z/h# 5, suggesting that the

AERI is most sensitive to the thermodynamic proper-

ties of the air below the SBL top and within the

residual layer.

As in the CBL case, application of the averaging

kernel to the radiosonde data can reveal where a re-

duction in retrieval accuracy may be attributable to the

retrieval’s vertical resolution. Figure 5b shows that ap-

plication of the averaging kernel decreases the q(z) STD

profile throughout the entire profile, suggesting that

resolution issues play a large role in the accuracy of SBL

q(z). In particular, near the top of the residual layer

(5# z/h# 10), the q(z) STD profile decreases nearly by

1 g kg21 and r increases from 0.90 to 0.96 (Fig. 5c). For

u(z), a similar but smaller decrease in STD occurs. This

decrease occurs largely where z/h . 5, suggesting that

the retrieval inaccuracies occur because of the inversion

often found at the top of the residual layer. The de-

creases in q(z) bias with the application of the averaging

kernel in Fig. 5a indicate that although the retrieval’s

vertical resolution does cause a dry bias in q(z) above

and below the SBL top, this bias is not completely ex-

plained by the retrieval’s vertical resolution. Likewise,

FIG. 5. As in Fig. 4, but for SBL cases. A z/h value of 1 represents the height of the surface-based inversion

(n 5 119).
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resolution issues do not completely explain the warm

bias in u(z) below z/h 5 1, as application of the aver-

aging kernel does not change the bias profile at all.

These biases are difficult to explain given the data

available. However, since studies using more recent

AERI deployments have not reported these biases (e.g.,

Turner and Löhnert 2014; Bonin et al. 2015; Blumberg

et al. 2015; Weckwerth et al. 2016), these biases are not

generalizable across all AERI deployments. Reconcil-

ing these differences has been left for future work.

Unlike the CBL, the top of the SBL determined from

the AERI-retrieved profile compares more favorably to

radiosondes, since it is found much closer to the AERI

instrument. This is indicated in Fig. 5d, as the AERI and

radiosonde distributions of the SBL top are quite similar

and biases between these values are on the order of

10m. The STD value is 80m, compared to 370m in the

CBL top cases (Fig. 4d). Last, this assessment shows that

r values from the SBL comparison are slightly better

than those in the CBL top comparison (0.7 vs 0.75).

5. Accuracy and uncertainty of thermodynamic
indices

a. Parcel initial properties verification

The accuracy ofAERI-derived indices (e.g., CAPE) is

strongly dependent upon the instrument’s ability to

obtain accurate initial thermodynamic properties of as-

cending parcels. Table 2 indicates the bias, STD, and

correlation coefficient for the parcel height, tempera-

ture, and dewpoint for the CBL and SBL cases before

parcel ascent. For the SB parcel, the temperature and

dewpoint exhibit warm and dry biases in both the CBL

and SBL cases, similar to the surface biases indicated in

Figs. 4a and 5a. Additionally, the STD of the errors for

this parcel ranges between 0.598 and 1.08C, peaking for

the SB parcel dewpoint in the CBL cases. All values of

the SB parcel have very high r values between 0.97 and

0.99. The high accuracy of the SB parcel properties

(except for the warm bias in the SBL) are provided by

the combination of THWAPS data and the information

in theAERI spectra about the near-surface temperature

profile in the AERIoe retrieval.

While the ML parcel verification in Table 2 shows

STD and r values on the same order as the SB parcel,

several counterintuitive biases appear. Most notable is

the absence of an ML parcel dry bias in both the CBL

and SBL cases, when in fact a dry bias would be ex-

pected given the boundary layer dry biases apparent

in Figs. 4a and 5a. Instead, a moist bias is apparent in

the ML parcel during the CBL cases, and in the SBL

cases the ML parcel dewpoint is unbiased. These issues

are a function of using an instrument with a much

higher vertical resolution (radiosonde) to verify coarser-

resolution retrievals (AERIoe). In the case of the

water vapor profile, both profiles decay with height.

However, inspection of the lowest 100-hPa profiles

shows that the AERI water vapor decays more slowly

with height than the radiosonde because of the vertical

correlations that result from the AERIoe retrieval. This

means that for the radiosonde, distributions of water

vapor in the lowest 100 hPa are more likely to exhibit

non-Gaussian behavior with tails toward drier values

than AERIoe. This difference creates a moist bias in the

AERIoe retrieval as the more detailed structure of the

radiosonde pulls the radiosonde ML parcel toward drier

values when an average is taken. In the SBL cases,

where theML parcel dewpoint is unbiased, the AERIoe

profile is already biased in the dry direction. These res-

olution differences effectively create a cancellation of

the errors. A similar explanation exists for why the

AERI SBLMLparcel has a cool bias despite the presence

of a near-surface warm bias (Fig. 5a), where warm tails in

the distribution of lowest 100-hPa radiosonde potential

temperature occur because of sharper inversions in the

TABLE 2. The verification statistics for different median thermodynamic indices from the CBL and SBL datasets for the initial tem-

perature, dewpoint, and height of the SB, ML, and MU parcels. Shown are the number of data points n, bias, STD of the error, and the

Pearson’s correlation coefficient r. The origin height of the SB andML parcels are not included, as this value is always the surface point for

these parcel types.

CBL profiles SBL profiles

n Bias STD r n Bias STD r

SB temperature (8C) 206 0.29 0.72 0.99 119 1.1 0.66 0.99

SB dewpoint (8C) 206 20.5 1.0 0.97 119 20.02 0.59 0.98

ML temperature (8C) 206 20.26 0.54 0.99 119 21.2 0.56 0.99

ML dewpoint (8C) 206 0.75 0.94 0.98 119 0.1 1.2 0.96

MU height (km) 206 20.07 0.47 0.72 119 0.06 0.62 0.58

MU temperature (8C) 206 0.56 3.03 0.90 119 20.13 3.12 0.84

MU dewpoint (8C) 206 0.41 2.48 0.93 119 20.74 2.95 0.86
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radiosondeprofile. These conclusions are reinforced by the

recalculation of the biases of ML parcel properties using

the smoothed radiosonde profiles created in section 4. This

exercise recovers the expected signs of the biases in the

CBL and SBL parcels (Table 3). However, the warm bias

in theMLSBL is quite small, as the warm bias is present in

the AERIoe retrieval near the surface occurs over a very

thin layer compared to the entire 100-hPa layer used to

compute the ML parcel properties.

The final parcel, the MU parcel, has lower r values

and higher STD values (approximately 38C) than the

ML or SB parcels. This larger imprecision is caused

often by SHARPpy identifying a different MU parcel

in the AERIoe profile than the radiosonde profile;

because of the AERIoe smooth profile, it can be dif-

ficult to obtain similar initial properties of the MU

parcel when comparing to a highly structured radio-

sonde profile. This is evident where the MU parcel,

although generally unbiased in the height of the parcel

origin, has an STD of roughly 0.5 km and exhibits an

r value less than 0.7 for the SBL and CBL datasets.

Recalculation of these statistics using MU parcels

found using the smoothed SBL radiosonde profile

improves these metrics (STD5 0.19 km, r5 0.67 from

STD 5 0.62 km, r 5 0.58). Given these results, ther-

modynamic indices derived from the SB and ML par-

cels should generally have a greater accuracy than

those derived from the MU parcel.

b. Thermodynamic indices verification

Figure 6 shows the comparison between AERIoe and

radiosonde forCAPE,CIN,LI5,Bmin, and the locationof the

buoyancy minimum (Bmin height) indices. Table 4 describes

verification statistics for this comparison; Fig. 6 illustrates the

data used to calculate these statistics. These statistics and

plots primarily demonstrate that the AERI retrieval is gen-

erally more accurate with indices that are only dependent

upon differences at one vertical level, called nonintegrated

indices (e.g., LI5 andBmin) in theprofile, rather thanmultiple

levels through integration (e.g., CAPE and CIN).

The first example of this difference is apparent in how

well the AERI measures two quantities that describe

whether a parcel experiences positive buoyancy when

lifted: the CAPE and LI5 indices. Figure 6 demonstrates

that the AERI retrievals may exhibit LI5 errors

between 228 and 48C (Figs. 6d,i,n) and CAPE errors

generally range between 21000 and 1000 J kg21

(Figs. 6a,f,k). TheAERIoe-derived LI5 andCAPEvalues

both have a bias relative to the radiosonde (Table 4),

suggesting the AERI parcels have less instability

(23.7–334.1 J kg21) than radiosonde parcels. This un-

derestimation is primarily a function of the warm bias in

the mid- to upper atmosphere visible at the top of

Figs. 4a and 5a and is mitigated in the CBLML and SBL

SB parcels by their respective moist and warm biases

discussed in section 5a. While both parcels are biased,

LI5 is still more accurate than CAPE. This is most ap-

parent in the normalized STD (NSTD) metric, which is

the ratio of STD to the 1-sigma standard deviation cal-

culated using all the radiosonde indices for that index.

For CAPE, the STD values range between 197 and

540 J kg21, and the NSTD is roughly 0.35–0.56. In con-

trast, the LI5 STD for all parcels is bounded by 1.58C and

0.24–0.31 for the NSTD values. Finally, the LI5 variable

has a larger r (0.95# r# 0.98) than the CAPE quantities

(0.83 # r # 0.94), suggesting that the AERI exhibits a

stronger sensitivity to changes in LI5 than CAPE. These

results regarding the LI5 index are similar to those found

in Fig. 9 of Feltz et al. (2003), which used profiles re-

trieved from AERIprof (the older retrieval algorithm)

to evaluate the AERI-derived LI5 index to radiosondes.

Overall, this comparison suggests integrated thermo-

dynamic quantities (e.g., CAPE and CIN) derived from

the AERI have a lower accuracy than nonintegrated

quantities such as LI5 and Bmin.

Similar patterns arise when comparing the CIN and

Bmin variables. The differences between integrated and

nonintegrated indices are best demonstrated in Table 4,

where the SB and ML Bmin correlation coefficients are

larger than those for CIN. These differences do not hold

TABLE 3. As in Table 2, but using the 55-level radiosonde profiles smoothed by the AERI averaging kernel.

CBL profiles SBL profiles

n Bias STD r n Bias STD r

SB temperature (8C) 206 0.27 0.72 0.99 119 1.1 0.68 0.99

SB dewpoint (8C) 206 20.18 0.78 0.99 119 20.5 0.51 0.99

ML temperature (8C) 206 20.02 0.22 0.99 119 0.07 0.19 0.99

ML dewpoint (8C) 206 20.25 0.79 0.98 119 21.01 0.82 0.98

MU height (km) 206 20.01 0.32 0.81 119 0.18 0.48 0.67

MU temperature (8C) 206 0.01 2.54 0.92 119 20.84 2.24 0.89

MU dewpoint (8C) 206 0.12 2.13 0.97 119 20.52 2.76 0.89
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for the MU parcel, as the errors associated with ob-

taining the MU initial parcel properties described in

section 5a play a significant role. Figures 6b,g,l show that

CIN errors range largely between 2200 and 100 J kg21,

while Bmin generally exhibits errors between 228 and
28C (Figs. 6c,h,m). For all parcel types, large biases

(from 50 to 258 J kg21) and STD values exist for the

CIN values (51–200 J kg21). In comparison, the Bmin

FIG. 6. Error plots for thermodynamic indices (a),(f),(k) CAPE (J kg21), (b),(g),(l) CIN (J kg21), (c),(h),(m) Bmin (8C), (d),(i),(n)
LI5 (8C), and (e),(j),(o) Bmin height (km) for the (top) SB, (middle) ML, and (bottom) MU parcels. The y axis represents the difference

between the AERI and radiosonde index, while the x axis represents AERI index value. Blue points represent profiles from the SBL

category, and orange points are from the CBL category. Light gray shading in the plots represents the area where invalid bias values exist

because of a lower or upper bound on the range of valid index values (e.g., CAPE is nonnegative).

TABLE 4. As in Tables 2 and 3, but for the different thermodynamic indices CIN (J kg21), CAPE (J kg21), Bmin (8C), LI5 (8C), and Bmin

height (km). NSTD is the ratio of STD to the 1-sigma STD calculated using all the radiosonde indices for that index. Only profiles where

the radiosonde parcel being evaluated had a CAPE. 100 J kg21 and a CIN . 2800 J kg21 were used in the CIN comparisons to ensure

that the radiosonde had a nonzero value of CIN and CAPE.

CBL profiles SBL profiles

n Bias STD NSTD r n Bias STD NSTD r

SB CAPE 206 2200.7 540.7 0.40 0.92 119 223.7 197.6 0.40 0.92

SB CIN 158 29.2 57.9 0.61 0.83 55 51.2 99.8 0.61 0.82

SB Bmin 206 0.3 1.2 0.46 0.88 119 0.6 0.9 0.34 0.94

SB LI5 206 0.42 1.5 0.29 0.96 119 20.1 1.2 0.24 0.98

SB Bmin height 206 20.4 0.9 0.71 0.72 119 20.4 1.2 0.84 0.59

ML CAPE 206 224.3 291.9 0.35 0.94 119 2265.5 333.9 0.56 0.83

ML CIN 131 20.7 106.7 0.73 0.73 74 248.8 200.3 1.18 0.49

ML Bmin 206 0.4 1.2 0.45 0.89 119 20.6 1.4 0.60 0.81

ML LI5 206 0.0 1.3 0.25 0.97 119 1.2 1.3 0.30 0.95

ML Bmin height 206 20.6 0.9 0.69 0.77 119 20.6 0.8 0.62 0.79

MU CAPE 206 2183.4 518.7 0.39 0.92 119 2334.1 364.2 0.47 0.89

MU CIN 162 210.0 51.1 0.61 0.84 93 229.7 120.9 0.91 0.69

MU Bmin 206 0.2 1.3 0.65 0.77 119 0.13 1.5 0.73 0.70

MU LI5 206 0.45 1.4 0.31 0.95 119 1.1 1.2 0.31 0.95

MU Bmin height 206 20.5 0.9 0.72 0.71 119 20.3 0.8 0.69 0.72

2758 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56



index is unbiased and has STD values around 1.28C,
except in cases where the initial parcel values are biased

(e.g., the SBL MU and ML parcels). In addition, CIN

errors are larger than those from Bmin as the NSTD

values for CIN are greater than those for Bmin. This is

particularly true in the SBL and CBL cases with the ML

and SB parcels. These results suggest that Bmin is a

better tool than CIN for assessing the strength of cap-

ping inversions with AERI-retrieved profiles since CIN

values require accurate measurements of the entire

layer exhibiting negative buoyancy, which AERIoe

struggles to resolve fully.

Given that Bmin values derived from AERIoe com-

pare well to those from radiosondes, it is important to

consider if both AERIoe and the radiosonde also iden-

tify similar locations ofBmin, which is represented by the

variable designated as ‘‘Bmin height.’’ Figures 6e, 6j, and

6o show the verification of the Bmin height values from

AERIoe and suggest that although AERIoe cannot

precisely identify the same Bmin height as the radio-

sonde, it is roughly able to capture the correct Bmin

height within the lowest 3 km of the profile. Above

2.5–3 km, where AERIoe vertical resolution in the

thermodynamic profile decreases sharply (Turner and

Löhnert 2014; Blumberg et al. 2015), errors of the Bmin

height estimation increase. Table 4 suggests that the

STD of the Bmin height ranges from 0.8 (SBL ML) to

1.2 km (SBL SB). Notable is that the r for theBmin height

index (0.59# r# 0.79) is occasionally lower thanCAPE,

LI5, and Bmin in Table 4. The outliers in Figs. 6e, 6j, and

6o (e.g., the points that lie along the gray shaded area or

where theAERIBmin5 08C) drivemuch of the decrease

in accuracy evident in Table 4. The r statistic is strongly

influenced by the presence of weakly capped environ-

ments (Bmin approaches 08C) within the dataset. In these
environments, Bmin height may jump from the parcel

origin height to a different location aloft. There, small

differences in the thermodynamic environment mea-

sured by AERIoe and the radiosonde may change the

location of Bmin significantly, and these can cause large

differences between what each instrument considers the

correct location of Bmin.

Qualitatively, AERIoe-derived Bmin height values

occur at expected locations within the thermodynamic

profile. For the CBL cases, more than 95% of AERI

Bmin height values in Figs. 6e, 6j, and 6o lie above the

radiosonde CBL top. This location (roughly 1.5–3 km

AGL) is where the capping inversion that often sup-

presses deep, moist convection in the Southern Great

Plains is often found. A similar result occurs in the

SBL cases. However, the distribution of SBL Bmin

height values have a bimodal distribution (Figs. 6e,j),

with some Bmin height values near the surface-based

inversion (,1 km AGL) and others near the top of the

residual layer (.1 km AGL), where the previous day’s

CBL top is found. Furthermore, evaluation of individual

profiles suggests that the AERI largely identifies Bmin

height near layers where the radiosonde observes static

stability increases. This suggests that rather than precisely

identifying capping inversions, Bmin height derived from

AERIoe profiles may assist in the identification of layers

where capping likely exists.

c. Thermodynamic index random errors

The impact of random and systematic errors on the

calculation of convection indices from both AERIoe

and radiosonde profiles was also evaluated. To do this,

the IQR was computed from each distribution of con-

vection indices generated via Monte Carlo sampling

(section 3d) calculated for every clear-sky SBL and CBL

AERI and radiosonde profile. The results from each

instrument are illustrated in Fig. 7.

Within Fig. 7, several trends are apparent regarding

the random errors from radiosondes and AERIs. First,

the random errors for all indices do not seem to be

strongly dependent upon parcel type. Second, for CIN,

LI5, and Bmin, the random errors from the radiosonde

are generally less than those from the AERI; however,

the differences are quite small. Last, for indices that

have a bound of 0 (e.g., CIN, CAPE, andBmin), the IQR

narrows as the index values approaches that bound,

causing the data points in Fig. 7 to curve toward 0, a

behavior not captured by the trend lines.

For both instruments, the random errors for CAPE

increase as the parcel instability grows (Figs. 7a,e). This

behavior occurs for different reasons. First, it is impor-

tant to note that large errors in parcel q often translate

into large errors in CAPE. Second, for the Southern

Great Plains, parcel q is often proportional to CAPE.

For the AERIoe retrievals, as q increases, some AERI

spectral channels become more opaque and decrease

the overall degrees of freedom of signal (DFS), there-

fore increasing the q uncertainty in the AERIoe-

retrieved parcel (Turner and Löhnert 2014, their

Fig. 7). For the radiosonde, a 1% perturbation in RH

in a high q environment translates to a much larger error

of q than the same RH error in a low q environment.

This reasoning explains why the precision of AERIoe

and radiosonde instability measurements decreases as

parcel instability increases. However, it is apparent from

Fig. 7 that there are instances in which CAPE values

measured byAERIoe have twice the precision of CAPE

values from radiosondes. This occurs in profiles with

CAPE values greater than 2000 J kg21, which is roughly

where uncertainties in parcel q for the AERI become

less than those for the radiosonde. These results indicate
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FIG. 7. The impact of instrument random error on the calculation of the CAPE, CIN, Bmin, and LI5 indices using

(a)–(d) AERI and (e)–(h) radiosonde profiles with CAPE. 250 J kg21. The IQR of the index distribution is on the

y axis, while the median value of the index is on the x axis. The points are colored by the type of parcel used to

calculate the index (MU parcel: blue; ML parcel: red; SB parcel: yellow). Thick lines indicate the line of best fit to

qualitatively show the trends for illustration purposes.
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that for very unstable environments, AERI calculations

of CAPE are more precise than those from radiosondes.

Additional tests (not shown) increasing the RUC sT to

nearly 28C in the AERIoe retrieval also seem to

suggest that this conclusion holds for different RUC

uncertainties.

d. Profiles of parcel stability

To test the AERIoe’s capability to identify condi-

tionally unstable layers of air, parcels were lifted from

every level in the lowest 4 km of the CBL and SBL

profiles. Unlike before, Monte Carlo sampling was not

performed to generate indices from these parcels in

order to simplify the comparison. From these parcels,

profiles of LI5(z), Bmin(z), and Bmin height(z) were

created, where z is the height coordinate normalized

with respect to the profile’s radiosonde CBL or SBL top.

Figure 8 evaluates these AERI-derived thermody-

namic index profiles for the CBL and SBL. This figure

shows that for the CBL, Bmin(z) and Bmin height(z) are

largely unbiased throughout the entire profile (Fig. 8a).

The AERI-derived LI5(z) profile within the CBL ex-

hibits less buoyancy than the radiosonde, especially near

the CBL top where the warm bias due to the smoother

profile plays a larger role. For the STD profiles, theBmin

height(z) largely does not vary much with height.

However, theBmin(z) and LI5(z) STD profiles start near

1.58C and increase to nearly 2.58–38C at the CBL top.

Figure 8b shows that the sensitivity of the AERI for all

three profiles drops off at the CBL top. In the case of

Bmin height(z), the near-surface correlation coefficient

drops off to 0.7, as cases where weakly capped envi-

ronments and subtle differences in the AERI and ra-

diosonde measurements cause differences where one

instrument finds the Bmin at the parcel origination level

while the other finds it at the capping inversion. This

same issue occurs with the low near-surface correlation

coefficient in the SBL cases (Fig. 8d). Although the

three convection parameters are uniformly accurate

with height in this case, the most unstable parcels are

found close to the surface, per the box-and-whisker plot

in Fig. 8a.

The variations of accuracy with height of these indices

within the SBL, although largely similar in STD and

correlation coefficient to the CBL, do exhibit some dif-

ferences. Most noticeable are the biases in Bmin

(nearly 218C) and LI5 (18–28C). These are largely due

to the biases discussed in section 4b regarding howAERIoe

depicts the SBL. However, these issues do not create

any noticeable biases in the profile of the height of Bmin.

For Bmin and LI5, the STD profiles follow similar shapes

to the CBL profile, where the errors increase near

the CBL top and the residual layer top. In Fig. 8d, the

Bmin and LI5 exhibit high correlation coefficients below

the surface-based inversion, as AERIoe has enough in-

formation to resolve the inversion and the thermody-

namic characteristics of the air below it. The AERI

exhibits a layer of high r values for all three variables

between the residual layer top and surface-based in-

version height. This is beneficial, as the radiosonde MU

parcels are often foundwithin this layer per the box-and-

whisker plot in Fig. 8c. In fact, Figs. 8c and 8d suggest

that for the AERIoe retrieval in this layer, the error

characteristics of the indices are roughly independent of

parcel origin height. Overall, these properties suggest

that even if the heights of the AERI and radiosonde

SBLMUparcels were identical, the error characteristics

of MU Bmin, LI5, and Bmin height largely may not

improve.

e. Accuracy of AERI 3-h stability trends

As both the AERI retrievals and radiosonde in-

struments may be used together to assess the evolution

of parcel stability, we attempted to identify how often

the two instruments may provide similar 3-h trends.

Because the previous sections revealed that different

characteristics of the AERIoe and radiosonde profiles

make a comparison of the indices calculated from each

instrument nontrivial, the trend of the indices may be

more useful to consider when comparing the measure-

ments from each instrument. To do this, all clear-sky

retrievals and radiosonde data were sorted to isolate

3-h periods that contained AERIoe and radiosonde profiles

at the beginning and end of the period (n 5 249). Using

the Monte Carlo–generated distribution of thermody-

namic indices from each instrument, a dataset compar-

ing the 3-h differences of the indices was developed.

From this dataset, the frequency of events where

AERIoe and radiosonde profiles measured a similar

signed trend of the 3-h period was calculated. It is im-

portant to emphasize that this test attempts to account

for the effects of instrument errors on the trend assess-

ment and that this test uses only two discrete measure-

ment points in time to approximate the trend, as 3 h is

the maximum temporal resolution of the radiosonde

dataset. This analysis does not account for any vari-

ability within the 3-h windowmeasured by the AERI, as

subscale variability (e.g., a thunderstorm passing by)

within the window may cause an inaccurate assessment

of the overall mesoscale trend.

Figure 9 illustrates the results from these tests for

these different thermodynamic quantities. For most

quantities tested, the AERI roughly detects the same

signed trend as the radiosonde at least 60%–70% of the

time. Additionally, the stronger the change in the index,

the more likely the AERIoe retrievals are to match that

OCTOBER 2017 B LUMBERG ET AL . 2761



trend. For CAPE, the probability of detecting the cor-

rect trend increases from 75% to 90% between

0 and 1000 J kg21. A characteristic of Fig. 9 is that the

SB parcel has a larger probability than the MU and ML

parcels. This is especially apparent in Fig. 9e, where the

detection of LCL trends is strongly dependent upon

parcel type. This is because the SB parcel quantities are

retrieved using AERI spectra and surface met tower

data, both of which are highly sensitive to the thermo-

dynamic characteristics of the near-surface air.

Figure 9 also suggests that when it comes to moni-

toring stabilization trends, AERIoe may detect changes

in the parcel properties more readily than changes to the

environmental thermodynamic profile. Figure 9f shows

that, for all parcel types, AERIoe profiles may more

reliably detect parcel ue changes than those in the en-

vironmental temperature (Fig. 9c). For example, a 48C
trend in ue has a chance. 80% of being detected by both

the instruments, while a change in the height ofBmin may

be correctly detected with a probability of 50%–60%.

This difference suggests that theAERI’s primary benefit

when assessing destabilization may be identifying

changes to the initial parcel properties rather than pre-

cise changes in the environment, such as the lifting of a

capping inversion. This is useful given that some of the

dramatic changes in parcel instability are associ-

ated with an increase in moisture of the low levels

rather than a change in environmental lapse rate

(Markowski and Richardson 2007, 187–189). However,

destabilization caused by changes to the environment

viewed through the lens of AERIoe may be better iden-

tified via a general cooling with time aloft. This aspect of

the AERI suggests that while the AERI may offer good

insight into the general trends of convective stability,

more detailed diagnoses of environmental changes may

be necessary via radiosondes.

FIG. 8. Verification metrics for (a),(b) CBL and (c),(d) SBL 0–4-kmLI5(z) (8C; red),Bmin(z) (8C; blue), andBmin

height(z) (km; green) profiles. (left) The profile bias (solid) and STD (dashed) normalized by the SBL and CBL

tops. (right) The correlation coefficient with height profile with the same normalization. The box-and-whisker plots

in (a) and (c) display the distribution (10th, 25th, 50th, 75th, and 90th percentiles) of radiosonde MU parcel lo-

cations in each boundary layer category.
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6. Conclusions

Using 3-hourly radiosondes and AERI observations

during IHOP_2002, this paper analyzed several different

capabilities of the AERI instrument in environments

supportive of deep, moist convection. First, comparisons

with radiosondes show that the smooth AERI-retrieved

profiles exhibit large inaccuracies primarily near the CBL

interface and at the top of the SBL residual layer. Second,

while these inaccuracies affect the accuracy of integrated

indices such as CIN andCAPE, they largely do not impact

simpler indices such as Bmin and LI5. Additionally, al-

though the height of Bmin derived from the AERI re-

trievals may vary compared with radiosondes, the level

often occurs in regions of the profile where deep, moist

convection is often suppressed (e.g., CBL and residual

layer capping inversions) and somewhat subtle AERIoe-

measured increases in static stability that deviate from

well-mixed layers may occur. Third, propagation of ran-

dom and systematic errors from the radiosonde andAERI

retrievals through SHARPpy revealed that convection

indices derived from the AERI tend to have uncertainty

magnitudes slightly greater than radiosondes. However,

for profiles in environments exhibiting large convective

instability (CAPE $ 3000Jkg21), CAPE measurements

from AERIoe have nearly twice the precision that radio-

sondes do. Last, this study demonstrates that the AERI is

primarily suited to monitor trends in parcel moist static

energy and suggests that the AERI can capture de-

stabilization trends. However, a more detailed un-

derstanding of why those trends are occurring (e.g., lifting

of a capping inversion) may need to be augmented by

radiosondes.Although the vertical resolution of theAERI

retrievals may sometimes hinder a precise identification of

capping inversions, such issues are overcome in environ-

ments where strong vertical gradients and rapid temporal

changes occur in the thermodynamic profiles. This feature

is particularly favorable for operational meteorologists

working challenging convective forecasts with the poten-

tial for the rapid erosion of a strong capping inversion.

Three issues hinder the argument that these results

are generalizable to all AERI deployments. First, this

study focuses solely on the convective season in the

central United States. Strong vertical contrasts in

moisture and temperature (e.g., thermodynamic prop-

erties of the CBL and the elevated mixed layer;

Carlson 1998) and rapid temporal changes in stability

and moisture occur in these environments (e.g., the

nocturnal low-level jet). This study suggests that given

such environments, the AERImay offer useful guidance

regarding the problem of nowcasting deep, moist con-

vection in the U.S. Southern Great Plains. Addi-

tional studies similar to this one are needed in other

FIG. 9. An assessment to evaluate the percentage of the time theAERI andRAOB instruments indicate a similar trend sign (positive or

negative) over a 3-h period. Indices shown are (a) CAPE, (b)Bmin, (c) Bmin height, (d) LI5, (e) LCL, and (f) parcel ue for different change

thresholds (x axis). Solid lines indicate the percent of the time that similar trends were identified (left y axis) by the two instruments, and

dashed lines represent the number of cases in each category (right y axis: 3105). Blue lines indicate the MU parcel (n 5 233), red lines

indicate the ML parcel (n 5 192), and yellow lines indicate the SB parcel (n 5 203). Lines are truncated once the sample size decreases

below 30 (15 000 given the Monte Carlo sampling).
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environments that do not exhibit such strong spatio-

temporal contrasts to assess the AERI’s usefulness in

other climatic regions. Second, a warm and dry bias was

identified in the SBL AERI profile that has not been

reported in past studies using more recent AERI de-

ployments. Last, this study utilized technology from

2002 in the AERIoe algorithm. AERIoe retrievals using

noise-filteredAERI spectra (Turner et al. 2006) or more

modern NWP tropospheric profiles should be more ac-

curate than the retrievals found in this study and should

better detect changes to capping inversions. Future

studies could also use satellite radiances (e.g., Ho et al.

2002; Ebell et al. 2013) or lidar data (Barrera-Verdejo

et al. 2016) within the AERIoe retrieval to improve the

mid- to upper-tropospheric thermodynamic profile and

facilitate an observation-only comparison to radio-

sondes. Additionally, literature suggests that inclusion

of lidar (e.g., Raman lidar) data in AERIoe should have

an added benefit of improving the vertical resolution of

the retrieved profile (Barrera-Verdejo et al. 2016).

An important consequence of this study is that we

have established a methodology for quantifying the

uncertainty of convection indices due to measurement

errors using a single radiosonde or OE-retrieved profile.

Given the size of convection index errors possible in

observed thermodynamic profiles, these results strongly

suggest that a probabilistic approach should be used

when calculating convection indices and doing so can

assist in the intercomparison of indices. However, as this

study has shown, measurement characteristics (e.g.,

vertical resolution) can sometimes create noticeable,

systematic differences in convection indices even down

to the initial parcel property calculations (section 5a),

which on the surface may seem troubling. It is important

to remember that while indices can be rooted in physical

reasoning (e.g., parcel theory), they also often have a

statistical or anecdotal component (e.g., studies tying

indices from proximity soundings to phenomena) that

assists in the interpretation of an index value. Because of

this additional component, the assumptions inherent in

the sounding data used in studies that clarify how to

interpret a particular index may be violated when that

index is transferred to a new instrument or data type;

this may result in an invalid interpretation of the index.

This issue suggests that while intercomparisons of in-

dices between instruments are an important exercise,

studies demonstrating relationships of AERI-derived

indices to physical phenomena are also needed.
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APPENDIX

Developing the Radiosonde Error Covariance
Matrix

Observation error covariance matrices were con-

structed using Vaisala RS-90 radiosonde instrument

errors provided by the ARM program (Holdridge et al.

2011; Table 3). Two types of errors were considered:

repeatability errors (random errors: sRH 5 1.41% RH,

sT 5 0.398C) and reproducibility errors (systematic er-

rors: sRH 5 3% RH, sT 5 0.28C). Each profile T(z),

RH(z) was perturbed by adding one randomly chosen

systematic error value and a random noise profile; these

perturbations were applied independently to T and RH.

After converting the perturbedT(z), RH(z) profiles into

water vapor mixing ratio space, the covariance matrix S

was calculated using the T(z), q(z) profiles. This matrix

has off-diagonal values since the assumed uncorrelated

errors in T and RH created correlated errors when cal-

culating q, as both T and RH are independent variables

in the equation used to compute q.
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