
Atmospheric Research 161–162 (2015) 125–133

Contents lists available at ScienceDirect

Atmospheric Research

j ourna l homepage: www.e lsev ie r .com/ locate /atmos
Vertical profile retrievals with warm-rain microphysics using the
ground-based microwave radiometer operated by the
Hong Kong Observatory
Wai Soen Chan a, Jeffrey Chi Wai Lee b,⁎
a Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
b Hong Kong Observatory, Hong Kong, China
⁎ Corresponding author.
E-mail address: jeffreylee@hko.gov.hk (J.C.W. Lee).

http://dx.doi.org/10.1016/j.atmosres.2015.04.007
0169-8095/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 December 2014
Received in revised form 19 March 2015
Accepted 9 April 2015
Available online 16 April 2015

Keywords:
Microwave radiometer
Precipitation
Accuracy
Variational method
Mie theory
Wepresent the formulation of a variational-method-based retrieval algorithm for a ground-basedmicrowave ra-
diometer. Absorption by air, water vapor, cloud liquid water and rain water are incorporated into the formula-
tion. The absorption of microwave radiation by air is calculated using a line-by-line method, while that by
liquid water is calculated using an empirical formula that models the complex refractive index of liquid water.
The root-mean-squared error of the retrieved temperature was no more than 1 °C in the lowest 2000 m of the
profiles based on the 1-year verification data. The absorption of microwave radiation by rain water is important
for improving the accuracy of the retrieval profiles during rainy conditions.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Nowcasting of convection is a challenge. Common approaches for
nowcasting include radar extrapolation (Yeung et al., 2009), dynamic
numerical weather simulations (Sun et al., 2010), combined radar ex-
trapolation and numerical simulations (Wong et al., 2009) and statisti-
cal methods (Lin et al., 2012). The last three methods are capable of
forecasting the development of a convective system before it forms.
However, the methods involving a numerical weather prediction sys-
tem (NWP) are more computationally costly in real-time operations.

Statistical methods are limited by the available observational data.
Statistical models commonly incorporate upper-air observations (Lin
et al., 2011) because vertical instability is key for convective develop-
ment (Adams and Souza, 2009). However, because of the operational
cost, both temporal and spatial coverages of upper-air observations
are insufficient to provide detailed mesoscale information for
nowcasting convective development.

In recent years, real-time measurements of vertical profiles using
ground-based microwave radiometers have become popular (Cimini
et al., 2011; Cadeddu et al., 2013). The operational cost of ground-
based microwave radiometers is much lower than that of radiosondes;
thus, radiometers are more promising for improving both the spatial
and temporal coverages of upper-air measurements. The accuracy of
the vertical profile obtained by radiometers depends on the retrieval,
which inverts the radiometer brightness temperature readings to the
vertical profile. A major issue with the retrieval of vertical profiles
from radiometers is that the profile during precipitation is often less ac-
curate. This inaccuracy is caused by two effects: 1) the accumulation of
water, snow (Woods et al., 2005) or ice (Fernández-González et al.,
2014) over the radome and 2) the lack of scattering and emission/ab-
sorption effects of rain water in the retrieval algorithm. Attempts have
been made in the past few years to solve the former problem, such as
using a hydrophobic radome and forcing airflow over the radiometer
surface to avoid the accumulation of water, snow and ice (Chan,
2009a) or observing the microwave irradiance at an off-zenith angle
to avoid thin films of water (Xu et al., 2014). To the authors' knowledge,
few attempts have been made to handle the latter problem. The two
problems are distinct, but efforts devoted to solving each problem can
be applied simultaneously.

There are two classes of retrieval approaches: statistical (Tan
et al., 2011) and variational minimization (Hewison, 2007). The sec-
ond class provides more accurate results, and it is expected to be
more skillful in the application of nowcasting convective develop-
ment. This article describes a vertical profile retrieval algorithm
with warm-rain microphysics developed by the Hong Kong Observa-
tory (HKO) and based on the variational minimization approach. The
major objective is to address the lack of scattering and emission/
absorption effects of rain water in the retrieval algorithm and the
use of radar reflectivity to derive upper-air rain water content. The
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impact of incorporating the scattering and emission/absorption effects
of rain water is demonstrated.

2. Inputs of the retrieval algorithm

Two radiometers are operated by the HKO. One radiometer was ac-
quired in 2008 for the Hong Kong International Airport (denoted “HKIA ra-
diometer” hereafter), and the other radiometer was acquired in 2013 for
King's Park (denoted “KP radiometer” hereafter), where the radiosonde
site is located. The horizontal distance between the two radiometers is ap-
proximately 26 km. Both radiometers are 14-channelmicrowave radiome-
ters (model: RPG HATPRO from Radiometer Physics, Chan (2009b)). The
frequencies of the 14 channels are tabulated in Table 1. The KP radiometer
was out of service for 2months in itsfirst year of operation. An entire calen-
dar yearof data is not available fromtheKP radiometerduring the studype-
riod. The performance of the retrieval methodwasmainly testedwith data
from the HKIA radiometer; an exception is the analysis of the impact of in-
corporating rain droplet effects in the calculation,which used data from the
co-sited KP radiometer. Temperature and humidity profile retrievals using
the HKIA radiometer data at 0000 UTC and 1200 UTC from Sept 2010 to
Aug 2011 were compared with the radiosonde data from the KP. There
are 653 profiles for the comparison. We used radar reflectivity data from
the S-band weather radar located on top of Tai Mo Shan (3 km above sea
level) for deriving the upper-air rain water content on rainy days.

The underlying principle of the variationminimization retrieval is similar
to the variational assimilationmethod inNWP. An initial guess of the vertical
profile for the retrieval is obtained from the 6-hour forecast of the regional
numerical weather prediction system, Meso-NHM, run by the HKO. To
speed up the convergence of the variational retrieval algorithm, the lowest
1500 m of the forecast profile from Meso-NHMwas first calibrated based
on the differences between the surface temperature forecasts by Meso-
NHM and the temperatures measured by the automatic weather station
(AWS). Such calibration often has insignificant effects on the retrieved pro-
files, but it speeds up the calculation by reducing the average number of iter-
ations needed in the minimization process by providing a first-guess profile
similar to the surface observations. Details on Meso-NHM can be found in
Wong (2011).

3. Numerical schemes

The one-dimensional radiative transfer equation is given by
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¼ −
X
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where I is the intensity of the radiation, x is the optical path, i is a label for
individual species of scattering/absorbing particles, σi

a(σi
s) is the absorption

(scattering) cross section of species i, ρi is the number density of species i,
B(T) is the Plank function at temperature T and J is a source function from
scattering. J is related to scattering phase function p(Ω) by Eq. (2)

J ¼
Z
Ω

p Ωð ÞI Ωð ÞdΩ ð2Þ

Note that I, ρi, T and J are explicit functions of x, while σi
a and σi

s de-
pend on x implicitly through their dependence on T.
Table 1
Frequencies and band widths of the 14-channel radiometer.

Channel 1 2 3 4 5 6 7

Frequency (GHz) 22.24 23.04 23.84 25.44 26.24 27.84 31.4
Band width (GHz) 0.23 0.23 0.23 0.23 0.23 0.23 0.23

Channel 8 9 10 11 12 13 14
Frequency (GHz) 51.26 52.28 53.86 54.94 56.66 57.30 58.00
Band width (GHz) 0.23 0.23 0.23 0.23 0.6 1 2
To solve Eq. (1), we discretize ρi and T along the optical path x. We
first solve for I at these piecewise domains and join the domains togeth-
er by requiring I to be continuous at the boundaries of the domains.
Within the individual domains, we assume that the thermally emitted
radiation is scattered no more than once, i.e.,

ρi J ¼
Z
Ω

p Ωð ÞB Tið ÞdΩ ð3Þ

As p(Ω) is integrated to unity, Eq. (3) further simplifies to

ρi J ¼ B Tið Þ ð4Þ

Thus, Eq. (1) simplifies to
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where σi
e is the extinction cross section in individual domains.

The solution of Eq. (5) in the domain spanning xj to xj + 1 is
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where Tkj is the temperature in domain (xj, xj + 1) for particle i andΩi=
ρiσi

e. In this study,we set I(x0)= 0 because the radiometers operated by
the HKO never point directly at the sun. Additionally, the radiometers
operate at the microwave frequency, and the scattering of the solar-
emitted microwave radiation by the atmosphere was negligible.

We assume that microwave radiation is absorbed by dry air (mainly
oxygen and nitrogenmolecules), water vapor, cloudwater droplets and
rain water droplets. Solid hydrometeors are not considered because
they are not common in the study area in the period analyzed. Eq. (6)
simplifies to
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when there is a local thermal equilibrium in which the temperatures
of all particles in the domain (xj, xj + 1) are given by
Tj. The assumption is valid when no rain is present. For rainy cases, we
assume that the dry air, water vapor and cloud droplets are in a local
thermal equilibrium, while the temperature of the rain droplets is com-
puted from amicrophysics scheme that is discussed later. σi

e for the gas-
eous components are obtained from Millimeter-wave Propagation
Model (MPM-93) data (Liebe et al., 1993).σi

e from liquidwater droplets
is calculated using the formulas for Rayleigh scattering (for cloud drop-
lets) and Mie scattering (for rain droplets), in which the empirical for-
mula for the temperature and the frequency-dependent complex
refractive index of bulk liquid water are the input.

The densities of O2 and water vapor are determined using the ideal
gas law and the mixing ratio, respectively. We assume that the number
density of the cloud droplets isNc=1× 108m−3, in which the sizes fol-
low a generalized gamma distribution, i.e.,

nc Dð Þ ¼ Nc
αc

Γ νcð Þλ
αcνc
c Dαcνc−1 exp − λcDð Þαc

� � ð8Þ



0

2000

4000

6000

8000

10000

-2 0 2 4

H
ei

gh
t (

m
)

Temperature Error (oC)

MB-VAR

RMS-VAR

MB-RNN

RMS-
RNN

MB-NHM

RMS-
NHM
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Fig. 1. (a) Attenuation rate ofmoist air at 1013 hPa, 100% relative humidity and 1 gm−3 liquid cloud droplets. The temperatures are 30 °C (dotted black curve), 20 °C (solid blue curve) and
10 °C (dashed red curve). (b) Attenuation rate of 30 °Cmoist airwith rain droplets at 1013hPa, 100% relative humidity, and 1 gm−3 liquid cloud droplets. The radar reflectivities of the rain
droplets are 40 dBZ (dashed-dotted green curve), 30 dBZ (solid blue curve), 20 dBZ (dashed red curve), 10 dBZ (dotted purple curve) and 0 dBZ (dotted black curve). The last two curves
nearly overlap.
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where νc =2, αc =1, D is the diameter of the droplet, and λc is the size
parameter, which depends on the mixing ratio of the cloud water con-
tent. Such a distribution is also used in the Meso-NHM. Because the
cloud water droplets are not single-sized, Ωi is given by Ωi =
∫nc(D)σi

e(D)dD. For Rayleigh scattering,

σ e
i ¼

π
24

k4D6Re gð Þ2
� �

þ πkD3

2
Im g 1þ k2D2
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where g ¼ εw−1
εwþ2, εw is the square of the frequency-dependent complex

refractive index of bulk liquidwater fromRay (1972), and k is thewave-
number from Bohren and Huffman (1998).

As mentioned, λc depends on the mixing ratio of the cloud water
content. With νc = 2 and αc = 1, the parameter can be expressed as

λ3
c ¼ Nc

10πρw

wwρa
ð10Þ

where ρw is the density of liquid water, ww is the mixing ratio of liquid
water, ρa is the density of the air. Additionally, from Eq. (9), Ωi of the
cloud water droplets is a linear combination of the 3rd, 5th and 6th mo-
ments of the size distribution. Numerically, the 3rd moment term con-
tributes the most to σi

e, which is directly proportional to the volume
fraction of the cloud water droplets.

We use a climatological diagnostic parameterization scheme for the
mixing ratio of the cloud liquidwater in this study. The scheme is that of
Wang et al. (1995), which is based on relative humidity (RH):

ρl ¼ wwρa ¼ 0:20 g m−3 if RH≥95% andheight≤600 m
0:26 g m−3 if RH≥95% andheightN600 m

(
ð11Þ

The rain droplet size distribution is assumed to follow theMarshall–
Parmer distribution:

Nr Dð Þ ¼ N0e
−ΛD ð12Þ

N0 = 8000 mm−1 m−3, as shown in Sun and Crook (1997). The slope
parameter Λ is derived from the radar reflectivity. Because the sizes of
the raindrops are comparable to the operating wavelength of the radi-
ometers, Mie theory is needed to evaluate σi

e. Similar to Bohren and
Huffman (1998),

σ e
i ¼

2π
k2

Re
X∞
n¼1
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n xð Þ−mψ0

n mxð Þψn xð Þ
ψn mxð Þξ0n xð Þ−mψ0

n mxð Þξn xð Þ ð15Þ

where x = Dπ/λ, m is the complex refractive index of liquid water,
ψn(x) = xjn(x), ξn(x) = xhn(x), jn(x) and hn(x) are the spherical Bessel
functions and spherical Hankel functions of the first kind, respectively.
The numerical method for evaluating an and bn can be found in Xu
et al. (1999). The infinite sum in Eq. (13) is numerically replaced by a fi-
nite sum (up to N)

N ¼ xþ 4x
1
3 þ 2 ð16Þ

following Wiscombe's criterion (1980). For a 1 cm water droplet and
60 GHzmicrowave radiation, x≈ 6.3 and Eq. (16) indicates that a finite
sum of no more than 20 terms is sufficient for our calculation. For nu-
merical accuracy, the generation of ψn(x) and ξn(x) is initiated 20 orders
higher than suggested by Eq. (16) because the computed σi

e is insensi-
tive to a higher-generation starting order. The integral for evaluating
the corresponding Ωi is conducted using the 8-point Gaussian quadra-
ture. At a reflectivity of 50 dBZ (corresponding to a rain rate of approx-
imately 50 mm h−1 using the Marshall–Palmer relation), no more than
a 5%differencewas found between the attenuation coefficients calculat-
ed using the 8-point Gaussian quadrature and the 16-point Gaussian
quadrature in the frequency regime. To outline the relative contribution
of the individual components, the attenuation rates of various
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configurations are shown in Fig. 1. The attenuation curves for different
reflectivities overlap when the reflectivity is less than or equal to
10 dBZ. Hence, the extinction due to rain droplets is negligible if the
radar reflectivity is less than 10 dBZ.

The radar reflectivity is generally height dependent due to interac-
tions between individual droplets and interactions between droplets
and the environment. In this study, we only explicitly consider the
micro-physics of the evaporation of rain droplets as they fall into sub-
saturated air. Because it is assumed that the size distribution of rain
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Fig. 4. Figure shows the correlation between the vertical temperature and vapor density profiles
May 2013 to April 2014 (excluding a 2-month period from late August to early October in 2013
≥10dBZ). For Fig. 4(a) and (c), the rainmodule is incorporated into the retrieval algorithm. For
level are plotted in the figure.
droplets always follows the Marshall–Parmer distribution, coalescence
and breakup of rain droplets are implicitly considered by redistributing
the rain water content among droplets of different sizes while preserv-
ing the total rain water content. However, coalescence between rain
droplets and cloud droplets is not considered for simplicity. Details on
the formulation of the evaporation of rain drops are discussed below.

For a rain drop of diameter D, the evolution of D over time t is given
by

D
dD
dt

¼ f v
4 R−1ð Þ
ρw Aþ Bð Þ ð17Þ

where R is the relative humidity, f v is the ventilation coefficient, A= Lv
2/

(kaRvT2), B= (ρsv(T)Dv)−1, Lv is the latent heat of evaporation of water,
ρsv(T) is the saturated vapor density at temperature T, ka is the thermal
conductivity of air and Dv is the diffusivity of water vapor in air, similar
to Dudhia (1989) and Pruppacher and Klett (1997). Following Dudhia
(1989), the fall speed of the rain is V(D) = a(P0/P)0.4Db, where a =
842, b = 0.8, P0 = 1000 hPa and P is the ambient pressure in hPa. The

ventilation coefficient is parameterized by f v ¼ f 1 þ f 2Sc
1=3Re0:5 ,

where f1=0.78, f2=0.32, Sc is the Schmidt number and Re is the Reyn-
olds number. The evolution of the rainwater contentwith height due to
evaporation is given by

dm
dz

¼
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0

πρw
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3
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measured by the radiosonde and KP radiometer. The data are for 00 UTC and 12 UTC from
due to the malfunction of the radiometer) during rainy conditions (radar reflectivity aloft
Fig. 4(b) and (d), there is no rainmodule in the retrieval algorithm. Only data 3000m to sea
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where N(D) is the size distribution of the droplets. By assuming that
N(D) follows the Marshall–Palmer distribution N(D) = N0 exp(−λD),
Eq. (18) becomes

dm
dz

¼ 2πN0 R−1ð Þ
Aþ B

P
P0

� �0:4 f 1Γ 2−bð Þ
aλ2−b

þ f 2
P
P0

� �0:2
Sc1=3 aνað Þ−0:5 Γ 5−b

2ð Þ
λ5−b

2

� 	
ð19Þ

where νa is the kinematic viscosity of air. Note that λ is a function ofm,
so Eq. (19) is a differential equation that must be solved numerically. In
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Fig. 6. Same as Fig. 5 except for 1200 UTC on 4 November 2010. Here, rain occurred, and
the radar reflectivity above the radiosonde site and the radiometer site is 17 and 18 dBZ,
respectively.
our retrieval algorithm, this vertical evolution of the rain water content
is solved numerically by the mid-point method.

As water evaporates from the droplets, the temperature of the drop-
let becomes lower than the ambient temperature until equilibrium is
reached. The equilibrium temperature of a droplet, which occurs within
a few seconds, is approximately size independent (Pruppacher and
Klett, 1997). The equilibrium temperature of the droplet is the solution
to the following equation:

T ¼ T∞−
DvLv ρsv Tð Þ−ρvð Þ

ka
ð20Þ

where T∞ is the ambient temperature and ρv is the ambient vapor den-
sity. Eq. (20) is solved numerically by the false position method. For
simplicity, we assume that the relaxation times are zero and that the
droplets are always at their equilibrium temperatures.

The formulation above solves the one-dimensional radiative transfer
equation for a given state of the atmosphere. For retrievals, however, we
must find the state of the atmosphere given a set of observations using
the one-dimensional variational approach (1DVAR). The cost function
of the 1DVAR is

J x!
� �

¼ H x!
� �

− y0

!� �T

R−1 H x!
� �

− y0

!� �

þ x!−x0
!

� �T
B−1 x!−x0

!� �
ð21Þ

where y0

! is the observation vector (composed of 14brightness temper-

atures, the surface pressure, and the temperature and dew point mea-

sured by an AWS at the location of the radiosonde), H x!
� �

is the

observation operator, x! is the state of the atmosphere (the pressures,
temperatures and dew points at 50 vertical levels), x0

! is the first guess
by the model, R is the observation covariance matrix and B is the back-
ground error covariance matrix. B was obtained by the NMC method
(Parrish and Derber, 1992, named for the National Meteorological Cen-
ter, which is now the National Centers for Environmental Prediction)
using model data over a 1-year period. R is derived from the difference
between the actual observationsmeasured by the HKIA radiometer and

the simulated observations using H x!
� �

, in which the vertical profile is

measured by the radiosonde at King's Park from Sept 2008 to Aug 2010.
Because the HKIA radiometer is located 26 km away from the radio-
sonde site, it is possible that the weather conditions differ, particularly
during rain. Hence, only data in those two years that satisfy the follow-
ing conditions are included in the training dataset: (a) the difference in
the radar reflectivity aloft between the radiometer and the radiosonde
is no more than 10 dBZ; or (b) the reflectivity at both sites is smaller
than 10dBZ. This calculation of theRmatrix handles the difference in lo-

cations between the radiosonde and radiometer. J x!
� �

is minimized

using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) scheme

(Fletcher, 2000) with the Jacobian ∇x J x!
� �

, which is computed using

a “brute force” approach, i.e., by perturbing the individual components
of x! by 1 hPa (or 1 °C).

For the studies that use the KP radiometer data, the same Rmatrix is
applied. Because theKP radiometer is quite new,wedo not have enough
data to re-calculate the R matrix for the retrieval algorithm.

4. Retrieval results

The existing retrieval method in use at the HKO is based on neural
networks (Chan, 2010). The temperature profile from the current
retrieval method is not accurate enough for nowcasting convective
development due to the overestimated instability caused by a
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warm bias in the low levels and a cold bias aloft. The purpose of the
development of the retrieval method discussed above is to improve
the performance of the vertical profile retrieval and to facilitate
Fig. 8. Shows the radar sequence illustrating the evolution of the convective systems across H
nowcasting convective development by incorporatingmore accurate
vertical profiles.

4.1. Comparison with the existing retrieval method

Figs. 2–3 present a comparison of the performances in retrieving the
temperature and humidity profiles between the existing neural net-
work method (RNN) and the variational retrieval method (VAR) of
the HKIA radiometer. The heights in the figures and the discussion
below reference sea level. Because the initial estimation of the profiles
is from the 6-hour forecast profile of Meso-NHM (NHM hereafter), the
model's performance is also shown in Figs. 2–3 for comparison. Mean
error, or bias, (MB) and root-mean-squared error (RMSE) are used as
the metrics for the comparisons.

It is clear from Figs. 2–3 that, among the three methods, the VAR
method produces the most accurate profiles (in terms of temperature
and relative humidity). Additionally,Meso-NHMprovides a rather accu-
rate middle to high upper-air profile with the VAR method. The VAR
method uses the brightness temperatures and the readings from the
AWS to improve the accuracy of the lower level of the retrieved profiles.
By combining the strength of the model, i.e., the highly accurate upper-
air profiles, with the measurement from the radiometer, which effec-
tively captures the near-surface conditions, VAR outperforms both
RNN and NHM.

A comparison of our VAR results with other statistical retrieval
methods used in studies near Hong Kong leads to similar conclusions
for temperature. For example, Tan et al.'s retrieval method, which com-
bines principal component analysis and stepwise regression (PSR), pro-
vides root-mean-squared errors of no less than 1 °C for the temperature
in the lowest 2000 m of the profile and of approximately 1.5 °C above
ong Kong on the morning of 26 July 2013. Hong Kong Time (HKT) is 8 h ahead of UTC.
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Fig. 9. (a) Same as Fig. 5 except for 0000 UTC on 26 July 2013. The reflectivity aboveKing's Park is 43.5 dBZ. Comparedwith both themodel forecast profile and thefirst guess, the retrieved
profile provides the most accurate temperature profile for the lowest 500 m. (b) Comparisons between the retrieved profile obtained with different configurations. The red curves (over-
lapping with the black curve in this case) are the same as in (a). Black: same as red except the first guess profile is not corrected by the surface AWS readings before conducting the var-
iational retrieval (no AWS). Green (blue): same as red (black), except the rain module is turned off in the retrieval (no rain).
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(Fig. 5 of Tan et al., 2011). Compared with the VAR results of no more
than 1 °C in the lowest 2000 m and approximately 1 °C above, VAR is
more accurate in retrieving temperature profiles than PSR. The results
shown in Fig. 2 also suggest that, except for the lowest 1000m, the tem-
perature profiles from NHM are more accurate than those of PSR. The
profiles from VAR inherited the skills from NHM and performed better
than PSR in retrieving the temperature profiles. Note that although the
radiometer in Tan et al. is farther from the KP radiosonde site than the
HKIA radiometer (77 km versus 26 km), it also has more channels
than the HKIA radiometer (35 channels compared with 14 channels).
The extra microwave channels may partially offset the additional errors
caused by the greater spatial distance from the radiosonde site. Because
of the greater spatial variation in the moisture content, we do not com-
pare the performances in retrieving vapor density profiles.
4.2. Significance of the rain module in the retrieval algorithm

Todemonstrate the impact of adding the rainmodule to the retrieval
algorithm, we compare the vertical profiles of temperature and vapor
density obtained from the retrieval algorithm with vertical profiles
measured by the radiosonde. Because the contribution from rain
water is negligible for a radar reflectivity of less than 10 dBZ, we only
compare those data obtained when the radar reflectivity is larger than
Table 2
Comparison of the instability indices retrieved by different algorithms.

Instability indices K index
(K)

Total totals
index (K)

CAPE
(J/kg)

Total precipitable
water (mm)

Actual (radiosonde) 40.1 42.8 1802.8 70.6
Radiometer (neural
network retrieval)

42.9 47 1100.9 73.9

Radiometer (1D-var) 39 44 2086 70
or equal to 10 dBZ. As suggested by the results shown in Figs. 2 and 3,
the comparison focuses on the lowest 3000 m of the profiles.

The correlation between the vertical profiles measured by the radio-
sonde and those retrieved by the radiometer is shown in Fig. 4. Two sets
of figures (Fig. 4(a) and (c) versus Fig. 4(b) and (d)) are shown, and the
difference between them is the presence/absence of the rain module in
the retrieval algorithm. The results shown in Fig. 4 suggest that there is a
higher correlation between the vertical profiles measured by the radio-
sonde and the radiometer for both the temperature and vapor density
when the rain module is incorporated into the retrieval algorithm. The
rain water content increases the attenuation rate of microwave radia-
tion of the air. Because the temperature usually decreases with increas-
ing height in the troposphere, the presence of rain water further
attenuates the microwave radiation emitted from the upper tropo-
sphere and increases the emission of microwave radiation in the
lower troposphere. Hence, the rain water content tends to increase
the brightness temperature measured by the radiometer. If there is no
rain module in the retrieval algorithm, then the simulated brightness
temperature would be far too low compared with the observations. It
would be difficult for the minimization algorithm to improve the verti-
cal profiles beyond the initial guess (an example to illustrate this is pro-
vided later). Hence, the correlation between the retrieved and the actual
profiles is weak.
4.3. Examples of retrieved profiles

Four retrieved profiles (0000 UTC on 21 October 2010, 1200 UTC on
4November 2010, 0000UTC on 19November 2010 and 0000UTC on 26
July 2013) are discussed below as examples. Each profile shows a differ-
ent aspect of the profile retrieval.

Fig. 5 shows the profiles from 0000 UTC on 21 October 2010 over
King's Park. The profile measured by the radiosonde (black curves)
shows a dry low level with a shallow temperature inversion near
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1000m. The forecast profile fromMeso-NHM (blue curves) manages to
capture the temperature inversion, but the inversion is too low and
deep. The surface temperature from Meso-NHM is too low compared
with the actual profile. After calibrating the lowest 1500m of the profile
using the AWS data (green curves), the negative bias of the temperature
near the surface was corrected but a significant warm bias occurs in the
500 m to 1000 m height interval because the temperature inversion is
too low and deep in the forecast profile. The variational retrieval algo-
rithm (profile shown in red) corrects this warm bias and produces a
more accurate profile comparedwith the blue and green curves. The al-
gorithm also slightly corrects the dry bias at approximately 1500 m in
the Meso-NHM profiles. If the blue curves are used as the first guess in
the variational retrieval algorithm, then the resultant profile is the
same as the red profile. Theminimization result is insensitive to the ini-
tial guess in this case.

Fig. 6 shows the profile retrieved in rainy conditions (1200 UTC on 4
November 2010). The radar reflectivity recorded at King's Park, the ra-
diosonde site, and at the radiometer site are 17 and 18dBZ, respectively.
The radiosonde profile ismoist at the 2000–3000m level but dry below.
The forecast temperature profile from Meso-NHM is quite accurate.
There is a slightwarmbias in the lowest 1500mof the temperature pro-
file. The forecast humidity profile is too dry in the lowest 2000 m. After
modification using the AWS reading, the dew point profile is further
underestimated. The retrieval algorithm in this case manages to correct
the dry bias in the low levels, although the correction is not sufficient.

Fig. 7 shows the performance of the retrieval algorithm in analyzing
a low-level inversion layer at 0000 UTC on 12 February 2011. A north-
east winter monsoon formed a low-level inversion. Meso-NHM is able
to forecast the presence of the inversion, but the surface temperature
forecast by Meso-NHM is too low. After modifying the Meso-NHM ver-
tical profile with the AWS data, the lowest part of the profile is
corrected, but the modification results in a warm bias in the
500–1000 m layer. Our retrieval algorithm corrected this warm bias
and provided the best results among the three methods.

The last example illustrates the value of the retrieval algorithm for
nowcasting convective development. A low-pressure trough lingered
around the coastal area of Guangdong on 26 July 2013. Convective sys-
tems swept across Hong Kong during the day, as illustrated by the radar
sequence shown in Fig. 8. At 0000 UTC on 26 July 2013, the radar reflec-
tivity over King's Parkwas 43.5 dBZ during rainy conditions. Vertical pro-
files retrieved with the KP radiometer, along with the initial guess from
Meso-NHM and the actual profile from the radiosonde, are shown in
Fig. 9(a). Again, our retrieval algorithm improves the initial guess of
Meso-NHM and produces vertical profiles that are similar to those of
the radiosonde. The instability indices computed from our retrieval algo-
rithm are also closer to those derived from the radiosonde than those ob-
tained using the neural network retrieval algorithm, as shown in Table 2.

This example also illustrates how the rain module helps produce a
more accurate vertical profile. The results shown in Fig. 9(b) suggest
that the retrieved profile has very little dependence on the first guess
of the retrieval process when the rain module is incorporated into the
retrieval algorithm. However, if there is no rain module, the results
are very different, depending on whether the model forecast profile is
first corrected by the reading from the surface AWS. As discussed
above, the simulated brightness temperature would be far too low if
the attenuation of microwave radiation by rain water is neglected in
the calculation. This cold bias in the brightness temperature is the dom-
inant component in the cost function for the minimization algorithm.
Hence, the minimization algorithm is ineffective for improving the ver-
tical profile beyond the initial guess; this initial-guess-dependent result
is shown in Fig. 9(b).

5. Conclusion

By comparing the vertical profiles retrieved from various algorithms
with the actual vertical profile measured at the KP radiosonde site, we
find that the variational retrieval algorithm performs better than the
statistical algorithm. We also find that the incorporation of warm-rain
microphysics is essential to the performance of the retrieval algorithm
under rainy conditions. The instability indices derived from the re-
trieved profile using the variational algorithm are more realistic than
those of other methods. The variational algorithm has potential for
nowcasting convective initiation. Further studies are needed to evaluate
the usefulness of more sophisticated rain microphysics in the perfor-
mance of retrieval algorithms.
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