
Vol.:(0123456789)1 3

Meteorology and Atmospheric Physics 
https://doi.org/10.1007/s00703-018-0588-3

ORIGINAL PAPER

An improvement of the retrieval of temperature and relative humidity 
profiles from a combination of active and passive remote sensing

Yunfei Che1 · Shuqing Ma2 · Fenghua Xing3 · Siteng Li4 · Yaru Dai5

Received: 14 September 2017 / Accepted: 17 February 2018 
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract
This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through 
combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar 
were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added 
into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. 
Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insuf-
ficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative 
transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts 
of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The 
accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean 
bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud 
information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values 
after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were 
particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while 
that for the humidity profile was 16%.

1 Introduction

The acquisition of radiosonde observations is fundamental 
for generating atmospheric profiles, but such observations 
are limited by their cost, sparse temporal sampling, and 
logistical difficulties. Over the past 20 years, many research-
ers have shown that ground-based remote sensing is capable 

of measuring atmospheric profiles in the lower troposphere 
(Solheim et al. 1998; Ware et al. 2003). Therein, the ground-
based microwave radiometer (MWR) is an important instru-
ment for retrieving humidity and temperature profiles. It can 
provide continuous observations, thereby providing data on 
the complete process of an entire weather event as it evolves 
(Candlish et al. 2012; Sanchez et al. 2013; Ware et al. 2013).

Through a number of studies, it has been shown that the 
performance of the MWR in retrieving atmospheric profiles 
is good under clear conditions. However, the retrievals of 
such profiles, especially relative humidity profiles, tend to 
be far worse under cloudy or rainy conditions, with some 
extreme cases yielding acutely obvious errors (Chan 2009). 
Thus, various researchers have attempted to obtain higher 
accuracy atmospheric parameters from combined vertical 
observations. For instance, Stankov (1996), Bianco et al. 
(2005) and Klaus et al. (2006) combined radar wind profiler 
and MWR measurements to estimate atmospheric humidity 
profiles. Brandau et al. (2010), Frisch et al. (1995) and Loh-
nert et al. (2001) evaluated the liquid water content of clouds 
through a combination of millimeter-wavelength radar and 
MWR data, and demonstrated that significant improvements 
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could be made in the retrieval of cloud liquid water pro-
files by adopting such an approach. Lijegren and Clothiaux 
(2001) used MWR and cloud temperature observations to 
retrieve for cloud liquid water profiles. Han and Westwater 
(1995) developed a technique to derive atmospheric profiles 
from an integrated system composed of a microwave radiom-
eter, a variety of surface meteorological instruments, a laser 
ceilometer, and a radio acoustic sounding system (RASS).

Most previous studies were conducted to improve the 
retrieval of the cloud liquid water content from combined 
MWR and cloud radar measurements. In terms of the 
improvement of humidity profiles, more studies used a 
combination of MWR and wind profiler radar data. How-
ever, cloud parameters can also impact the MWR retrieval 
of atmospheric temperature and humidity profiles, as the 
presence of clouds can lead to obvious changes in the bright-
ness temperature (BT) measured by the MWR relative to 
clear-sky conditions. Meanwhile, the relative humidity can 
increase rapidly within the cloud layer, and the temperatures 
therein may also change. Thus, accurate cloud information is 
necessary for MWR retrieval algorithms. Frate and Schiavon 
(1998) proved that neural networks are flexible and demon-
strate good capabilities for exploiting information provided 
by other instruments. Solheim et al. (1998) distinguished 
data according to different cloud conditions when they used 
a neural network; for clear condition, the input nodes include 
brightness temperatures, surface temperature, vapor density, 
and pressure; for cloudy conditions, the cloud base informa-
tion was represented by ones in a set of 47 height bins at the 
same heights as the output profile.

The present study combines active and passive remote 
sensing-based techniques previously presented in the litera-
ture with the aim of improving retrieval algorithms using 
ground-based MWR observations under cloudy conditions. 
Atmospheric profiles were detected through a combination 
of ground-based MWR and millimeter-wavelength cloud 
radar (MWCR) observations. The retrieval tool used was a 
back-propagation neural network (BPNN). The cloud infor-
mation acquired using the cloud radar was added during the 
MWR atmospheric profile retrieval process, and the accu-
racy of the MWR retrieval was analyzed through a compari-
son with L-band sounding radar data. The impact of includ-
ing cloud information during the retrieval of atmospheric 
profiles was then assessed.

2  Data sources and pre‑treatment

2.1  Data sources

The data used in this study include radiosonde data, BT, the 
retrieval product of the MWR, in addition to MWCR cloud 
base height and thickness data. The experimental site is the 

Beijing Nanjiao Meteorological Observatory. The radio-
sonde data with a temporal resolution of 1 s were obtained 
from an L-band GTS1 digital radiosonde (Bian et al. 2011), 
the sounding balloon for which requires approximately 
40 min to travel from 0 to 10 km above ground level. The 
MWR used in this study was the RPG-HATPRO model 
(Radiometer Physics GmbH). The RPG-HATPRO 14-chan-
nel ground-based MWR includes seven K-band frequency 
channels between 22 and 30 GHz and seven V-band channels 
between 51 and 59 GHz. The absolute BT accuracy is 0.5 K.

The MWCR was produced by the Meteorological Obser-
vation Center of the China Meteorological Administration 
and Xi’an Huateng Microwave Co. Ltd. The cloud radar is a 
vertically oriented solid-state Doppler radar with a working 
frequency of 35 GHz, a peak power of 4 W, and a sound-
ing range of 12 km. It has a spatial resolution of 30 m and 
an adjustable temporal resolution between 1 and 60 s. The 
threshold of the MWCR reflectivity is – 30 dBz.

Ideally, to eliminate system errors as much as possible, 
the three instruments should collect their observations at 
the same time and location. However, the positions of the 
detectors among the instruments differed slightly because of 
limitations imposed by the experimental conditions. The dis-
tance between the MWR and the cloud radar was 61.75 m, 
the distance between the cloud radar and radiosonde was 
162.37 m, and the distance between the MWR and radio-
sonde was 182.51 m. The training data set in this study was 
based on 8 years (from 2006 to 2013) of annual radiosonde 
data. Soundings were made twice daily (11:15 and 23:15 
UTC).

The data collected during rainy or uncertain weather con-
ditions were removed, because radiometer measurements 
become less accurate in the presence of a water film on the 
radome of the equipment in precipitating conditions (Chan 
2009). A total of 2715 training samples were acquired; of 
those, 1626 were taken during clear-sky conditions and 
1089 were taken during cloudy conditions. The test data 
set included 100 randomly selected groups of data during 
2006–2013 that were not used for training in addition to 382 
groups of sounding data from 2014 to January 2015 (exclud-
ing rainy conditions). It should be noted that the cloud base 
height and cloud thickness data between 2013 and 2015 were 
provided by the MWCR and the cloud information for the 
other samples was obtained by analyzing the relative humid-
ity measurement from the radiosonde because of the insuf-
ficient amount of cloud radar data.

2.2  Pre‑treatment of the sounding data

The training process required a substantial amount of cloud 
information, but not all of the samples could be matched to 
the information from the cloud radar, which had been run-
ning since 2013 only. Therefore, radiosonde data were used 
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to estimate the cloud parameters in some cases. This section 
describes the method used to determine the weather condi-
tions from the radiosonde sounding data. In theory, clouds 
should form when the relative humidity reaches 100%; 
however, because of various factors such as the presence 
of condensation nuclei, clouds can form when the relative 
humidity reaches only approximately 85%. This study used 
84% as the threshold for the relative humidity following the 
work of Wang et al. (1995). The specific methods used to 
determine the weather conditions were as follows.

If the relative humidity was consistently less than 84% 
from the ground to any height, the weather was classified 
as having clear-sky conditions. If the relative humidity was 
consistently greater than 84% from the ground to a height 
of 600 m, the weather was classified as rain. If the relative 
humidity was less than 84% near the ground, but stratifi-
cation was observed with a relative humidity greater than 
84%, the weather was classified as cloudy. Under cloudy 
conditions, the cloud base height and cloud-top height were 
determined based on the work of Wang and Rossow (1995).

The above method was used to filter the radiosonde data 
according to clear-sky and cloudy conditions and to obtain 
the cloud base height and thickness at the times of radio-
sonde observations under cloudy conditions.

2.3  Comparison of cloud parameters determined 
by the radiosonde and cloud radar

We used the cloud base height and cloud thickness estimated 
using the radiosonde data to supply the cloud information 
when cloud radar data were absent. However, to reduce the 
impacts of errors from the estimated cloud information on 
the accuracy of the retrieval, we verified the feasibility of the 

method by comparing 60 groups of cloud information esti-
mated using the radiosonde data with simultaneous MWCR 
measurements. The results of the comparison are shown in 
Fig. 1.

In the sample statistics from the 60 groups of cloud infor-
mation, there were five groups in which the clouds were 
shown to be present according to one instrument but not 
according to the other one. Because of the presence of con-
densation nuclei and ice crystals, the humidity might not 
have reached 84%, which could have caused the inability of 
the radiosonde to detect clouds. In addition, the cloud radar 
might have sometimes missed thin clouds within small cloud 
droplets.

Excluding these five groups of abnormal samples, the 
remaining 55 groups were used as statistical samples. The 
results of the comparison are as follows. For the cloud base 
height, the mean bias was 0.476 km and the correlation coef-
ficient was 0.936. For the cloud thickness, the mean bias was 
0.450 km and the correlation coefficient was 0.723.

To analyze the influence of cloud information error on the 
retrieval, we did a test experiment for the sensitivity about 
the uncertainty of cloud. In the test, we kept other param-
eter fixed, only modify the cloud height or cloud thickness, 
compared the difference between the output atmospheric 
profiles, and two cases are shown as follow.

In the case of Fig. 2, the cloud base height measured by 
cloud radar is 2523 m and thickness is 663 m. In (a) and 
(c), we keep other input parameters fixed, only modify the 
cloud base height to 3000, 3500, and 4000 m, and compare 
the change of the temperature and relative humidity profiles. 
In (b) and (d), the thickness is modified to 1000, 1500, and 
2000 m. It should be noted that the cloud layer is artificially 
modified.
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Fig. 1  Comparison of cloud information: a cloud base height (km), b cloud thickness (km)
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In Fig. 3, the cloud base height is 5027 m and thickness 
is 915 m in reality. In (a) and (c), we only modify the cloud 
base height to 4500, 4000, and 3000 m. In (b) and (d), the 
thickness is modified to 1500, 2000, and 3000 m.

It could be seen that the effects of different cloud height 
and cloud thickness on temperature profiles are not obvious. 
However, for relative humidity, the modified cloud height 
makes a significant change to the relative humidity on the 
setting cloud height, and the peak of relative humidity has a 
significant change with the setting cloud height. The modi-
fied thickness also makes relative humidity increase signifi-
cantly on the cloud layers.

According to sample statistics in the paper, the mean 
error between cloud-based height measured by cloud radar 
and estimated by radiosonde data is 0.476 km, and for the 
cloud thickness, it is 0.450 km. As showed in the above two 
cases, the blue line is atmospheric profile retrieval by the 

real cloud condition, and the black line is the retrieval when 
estimating cloud height or thickness exist about 500 m error. 
For temperature profiles, it could be seen that the blue lines 
and black lines are very close, and it has little effect on the 
temperature profile. In addition, for humidity profiles, the 
error of input cloud mainly affects relative humidity at the 
cloud layer, while the other heights are much less affected. 
Different cases may have different deviations, but the maxi-
mum error is within 10%.

2.4  Simulating BT measurements based 
on MonoRTM

Because of the limitations on the number of BT measure-
ments obtainable using the MWR and the necessary inclu-
sion of substantial quantities of BT data during the retrieval 
process, we simulated BT data based on the monochromatic 
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Fig. 2  Case of low-cloud condition
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radiative transfer model (MonoRTM) (Clough et al. 2005). 
The model was provided by Atmospheric and Environmen-
tal Research, Inc., and it uses the same physics and con-
tinuum model as the line-by-line radiative transfer model 
(Clough et al. 1992). MonoRTM is suitable for the calcula-
tion of radiances associated with atmospheric absorption 
by molecules in all spectral regions and of the cloud liquid 
water content in the microwave region. The model uses the 
Humlicek Voigt line shape and the MT-CKD continuum 
(Mlawer et al. 2012) to handle molecular absorption that is 
not included in the “line center” of each spectral line.

The BT calculations for the same channels in the ground-
based MWR were obtained by applying MonoRTM to the 
radiosonde data for Beijing during the period 2006–2013. 
The sounding data were pre-processed according to the input 
requirements of MonoRTM. The data were divided into 
two weather conditions: clear-sky and cloudy. For clear-sky 

conditions, the simulated BT data could be obtained after the 
input of the pre-treated sounding profile into MonoRTM. For 
cloudy conditions, the model required the cloud liquid water 
content at the height of the cloud layer prior to calculating 
the BT. However, the required cloud liquid water profiles 
were not available from conventional upper-air ascent data. 
Therefore, they were assumed to take the form as noted in 
Poore et al. (1995) and Tan et al. (2011).

To verify the accuracy of MonoRTM, the BT results were 
compared with the observations from the MWR. The BT 
estimates in the 22.24 and 58 GHz channels were consistent 
with the observations, as shown in Fig. 4.

The BT was simulated using 60 statistical groups in 
comparison with the measurements acquired by the MWR. 
Among the 60 samples, 18 samples were acquired during 
clear-sky conditions and 42 samples were collected under 
cloudy conditions. It should be noted that precipitation 
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Fig. 3  Case of high-cloud condition
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clouds and clouds with very rich liquid water contents were 
not considered. The accuracy was quantified via the mean 
deviation (MD), standard deviation (SD), and correlation 
coefficient ( � ). The statistical results are shown in Table 1.

The maximum MD value between the simulated BT esti-
mates and MWR BT measurements was 2.145 K, and the 
SD of the MD was 2.508 K. The correlation coefficient was 
greater than 0.9 for all channels. It is important to note that 
the radiosonde and MWR were not positioned in the same 
place, and the sounding balloon may have drifted farther 
with increasing altitude. Nonetheless, despite the existence 

of these individual errors, the deviation in the statistical data 
was acceptable.

3  Retrieval methodology

3.1  BPNN

3.1.1  Principle

There is no need to create a new and complicated algo-
rithm, because the BPNN can theoretically approximate 
any complex nonlinear relationship. Neural networks have 
been widely applied to generate atmospheric parameters of 
inversion profiles. The algorithm uses a standard feed for-
ward network with input, hidden, and output layers that are 
fully connected between adjacent layers. A standard back-
propagation algorithm is used for training, and the standard 
feed forward network is used for the profile determination 
(Cimini et al. 2006). As shown in Churnside et al. (1994), 
we used a three-layer BPNN, which can obtain any preci-
sion of a continuous function. A diagram of the BPNN is 
shown in Fig. 5.

In Fig. 5, L denotes the number of elements in the input 
layer, M is the number of elements in the hidden layer, and 
N is the number of elements in the output layer.

The expression of the tansig transfer function, which is 
used from the input layer to the hidden layer, is

Therefore, the relationship between the hidden layer and 
the input layer can be expressed as

(1)tansig(n) =
2

1 + exp(−2 ∗ n)
− 1.
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Fig. 4  Comparison of MonoRTM-derived BT estimates and BT observations using the MWR in the a 22.24 GHz channel; and b 58 GHz chan-
nel

Table 1  Statistical comparison between the simulated BT estimates 
and MWR BT measurements

Frequency (GHz) Mean devia-
tion (K)

Standard devia-
tion (K)

Correlation 
coefficient

22.24 2.145 2.508 0.984
23.04 1.988 2.338 0.984
23.84 1.628 2.003 0.983
25.44 1.213 1.662 0.976
26.24 1.065 1.498 0.974
27.84 0.991 1.477 0.963
31.40 1.084 1.672 0.937
51.26 1.590 2.403 0.900
52.28 1.298 1.913 0.909
53.86 0.495 0.680 0.967
54.94 0.350 0.397 0.988
56.66 0.360 0.463 0.987
57.30 0.396 0.513 0.985
58.00 0.455 0.574 0.981
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where Yj is the jth element of the hidden layer, Xi is the jth 
element of the input layer, wij is the weight of Xi to Yj , and 
the bias value is represented by bj.

The linear transfer function purelin is used from the hid-
den layer to the output layer, and the relationship is written 
as

The weights and biases are determined during the train-
ing process. The algorithm adjusts the weights and biases 
iteratively to reduce the differences between the output vec-
tors of the actual training set and the estimated output vec-
tors calculated by the network using the input vectors of the 
training set.

3.1.2  Methodology for a comparison with the addition 
of cloud

To better analyze the impacts of cloud parameters on the 
retrieval of atmospheric profiles, we fixed the other input 
parameters and used the cloud base height and cloud thick-
ness as independent channels to input into the BPNN. The 
information was added to train the network and to build a new 
neural network model. The results of this new model were 
then compared with the retrievals without cloud information.

In the inversion model without cloud information 
[BPNN(No-cloud)], the input vector comprised 17 elements. 
The first 14 elements were the BT data in 14 radiometer 
channels. The 15th, 16th, and 17th elements were the surface 
temperature, relative humidity, and pressure, respectively. 
The output vectors were 47-element vertical profiles of 
either the temperature or the relative humidity. The vertical 
resolution was 100 m between the heights of 0 and 1 km and 
125 m between the heights of 1 and 10 km.

In the inversion model with cloud information 
[BPNN(Cloud)], the output vectors were the same as those 

(2)Yj = tansig

(

L
∑

i=1

wijXi + bj

)

,

(3)Zk =

M
∑

j=1

wjkYj + bk.

in the model without cloud information. However, the input 
vector included two more elements than the model without 
cloud information. The first 17 elements were the same as 
those in the model without cloud information, and the final 
elements were the cloud base height and cloud thickness.

Using the two abovementioned models, all of the samples 
were trained using different methods to obtain two different 
parameters of the neural network possessing different input 
elements and identical output elements. The test sample 
should be input using the requirements of the input layer for 
the different models.

3.2  RPG‑HATPRO retrieval method

To estimate the atmospheric profiles from the radiometer 
data, the RPG-HATPRO radiometer has its own retrieval 
algorithm. The manufacturer’s software provides three 
selectable retrieval types: linear regression, quadratic regres-
sion and neural network. The retrieval type utilized in this 
experiment was quadratic regression.

The quadratic regression retrieval calculation has the fol-
lowing structure:

where Outi is the ith retreival output parameter, OSi is the 
retrieval offset parameter for Outi , Srj is the surface sensor 
reading of the jth checked sensor (the sequence for which 
is as follows: temperature sensor, humidity sensor, pressure 
sensor, and infrared radiometer), SLij is the corresponding 
linear coefficient, SQij is the corresponding quadratic coef-
ficient, Tbj is the brightness temperature at the jth frequency, 
TLij is the corresponding linear coefficient, and TQij is the 
corresponding quadratic coefficient.

The quadratic regression retrieval process also used 
nearly 10 years of sounding data as the database, but the 
sounding data used for the RPG retrieval were provided by 
the University of Wyoming (online at http://weath er.uwyo.
edu/upper air/sound ing.html). The corresponding simulated 
radiometer BT data were also calculated using MonoRTM. 

(4)

Outi =OSi +
∑

sensors

SLij ∗ Srj +
∑

freq

TLij ∗ Tbj

+
∑

sensors

SQij ∗ Sr2
j
+
∑

freq

TQij ∗ Tb2
j
,

Fig. 5  Schematic diagram of the 
BPNN
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Through the relationship correlating the calculated BT, 
sensor, and sounding data, the coefficients of the quadratic 
regression were obtained. In addition, the coefficients were 
applied to the radiometer measurements to retrieve the actual 
atmospheric variables.

4  Influence of cloud information 
on the retrieval

4.1  Theory

When considering a plane-parallel atmosphere, scattering 
can be ignored and the zenith angle in the direction of radia-
tive transfer is given as � . For ground-based remote sensing, 
the atmospheric downward radiance that is received can be 
expressed as in Tan et al. (2011):

In the above equation, TB�(∞)�(0,∞) refers to the cosmic 
radiation in the background after experiencing attenuation 
in the atmosphere, where the quantity TB�(∞) is the cos-
mic background temperature, usually taken to be 2.75 K, 
�(0, z) is the transmittance from the height z to the ground; 
T(z) is the atmospheric temperature at the height z, and k� 
is the atmospheric absorption coefficient. Under clear-sky 
conditions, the absorption coefficient mainly results from 
absorption by oxygen molecules and water vapor, and it can 
be expressed by k� = kO2

+ kH2O
 . However, under cloudy 

conditions, the calculation of the atmospheric absorption 
coefficient is different. The cloud layers, including cloud 
liquid water, impact the absorption coefficient substantially. 
Under cloudy conditions, the absorption coefficient can be 
expressed as: k� = kO2

+ kH2O
+ kcloud.

The existence of cloud layers can change the BT measured 
by the MWR. Research has shown that differences in the cloud 
height, cloud thickness, and density of cloud liquid water have 
different effects on BT measurements. However, the provi-
sion of cloud physical parameters by the MWR is poor during 
the retrieval of atmospheric profiles. To obtain cloud infor-
mation, the MWR itself is configured with far-infrared radi-
ometer components that can measure the infrared radiation 
brightness temperature of the sky to judge the existence of 
clouds and estimate the cloud base height. However, because 
of the impacts of numerous factors, such as the atmosphere, 
aerosols, and cloud structure, the cloud base height meas-
ured using an infrared sensor requires error testing, and it is 
difficult to obtain accurate data in the long term. Moreover, 
the cloud base height, the cloud thickness, the distribution of 

(5)

T
↓

B�
(�, 0) = TB�(∞)�(0,∞) +

∞

∫
0

k�(z)T(z)�(0, z) sec �dz.

cloud liquid water, and even the particles within clouds may 
all have considerable impacts on the retrieval. Because the 
cloud information that the retrieval process requires is lack-
ing, the inversion of temperature and humidity profiles could 
produce large errors in the cloud estimations.

Therefore, we combined active and passive remote sens-
ing techniques and built a joint observation system that 
includes both the MWCR and the MWR. In addition, addi-
tional high-accuracy cloud information from the cloud radar 
was added into the process of retrieving the atmospheric 
profiles using the BPNN as the key tool. The accuracy of 
the retrieval results was analyzed through a comparison with 
L-band sounding radar data. Based on the above approach, 
the impact of the inclusion of cloud information on the 
retrieval of atmospheric profiles was assessed.

4.2  Typical cases

In this section, radiosonde data are used as a standard and 
compared with both the BPNN retrieval profiles (both with 
and without cloud information) and the RPG retrieval results. 
To compare the results from the three retrieval methods with 
the radiosonde measurements more intuitively, we present 
four typical cases of temperature (Fig. 6) and relative humid-
ity (Fig. 7) profiles at different times under cloudy conditions. 
It is mainly considered to include a variety of cloud categories 
when selecting the display cases, so the following four typical 
cases include low, medium, and high cloud conditions.

As seen from the four typical cases, the three retrieved 
temperature profiles (Fig. 6) are relatively similar to the 
sounding data from the ground to a height of 5 km. How-
ever, the deviation in the RPG product increases consider-
ably at heights above 5 km, and the differences between 
the temperatures from the BPNN(No-cloud) model and 
those from the radiosonde increase above 8 km. Although 
the BPNN(Cloud) model also shows a deviation from the 
radiosonde data above 9 km, the deviation is clearly lower 
than those for the other two methods.

The retrievals using the different methods are far more 
variable for the relative humidity (Fig. 7) than those for 
the temperature. The RPG product can approximately fol-
low the patterns of the radiosonde data with changes in the 
height, but the deviation clearly increases with the inclusion 
of cloud information, and the trend with increasing height 
is not the same as that in the sounding data. In addition, the 
bias in the BPNN(No-cloud) model is large above the cloud 
height, but this issue is substantially improved after adding 
cloud information.

4.3  Statistical analysis

The accuracies of the retrieved atmospheric profiles were 
quantified statistically through a comparison with the actual 
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radiosonde measurements in terms of the mean bias (MB), 
root-mean-square error (RMSE), and correlation coefficient 
( � ). The MB and RMSE were used to evaluate the deviations 
between the retrieved parameters and the sounding data for 
each height layer. The value of the correlation coefficient 
indicates the difference between each retrieval profile, which 
are organized according to the 47 height layers, and the cor-
responding sounding data.

The 382 groups of sounding data from 2014 to January 
2015, excluding rainy conditions, were used as independ-
ent data sets in the analysis of the accuracy of the retrieval 
profiles using the three methods. The results are shown in 
Fig. 8.

Figure 8 shows that, during the temperature retrieval, 
the MB in BPNN(Cloud) fluctuated between − 0.9 and 
0.6 K, while the RMSE varied between 0.2 and 3.2 K. 

Meanwhile, the MB in BPNN(No-cloud) f luctuated 
between − 1 and 1.1 K, and the RMSE increased from 0.5 
to 3.6 K over the height range of 0–10 km. The MB in the 
MWR data varied substantially between − 1 and − 6 K, 
while the RMSE increased from 0.3 to 6.5 K with a more 
rapid increase above 7 km.

In the retrieved humidity profiles, the MB in 
BPNN(Cloud) fluctuated between − 6 and 7%; the RMSE 
increased rapidly from 2.5 to 24% from the ground to 
6 km, and the RMSE was 6–22% above 6 km. The MB in 
BPNN(No-cloud) fluctuated between − 9 and 7%, while 
the RMSE had already increased to 27% at 3.5 km and 
then oscillated between 15 and 27% from 2.5 to 10 km. 
The MB in the RPG product results was 1–15%, while the 
RMSE increased to 31% from 0 to 3.5 km and then fluctu-
ated in oscillations down to 22.5% at 10 km.

200 210 220 230 240 250 260 270 280 290 300
0

1

2

3

4

5

6

7

8

9

10

Temperature(K)

H
ei

gh
t(k

m
)

200 210 220 230 240 250 260 270 280 290 300
0

1

2

3

4

5

6

7

8

9

10

Temperature(K)

H
ei

gh
t(k

m
)

BPNN(Cloud)
BPNN(No-Cloud)
RPG
Radiosonde

200 210 220 230 240 250 260 270 280 290 300
0

1

2

3

4

5

6

7

8

9

10

Temperature(K)

H
ei

gh
t(k

m
)

BPNN(Cloud)
BPNN(No-Cloud)
RPG
Radiosonde

200 210 220 230 240 250 260 270 280 290 300
0

1

2

3

4

5

6

7

8

9

10

Temperature(K)

H
ei

gh
t(k

m
)

BPNN(Cloud)
BPNN(No-Cloud)
RPG
Radiosonde

(a) (b)

(c) (d)

Fig. 6  Comparison between the temperature profiles generated using 
the BPNN(Cloud) and BPNN(No-cloud) inversion models, the PRG 
product and the radiosonde at a 23:15 UTC on 06 November 2014, b 

23:15 UTC on 03 October 2014, c 23:15 UTC on 02 November 2014, 
and d 11:15 UTC on 08 October 2014
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The RMSE statistics showed that the temperature pro-
files roughly conform to the characteristics of the ground-
based remote sensing data. The retrieval accuracy grad-
ually reduced from the ground to 10 km. However, the 
humidity profiles showed large differences with an increase 
in the height. To analyze the impacts of cloud informa-
tion more clearly, we considered the RMSEs between 
BPNN(Cloud) and BPNN(No-cloud) separately according 
to differences in the cloud base height. The cloud samples 
were divided into three categories following the work of 

China Meteorological Administration (2007): low-cloud, 
mid-cloud, and high-cloud heights. A low-cloud height is 
defined when the cloud base height is under 2.5 km, a mid-
cloud height is within 2.5–4.5 km, and a high-cloud height 
is above 4.5 km. The number of low-cloud samples was 70, 
that of mid-cloud samples was 63, and that of high-cloud 
samples was 62. The results are shown in Fig. 9.

As the comparison of the humidity profiles under differ-
ent cloudy conditions shown in Fig. 9, the RMSE increased 
obviously at heights between 1.5 and 5 km at low-cloud 
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Fig. 7  Comparison between the relative humidity profiles generated 
using the BPNN(Cloud) and BPNN(No-cloud) inversion models, the 
RPG product and the radiosonde at a 23:15 UTC on 06 November 

2014, b 23:15 UTC on 03 October 2014, c 23:15 UTC on 02 Novem-
ber 2014, and d 11:15 UTC on 08 October 2014
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Fig. 8  Using radiosonde data as a standard, comparison of the BPNN(Cloud) and BPNN(No-cloud) inversion models, the RPG product for the a 
MB of the temperature profiles, b RMSE of the temperature profiles, c MB of the humidity profiles, and d RMSE of the humidity profiles
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Fig. 9  Using radiosonde data as a standard, comparison of RMSEs among the humidity profiles from the BPNN(Cloud) and BPNN(No-cloud) 
models under different cloudy conditions: a low-cloud; b mid-cloud; and c high-cloud heights
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heights, but at mid-cloud heights, the maximum RMSE 
values appeared at approximately 5 km. Meanwhile, the 
RMSEs above 5 km at high-cloud heights were obviously 
larger than those in the other two categories. After the addi-
tion of cloud information, BPNN(Cloud) showed a clear 
improvement above the cloud layers, but it could not change 
the RMSE trend with an increase in the height. Therefore, 
the results indicate that the presence of clouds could cause 
obvious errors at and above the cloud height; moreover, the 
addition of cloud information can amend these errors but 
cannot eliminate them.

To quantify the three retrieved profiles, we also randomly 
selected 75 samples from cloudy conditions to facilitate a 
comparison of the correlation coefficients with the corre-
sponding sounding data. The results are shown in Fig. 10.

For the retrieved temperature profiles, the average corre-
lation coefficient between BPNN(No-cloud) and the radio-
sonde data was 0.990, while that between BPNN(Cloud) 
and the radiosonde data was 0.994. The average correlation 
coefficient between the RPG product and radiosonde profiles 
was 0.992.

For the relative humidity profiles, the average correlation 
coefficient between BPNN(No-cloud) and the radiosonde 
data was 0.685, while that between BPNN(Cloud) and the 
radiosonde data was 0.805. After the addition of cloud infor-
mation, 49 out of the 75 samples showed an improved corre-
lation. The maximum increase in the correlation coefficient 

was 0.330, and the average correlation coefficient between 
the RPG product and radiosonde profiles was 0.657.

5  Advantage of the MWCR 

The results from the four typical cases demonstrate that 
the temperature and humidity profiles retrieved using the 
MWR show almost identical trends to the radiosonde data 
but do not show a good response in layers with clouds. Fur-
thermore, the MB and RMSE statistics indicate that the 
deviation increases significantly above 3 km. However, the 
retrievals using the BPNN with the addition of cloud param-
eters were much better, especially as the BPNN is able to 
reflect the significant increase in the relative humidity in 
cloudy layers.

To analyze the reasons for these results, we next com-
pared data from the MWCR with the cloud base heights 
observed using the far-infrared radiometer components from 
the MWR self. The time chosen by cases is the entire cloud 
process from generation to extinction corresponding to the 
cases in Sect. 4.2. It should be noted that the cloud base 
height of the far-infrared component is set to 10 km when it 
does not detect clouds.

Figure 11 shows that the cloud base height in case b 
obtained via far-infrared remote sensing is similar to that 

0 10 20 30 40 50 60 70 80
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Observation Sequence

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

BPNN(No-Cloud)
BPNN(Cloud)
RPG

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation Sequence

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

BPNN(No-Cloud)
BPNN(Cloud)
RPG

(a) (b)

Fig. 10  Using radiosonde data as a standard, comparison of the correlation coefficient among BPNN(Cloud) and BPNN(No-cloud) inversion 
models, the RPG product for a temperature profiles; and b relative humidity profiles



An improvement of the retrieval of temperature and relative humidity profiles from a combination…

1 3

acquired using the cloud radar. However, in cases a, c, and d, 
there is a considerable difference between the cloud param-
eters measured by the two instruments. Slight fog or haze 
was observed during the sounding times of cases a and c, 
and the cloud base height obtained using the far-infrared 
radiometer was measured at a height of 1 km or less at the 
time. Meanwhile, thin cloud conditions were observed at the 
sounding time of case d, but the far-infrared radiometer did 
not detect the existence of clouds.

When there were high levels of fog, haze, or relative 
humidity at the surface, the MWR could not detect the exist-
ence of high-altitude clouds because of the weather, and 
the obtained cloud base height may show large deviations 
or considerable errors. For thin clouds, there may also be 
missing data in the MWR data set. However, according to 
Sect. 4.1, the existence of cloud layers could change the BT 
measured using the MWR, and thus, cloud base height deter-
minations are insufficient for the retrieval of atmospheric 
profiles. Moreover, measurements of the cloud base height 
sometimes show large deviations, indicating that large errors 
exist in the retrievals of profiles under cloudy conditions.

In contrast, when using a combination of MWR and cloud 
radar observations, the MWCR uses cloud particle scattering 
properties of electromagnetic waves. We could, therefore, 
analyze radar echoes to obtain the various features of clouds, 
which can then reflect their macroscopic and microscopic 
structures. From this, we could obtain the cloud base height 
more accurately. Cloud radar can also be used to obtain the 
cloud thickness, cloud cover and even microphysical param-
eters of clouds, thereby providing a more complete set of 
cloud parameter information for the retrieval process. How-
ever, because of the short time period of combined observa-
tions, the quantity of cloud radar data is limited, and thus, 
the cloud base height and cloud thickness estimates in a part 
of the training sample need to be estimated via sounding 
data. Unfortunately, in this study, the radiosonde was unable 
to provide accurate cloud information, with the exception of 
cloud base height and cloud thickness measurements; there-
fore, we were able to add only two channels (i.e., the cloud 
height and thickness) in the final retrieval. We aim to solve 
this problem in future research.

6  Conclusions

This study used a combination of active and passive 
remote sensing techniques to tackle the increased bias 
in MWR retrievals during cloudy conditions. Cloud base 

height and cloud thickness measurements obtained using 
the MWCR were applied to the retrieval of atmospheric 
profiles. We compared the retrieved profiles (both with 
and without cloud information) and the product of a 
radiometer with sounding data. To analyze the result-
ing biases, we compared the cloud radar data with the 
cloud base heights using the far-infrared radiometer of 
the MWR at the same time. The key conclusions can be 
summarized as follows.

It should be noted that the network training by radiosonde 
data and cloud radar could only be used in Beijing or sur-
rounding area, because nearly 10 years Beijing radiosonde 
data using in the algorithm can only reflect the Beijing cli-
mate change. The re-training for the local radiosonde data 
is needed if we want to use the new algorithm to improve 
the retrieval of other sites. However, the method of retrieval 
could be in common use.

1. The three retrieval methods essentially exhibited consist-
ent results in terms of their error trends for the tempera-
ture and relative humidity profiles with varying height. 
The accuracies of the retrievals were high near the 
ground, and they decreased with height. This confirms 
the detection performance of the ground-based MWR.

2. A comparison between the MWCR and the far-infrared 
radiometer components configured using the MWR 
showed that the latter was able to obtain the cloud base 
height but struggled to measure this parameter steadily 
in the long term, because the data quality was negatively 
affected by the weather conditions.

3. The precisions of the retrieval without clouds and the 
MWR product were significantly reduced in cloudy lay-
ers, but their precisions significantly improved after the 
addition of accurate information from the cloud radar. 
Compared with the retrieval without cloud information, 
the retrieved temperature and humidity profiles were 
more similar to the radiosonde data after cloud informa-
tion was added for the cloudy layers. This improvement 
was especially clear in the upper layers.

This study analyzed the causes of increased devia-
tions detected using the MWR during periods of cloudy 
conditions and then integrated MWCR measurements to 
improve the data. The results verify that the use of accu-
rate cloud information to improve the retrieval accuracy is 
a feasible approach. In future experiments, we will com-
bine long-term cloud radar and MWR observations and 
employ more abundant cloud distribution information to 
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improve the BT retrieval algorithm using the MWR and 
obtain a more complete vertical profile.
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