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Abstract—Ground-based microwave radiometer profilers in the
20–60-GHz range operate continuously at numerous sites in dif-
ferent climate regions. Recent work suggests that a 1-D variational
(1-DVAR) technique, coupling radiometric observations with out-
puts from a numerical weather prediction model, may outper-
form traditional retrieval methods for temperature and humidity
profiling. The 1-DVAR technique is applied here to observations
from a commercially available microwave radiometer deployed at
Whistler, British Columbia, which was operated by Environment
Canada to support nowcasting and short-term weather forecast-
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ing during the Vancouver 2010 Winter Olympic and Paralympic
Winter Games. The analysis period included rain, sleet, and snow
events (∼235-mm total accumulation and rates up to 18 mm/h).
The 1-DVAR method is applied “quasi-operationally,” i.e., as it
could have been applied in real time, as no data were culled. The
1-DVAR-achieved accuracy has been evaluated by using simulta-
neous radiosonde and ceilometer observations as reference. For
atmospheric profiling from the surface to 10 km, we obtain re-
trieval errors within 1.5 K for temperature and 0.5 g/m3 for water
vapor density. The retrieval accuracy for column-integrated water
vapor is 0.8 kg/m2, with small bias (−0.1 kg/m2) and excellent
correlation (0.96). The retrieval of cloud properties shows a high
probability of detection of cloud/no cloud (0.8/0.9, respectively),
low false-alarm ratio (0.1), and cloud-base height estimate error
within ∼0.60 km.

Index Terms—Atmospheric measurements, Bayesian varia-
tional methods, radiometry.

I. INTRODUCTION

AUTOMATIC thermodynamic profiles of the lower at-
mosphere can be continuously retrieved on a minute

time scale from a ground-based microwave radiometer profiler
(MWRP) working in the 20–60-GHz range. MWRPs are in con-
tinuous operation, for research and demonstration, at numerous
worldwide sites. Several national and regional meteorological
services are now using MWRPs in research and operational
modes. There are regions, as for example, in Europe or China,
where the MWRP distribution has reached that of radiosonde
stations, and similar distribution is likely in other regions
soon (India, the U.S., etc.). However, instrumented balloon
launches (radiosondes) remain the de facto standard for upper
air monitoring. Improvements in MWRP data processing are
desirable for real operational use of MWRP observations in
weather analysis and forecasting (e.g., [1]). Traditional MWRP
data processing requires local temperature, humidity, and cloud
liquid profile climatology. The climatology is typically de-
rived from radiosonde observations (RAOBs) taken near the
radiometer site. The MWRP measurements are then combined
with the radiosonde climatology, using statistical inversion
techniques [such as neural networks (NNs) or regression meth-
ods] to obtain the vertical profiles and the vertically integrated
amounts of various atmospheric variables. Recent work [2]–[4],
based respectively on a cleaned data set, model data, and
research instrumentation, suggests that a 1-D variational
(1-DVAR) technique, coupling radiometric observations with
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Fig. 1. Radiometer, radiosonde, and LAPS grid point locations and altitudes
for this study (north is up). Surface pressure, temperature, and relative humid-
ity comparisons between the radiosonde and radiometer sites give 12.7 mb
(0.5 mb), −0.8 K (1.8 K), and 3% (11%) mean (rms) difference, with 1.0, 0.84,
and 0.80 correlation coefficients, respectively.

outputs from a numerical weather prediction (NWP) model, is
able to outperform other temperature and humidity profiling
retrieval methods. This approach avoids the error inherent in
NN or regression retrieval methods and benefits from recent
surface, radiosonde, satellite, radar, and other data assimilated
in the NWP model. Since global NWP data (analysis and/or
forecast) are freely available—as from the U.S. National Center
Environmental Prediction (NCEP)—the 1-DVAR technique can
be adapted to work virtually in any place in the world.

More recently, an NN technique [5] has been applied to
observations from an MWRP deployed at the base of the
Whistler Creekside Gondola, operated by Environment Canada
(EC) (Fig. 1). Its continuous thermodynamic soundings were
used in real time by the Meteorological Service of Canada to
support nowcasting and short-term weather forecasting during
the Vancouver 2010 Olympic and Paralympic Winter Games.
The MWRP at Whistler was colocated with other atmospheric
observation instruments as part of an international field ex-
periment called SNOW-V10 [6]–[8]. The data set collected
during the 2010 Winter Games provides a unique opportunity to
advance operational use of continuous thermodynamic profiling
by microwave radiometry, with emphasis on the boundary layer.
There is consensus that these data are important for improved
NWP [9], [10].

This paper expands on previous results [2]–[4] by adding
quasi-operational implementation. In here, 1-DVAR retrievals
are obtained during all-weather conditions using continuous
observations (24 h, 7 days per week) from operational com-
mercially available microwave radiometer. We show the results
from zenith and off-zenith NN and 1-DVAR retrievals obtained
during 24 days of continuous sampling, covering the 2010
Winter Olympics period. These results include a comparison
with simultaneous radiosonde profiles and ceilometer cloud-
base estimates in order to quantify the retrieval accuracies.

II. INSTRUMENTS AND METHODS

This paper focuses on the period from 18 UTC February 5
to 12 UTC February 28, 2010. In addition to the MWRP and
ceilometer observations at Creekside [50.09◦ N, 122.98◦ W,
776 m above sea level (asl)], atmospheric pressure, tempera-
ture, and humidity profiles were measured with radiosondes
launched by EC from a nearby station, Nesters (50.12◦ N,

122.95◦ W, 659 m asl). Atmospheric profiles from the analysis
output of the U.S. National Oceanic and Atmospheric Adminis-
tration (NOAA) Local Analysis and Prediction System (LAPS)
were also available for the area surrounding the Creekside
and Nesters sites. Fig. 1 shows the location and altitude of
instruments and LAPS grid points.

A. Instrumentation

The data used in this paper were collected by continuous
MWRP (at near 3-min intervals) and ceilometer observations
(at 1-min intervals) and by 94 radiosonde ascents (at 6-h inter-
vals). The MWRP is a Radiometrics MP-3000A unit, including
a scanning multichannel microwave radiometer, a one-channel
broad-band infrared (IR) radiometer, and surface pressure,
temperature, and humidity sensors. The MWRP IR radiometer
(9.6–11.5 μm) measures sky IR temperature (T ir) and gives
information on cloud-base temperature. The MWRP surface
meteorology sensors measure temperature (Ts), pressure (Ps),
and relative humidity (RHs). During the period considered
here, the MWRP observed brightness temperature (Tb) in
22 channels at two elevation angles (zenith and 15◦) and one
fixed azimuth angle (northwest in Fig. 1). The channel center
frequencies are 22.234, 22.5, 23.034, 23.834, 25.0, 26.234,
28.0, 30.0, 51.248, 51.76, 52.28, 52.804, 53.336, 53.848, 54.4,
54.94, 55.5, 56.02, 56.66, 57.288, 57.964, and 58.8 GHz, with
300-MHz bandwidth. The microwave radiometer is calibrated
using noise diode injection to measure the system gain contin-
uously. The noise diode effective temperature is determined by
observing an external cryogenic target less frequently (three to
six months). The MWRP channels used here were calibrated
a couple of months in advance to the Winter Olympics, using
an external liquid nitrogen target (Tb ∼ 78 K) and an internal
ambient target (Tb ∼ 278 K). The calibration period (Decem-
ber 4–5, 2009) was chosen as close as convenient to the Winter
Olympics period, due to the access restrictions during and close
to the Olympics period. Note that the tipping curve calibration
method was not used because the steep topography blocked the
upslope view and one-side tipping curve is not recommended
(because it may introduce bias induced by leveling errors). On
the other hand, thermodynamic retrievals used vertical or off-
vertical (15◦ elevation; downslope) observations. When com-
paring the zenith with off-zenith results during precipitation,
we found that off-zenith observations at 15◦ are less affected
by spurious signals from liquid water accumulated on the
radiometer radome.

The ceilometer is a Vaisala CT25K model, which was located
a few meters from the MWRP. The ceilometer data used here
are the ceiling height measurements provided by the original
software; backscatter profiles are not included. The ceilometer
data are used only for validating 1-DVAR cloud-base height
(CBH) estimates.

Radiosondes launched from the Nesters station are GPS-
enabled Vaisala RS92-SGP systems, providing vertical pres-
sure, temperature, relative humidity, dew point temperature,
and wind profiles at 2-s resolution. From 18 UTC February 5
to 12 UTC February 28, 2010, four RAOBs were obtained
daily at standard synoptic hours (00, 06, 12, and 18 UTC). The
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Fig. 2. Ancillary surface measurements, February 11–28, 2010. (Top) (Gray,
left axes) Surface pressure (Ps) and (black, right axes) relative humidity
(RHs). (Upper middle) (Black) Surface temperature (Ts) and (gray) sky
IR temperature (T ir). (Lower middle) Precipitation rate (R); the black dots
indicate the times of radiosonde launch. (Bottom) Precipitation type (−1: no
data, 0: no precipitation, 1: precipitation, 2: drizzle, 3: rain, 4: snow, 5: hail, 6:
ice crystals, and 7: snow grains or pellets). The vertical black lines indicate the
launch times of the two radiosondes in Fig. 3.

RAOB profiles are used for validating 1-DVAR temperature
and humidity profiles and were not assimilated into the LAPS
NWP model. For comparison, the RAOB relative humidity
profiles are converted into water vapor density profiles, using
RAOB temperature and pressure. Moreover, RAOB relative
humidity was used to estimate cloud liquid profiles by means
of the Decker model [11], which is a simple cloud model
widely used in propagation and remote sensing simulations.
The Decker model identifies cloud layers where the observed
relative humidity exceeds a constant threshold, set to 95%, and
it associates constant water content to the entire layer, its value
depending on cloud thickness only.

The presence and type of precipitation were estimated by a
laser-based optical particle size and velocity (Parsivel) disdrom-
eter, located next to the MWRP and ceilometer at Creekside.
The Parsivel disdrometer distinguishes different types of pre-
cipitation and classifies the particles as drizzle, rain, sleet, hail,
snow, or mixed precipitation [12]. The precipitation rate was
estimated by an X-band Doppler radar, the Precipitation Occur-
rence Sensor System [13]. The surface conditions experienced
during the Olympic period are shown in Fig. 2. Note that clear
sky was detected for a total of 163 h (38% of the period), while
precipitation was detected for 92 h (22% of the period). Rain,
drizzle, sleet, and snow were detected for 8% (33 h), 2% (7 h),
7% (32 h), and 5% (20 h) of the time period, respectively. Pre-
cipitation rates (liquid equivalent) at times exceeded 18 mm/h
with about 235-mm total accumulation over the period. Clear
sky periods are identified by low T ir temperature, as from day
18 to 23. In Fig. 2, the launch times of Nester radiosondes are
also marked; two exemplarily radiosondes representing rainy
(00 UTC February 14) and cloudy (06 UTC February 26)
weather conditions are indicated with further discussion
in Section III.

B. Retrieval Technique

MWRP multichannel observations are commonly used to
estimate profiles of temperature and moisture profiles by
virtue of multiple probing depths (weighting functions) that
the channel set can provide. Because of fundamental ground-
based radiometer physics, derived profile vertical resolution
and accuracy decrease with increasing altitude. Traditionally,
MWRP retrievals use linear (e.g., regression), nonlinear (e.g.,
iterative), or NN methods [5], partially overcoming the lack
of sensitivity at the higher levels by incorporating statistical
correlations between lower and higher levels. The use of proper
background data and vertical statistics is vital for achieving the
highest accuracy. Recent results [2]–[4] show that coupling the
radiometer data with the output of a numerical model analysis
or forecast through 1-DVAR can improve the retrieval accuracy
over either linear or NN method alone. The 1-DVAR method
combines observed and forward-modeled brightness temper-
atures with model covariance matrices to optimize retrieval
accuracy. Temperature and humidity retrieval accuracy in the
upper troposphere depend primarily on the model analysis,
and those in the boundary layer and lower troposphere depend
primarily on the radiometer. Thus, the 1-DVAR approach avoids
the error inherent in methods initialized with local climatology
(as for NN and regression) and benefits from recent surface,
radiosonde, satellite, radar, and other data assimilated in the
local analysis or forecast.

The details of the 1-DVAR implementation used here are
given in [4]. The iterative solution that minimizes a cost func-
tion J is given by

xi+1 = xi +
(
(1 + γ)B−1 +KT

i R
−1Ki

)−1

·
[
KT

i R
−1 (y − F (xi))−B−1(xi − xb)

]
(1)

where xi and xb are the current and background state vectors,
respectively; B and R are the error-covariance matrices of the
background and observation vector y, respectively; F (x) is
the forward model operator; K is the Jacobian matrix of the
observation vector with respect to the state vector; and γ is
the Levenberg–Marquardt factor. Note that the 1-DVAR method
allows quantification of the retrieval performance by propagat-
ing statistical errors from both observations and background.
As explained in [14], the expected error profile is given by the
diagonal terms of

Ai =
(
B−1 +KT

i R
−1Ki

)−1
. (2)

Details on the settings of the 1-DVAR present implementa-
tion are given in the next section.

C. Settings

With respect to previous implementations [2]–[4], the novel
aspect of this work is the quasi-operational application; in fact,
1-DVAR retrievals were obtained during all-weather conditions
using observations from a 24/7 operational commercially avail-
able microwave radiometer. The background information in (1)
comes from NOAA LAPS [15] analyses. In particular, we use
the atmospheric profiles extracted from LAPS analysis at the
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grid point nearest to the MWRP site, namely, the southwest
corner in Fig. 1 (50.07◦ N, 123.05◦ W, 700 m asl). We run here
a 2010 version of the LAPS, generating a new set of analyses
every hour, at a 10-km horizontal grid and a vertical resolution
of 25 mb on a constant pressure grid. LAPS collects satellite,
airplanes, wind profilers, Doppler radar, and RAOB observa-
tions, performing smooth blending with background first guess
and 3-D weighting. More details on LAPS data assimilation are
given in [9]. The RAOB closest to Whistler that is assimilated
into LAPS at 00Z and 12Z comes from Quillayute, WA, at some
400-km distance. To simulate 1-DVAR real-time operational
conditions, we consider the delay for LAPS output delivery.
Since the analysis usually finishes by about 30–40 min after
the nominal analysis time, we use the analysis at nominal time
at least 50 min before the MWRP observations as background.
Note that the LAPS runs did not assimilate any of the data
that we use later in Section III for validation (i.e., ceilometer
or radiosonde). The state vector xi in (1) consists of profiles of
temperature (T ) and the natural logarithm of the total water (Q),
i.e., the total of specific humidity and condensed water content.
The choice of lnQ as state vector has the following advantages:
reduced state vector dimension, implicit correlation between
humidity and condensed water, error characteristics that are
more closely Gaussian, and prevention of unphysical retrieval
of negative humidity [3], [4]. The total water is initialized
using LAPS humidity, cloud liquid, and ice water, while other
hydrometeors (such as rain, snow, and graupel) are not used.
The state vectors are given on the same 81 vertical levels
defined for the LAPS model, although we perform retrievals
just for 0- to 10-km levels. The observation vector in (1) is given
by MWRP Tbs at 15◦ elevation angle, as well as by the MWRP
surface pressure, temperature, and humidity readings.

Estimates of the background and observation error-
covariance matrices (B and R in (1), respectively) were ob-
tained by using a set of LAPS profiles, radiosonde ascents,
and MWRP ground-based observations. The observation error-
covariance matrix R was estimated for the MWRP data follow-
ing the approach in [3] and [4]. Note that radiometric noise,
calibration, representativeness, and forward model errors all
contribute to the observation error covariance R. The back-
ground error-covariance matrices B for both temperature and
humidity profiles were computed from a set of simultaneous
LAPS and RAOB data (both in clear and cloudy weather
conditions), collected at the same model grid point and ra-
diosonde launch site as before, but for the period from 00
UTC March 6 to 12 UTC March 21, 2010. Thus, the error-
covariance period does not overlap the analysis period, although
the weather conditions in the region are similar in February
and March. This calculation of B inherently includes forecast
errors, as well as instrumental and representativeness errors
from the radiosondes (i.e., errors associated with representation
of a volume by point measurements). However, a B matrix
including these terms seems appropriate for the radiometric
retrieval minimization, since the grid cell of the NWP model is
much larger than the radiometer observation volume. Similar to
RAOBs, the radiometer observations can be assumed as a point
measurement when compared to the model cell. Values for the
estimated B and R were found to be consistent with those in

[4] and were given elsewhere [16]. Note that, in general, the
1-DVAR retrieval skill depends on how well the estimated B
and R represent reality. In a future operational deployment,
B and R may be changed dynamically (e.g., periodically and
conditionally) to account for changes in instrument and meteo-
rological conditions, thus improving the retrieval accuracy.

The forward model F (x) used here is the NOAA microwave
radiative transfer code [17], which also provides the weighting
functions that we use to compute the Jacobians K with respect
to temperature and total water. The adopted forward model
does not cover the IR spectrum, and thus, observations from
the broad-band IR radiometer were not included in observation
vector. Note also that scattering signal is considered negligible
(i.e., within the instrumental error). For the frequencies con-
sidered here (< 60 GHz), this approximation is valid also in
the presence of snow, as recently demonstrated [18]. Bright-
ness temperatures at the MWRP central frequencies are for-
ward modeled from temperature, water vapor, and liquid water
profiles. Errors with respect to band-averaged Tb—including
spectral filter characteristics—are typically within 0.1 K, and
these were accounted for in the forward modeling component
of the observation error. The observations-minus-simulations
bias was investigated for each MWRP microwave channel at
15◦ elevation and was found to range from 1.5 K to 3.0 K for the
K-band channels (i.e., 22–30 GHz), from 0.9 K to 1.9 K for
lower V-band channels (i.e., 51–53 GHz), and from 0.0 K
to 0.5 K for the higher V-band channels (i.e., 53–59 GHz),
showing no evidence of trend over time. The source of these
biases can be attributed to radiometer calibration uncertainty,
gas absorption model [19], radiosonde bias error [20], and
radiometer–radiosonde colocation error. In addition, for ra-
diometer observations at 15◦ elevation, small (0.1◦) leveling er-
ror can generate several-degrees-kelvin brightness temperature
error in the K-band and lower V-band.

Special attention was dedicated to the 1-DVAR optimization
for operational use. The Levenberg–Marquardt factor γ is ad-
justed after each iteration, depending on how the cost function
J has changed. If J has increased, γ is increased by a factor
of ten, and the iteration is repeated; if J has decreased, γ is
decreased by a factor of two for the next iteration. These factors
were suggested in [3] and the references therein. Moreover,
the 1-DVAR technique is applied in two steps, because this
approach was found to improve the convergence efficiency. The
steps are as follows.

1) The temperature profile is retrieved from a selection of
V-band channels, corresponding to the nine higher fre-
quency channels (53.848, 54.4, 54.94, 55.5, 56.02, 56.66,
57.288, 57.964, and 58.8 GHz). These channels were
selected because they are less sensitive to cloud water
and rain. The convergence criterion described in [21]
was adopted, leading to successful convergence, usually
within three iterations.

2) The retrieved temperature profile is set as background,
and the natural logarithm of total water is retrieved from
the complete set of K-band channels. The iteration is
stopped when the profile increment has decreased by
less than 10%, leading to convergence, usually within
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nine iterations. The retrieved total water is partitioned
between specific humidity and condensed water (see in
the following). The specific humidity is then converted
into water vapor density for comparison purposes, using
retrieved temperature and background pressure.

Note that the liquid water content (L) is inherently estimated
in our 1-DVAR implementation from the adopted state vector,
i.e., the natural logarithm of the total water. Using the approach
in [3] and [4], the retrieved total water is partitioned at each
iteration step between specific humidity and condensed water
content. The condensed water is further partitioned between liq-
uid and ice fractions, assuming a linear dependence on air tem-
perature, and the ice fraction is ignored as it is assumed to have
negligible extinction for the MWRP channels [4]. Note that, in
the current 1-DVAR implementation, the T ir observations are
not used and the cloud boundaries and liquid water content are
initially set to the values given by the LAPS background.

D. Other Retrieval Techniques

The 1-DVAR retrievals are compared hereinafter with LAPS
and RAOB profiles, as well as with NN retrievals. The NN
retrievals used here are generated by the MP-3000A proprietary
software [5]. Five years of historical operational radiosondes
from Kelowna (49.93◦ N, 119.40◦ W, 456 m asl, and ∼250-km
distance from Whistler) were adjusted to the radiometer site
altitude and processed to generate thousands of synthetic liquid
water content profiles. Radiosonde plus liquid water profiles
were processed within a radiative transfer model and used as
the NN training set. The NN retrievals are computed by using
two versions of the proprietary software, one ingesting zenith
observations (NNz) and the other ingesting slant observations
at 15◦ elevation (NNs). NNs and NNz estimate separately
and in parallel the temperature, water vapor density, relative hu-
midity, and liquid water content profiles from all K- and V-band
channels plus the IR channel. The only difference between
NNs and NNz is the observing elevation angle (15◦ and 90◦,
respectively). NNz and NNs retrievals were obtained in real
time, and no data were culled even in the presence of rain, sleet,
or snow. Note that NNs and 1-DVAR retrievals are based on
the same MWRP observations, with the following exceptions.

1) The 1-DVAR retrievals do not use the IR thermometer
observations.

2) For the 1-DVAR retrievals, a constant value for each
MWRP channel has been removed to the observed Tb.
The impact of this bias correction is discussed in
Section IV.

E. Skill Scores

Conventional skill scores for meteorology have been defined
in [22]. Similar to those, the score indexes used in Section III
to quantify the performances of cloud detection are adapted
from [23]. Using the notation in Table I for indicating the
number of cases in which cloud or no cloud was observed
by the ceilometer and estimated by the various methods, the
formulations of the following skill score indexes for cloud
detection are given in Table II: probability of detection of cloud

TABLE I
CONTINGENCY TABLE FOR THE EVALUATION OF CLOUD AND

NO-CLOUD DETECTIONS (TO BE USED WITH TABLE II EQUATIONS)

TABLE II
SCORE INDEXES FOR CLOUD DETECTION USED TO EVALUATE

THE DETECTION CAPABILITY OF A PARTICULAR METHOD WITH

RESPECT TO CEILOMETER ESTIMATES. THE TABLE INCLUDES

THE WORST AND BEST VALUES FOR EACH INDEX

(TO BE USED WITH THE DEFINITIONS IN TABLE I)

(PODC), probability of detection of no cloud (PODN), and
false-alarm ratio (FAR).

III. RESULTS

The 1-DVAR method, with the implementation described
earlier, was applied to the MWRP observations on February 5–
28, 2010, including the 2010 Winter Olympics period. The
weather conditions encountered during this period are summa-
rized in Fig. 2: Clear and cloudy sky periods were detected,
as well as different kinds of precipitation. We emphasize that
the 1-DVAR retrievals were obtained in offline postprocessing,
but the results shown below are “quasi-operational” in the
sense that they would have been the same if processed online
because the method is fast enough to be implemented in quasi-
real time and no data were culled in the processing. With the
convergence criteria introduced earlier, the convergence rate for
the period under analysis was 100% for temperature and 99.5%
for total water retrievals. Concerning the computing time, each
iteration takes about 0.3 s on a Linux personal computer with
2-GHz CPU and 2-GB RAM. Considering an average of three
iterations for temperature and nine for total water profiles, a
complete retrieval is available in less than 4 s.

In the following, 1-DVAR and NN retrievals are compared
with LAPS and RAOB profiles. From the total of 94 RAOBs
available, our analysis is based on 72 cases in which all the
data sources (RAOB, LAPS, and MWRP) were simultaneously
available. These 72 cases include clear, cloudy, and precipita-
tion weather conditions. Fig. 3 shows two cases with (A and B)
temperature, (C and D) humidity, and (E and F) cloud liquid
profiles as provided by RAOB, LAPS, and MWRP retrievals
(NN and 1-DVAR). These cases were selected as representa-
tives of rainy [00 UTC February 14; Fig. 3(a), (c), and (e)] and
cloudy [06 UTC February 26; Fig. 3(b), (d), and (f)] weather
condition periods.
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Fig. 3. Selected profiles of (top; A and B) temperature, (middle; C and D)
water vapor density, and (bottom; E and F) cloud liquid water as provided by
RAOB, LAPS, NNz and NNs retrievals, and 1-DVAR retrievals. The vertical
axis Z indicates the height above the MWRP level. (Left; A, C, and E) Case
with rain precipitation (R ∼ 4–7 mm/h; T ir = 274.5 K). (Right; B, D, and F)
Case with clouds but no precipitation (T ir = 246.4 K). The legend in the
upper right panel indicates the line color/style coding.

Fig. 4. Comparison of LAPS, NNs, NNz, and 1-DVAR temperature pro-
filing accuracies with respect to RAOB (72 cases). (Left) MDs (RAOB minus
retrievals or simulations). (Center) STD difference. (Right) RMS difference.
The legend in the top-left corner indicates the line color/style coding.

A. Temperature Profiles

The individual temperature profiles in Fig. 3(a) and (b) show
that both the LAPS analyses and the MWRP retrievals follow
the temperature vertical structure measured by the RAOB.
For the case with rain precipitation (00 UTC February 14),
NNz retrievals differ largely from the other MWRP retrievals
and from RAOB. This difference is attributable to the fact
that NNz retrievals rely on zenith observations, which are
affected by rain accumulating over the radome. Conversely,
NNs and 1-DVAR both rely on 15◦ elevation observations
and thus mitigate substantially the impact of rain residual. For
the cloudy case (06 UTC February 26), the NNz and NNs
retrievals match well the RAOB temperature profile in the
boundary layer but show significantly larger differences in the
upper atmosphere. This result is consistent with the weighting
function of V-band channels, peaking near the surface and
fading rapidly above the lower few kilometers [24]. Con-
versely, the LAPS analyses represent well the RAOB temper-
ature structure up to 10 km in both cases, although presenting
larger differences near the surface in one of the two cases.
This is consistent with the estimated background error B (not
shown), which indicates small values for temperature back-
ground error above 1-km altitude but much larger values in the
boundary layer. The 1-DVAR retrievals, being an optimal com-
bination of ground-based observations and background infor-
mation, retain the information carried by the background LAPS
temperature analyses, particularly in the upper troposphere,
while being able to correct inaccurate LAPS analyses in the
lower few kilometers. The combination of these two features
allows the 1-DVAR to achieve the best retrieval performances
throughout the vertical domain. This is demonstrated in Fig. 4,
which shows the mean difference (MD), standard deviation
(STD), and root-mean-square (rms) difference for simultaneous
temperature profiles (from LAPS, NNs, NNz, and 1-DVAR),
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using RAOB as the reference. If one assumes that RAOB pro-
vides true and representative temperature profiles for MWRP
observations, then the 1-DVAR retrieval accuracy—in term of
rms—is within 1.5 K for heights up to 10 km above ground.
Under this assumption, the 1-DVAR shows the best retrieval
accuracy, which is comparable to the accuracy of NN in the
boundary layer and to the accuracy of LAPS analysis in the
upper atmosphere up to nearly the tropopause.

B. Water Vapor Profiles

The water vapor density (V ) profiles in Fig. 3(c) and (d)
(middle panels) show that both the LAPS analyses and the
MWRP retrievals follow the humidity vertical structure mea-
sured by the RAOB. In particular, the LAPS analyses seem to
carry more information about the vertical distribution of water
vapor and therefore catch the presence of elevated humidity
inversions. As with temperature, the agreement between RAOB
and LAPS vapor densities is less near the surface than in the
upper atmosphere as a result of a multitude of local boundary-
layer conditions induced by the complex terrain, which cannot
be resolved in the LAPS analyses. In contrast, the retrievals
based on MWRP observations are in better agreement with
RAOB in the lower atmosphere, probably because of the con-
straint given by the MWRP surface measurements. However,
MWRP retrievals usually miss details in the vertical structure
because of the smooth quasi-constant weighting functions at
K-band frequencies [24]. Similar to temperature, Fig. 3(c)
and (d) shows that the 1-DVAR humidity retrievals are able
to retain the information carried by the background LAPS
analysis, particularly in the upper troposphere. The 1-DVAR
retrievals are also able to correct the LAPS analysis in the
lower few kilometers. The statistics of humidity retrievals are
summarized in Fig. 5, showing the mean, STD, and rms dif-
ferences for simultaneous water vapor profiles (from LAPS,
NNs, NNz, and 1-DVAR), using RAOB as the reference.
The same 72 cases described earlier were considered in the
analysis. In terms of rms with respect to RAOB, the smallest
values are given by NNs, which are ∼0.4 g/m3 from the
surface up to 3 km and then decrease aloft almost linearly
with height by 0.1 (g/m3)/km. NNz, 1-DVAR, and LAPS
humidity profiles show rms differences similar to NNs, except
near the surface where LAPS rms differences are ∼0.8 g/m3

while NNz and 1-DVAR are ∼0.5 g/m3, all reaching 0.4 g/m3

at 1 km. Note that NNs and 1-DVAR retrievals are based
on 15◦ observations, but unlike 1-DVAR, NNs water vapor
retrievals use both K- and V-band channels. Thus, the correla-
tion between low-level temperature and humidity may explain
better NNs performances below 1 km. Above 1 km, LAPS,
1-DVAR, and NN perform nearly the same. These results
demonstrate once again that, with respect to LAPS analysis,
the MWRP observations provide useful information mainly in
the boundary layer, where LAPS shows the largest difference
with respect to RAOB due to locally induced meteorological
effects.

Microwave radiometer observations at K-band channels are
widely used for the retrieval of the integrated water vapor
(IWV) content in the atmosphere [24]. Therefore, in Table III,

Fig. 5. Comparison of LAPS, NNs, NNz, and 1-DVAR water vapor
density profiling accuracies with respect to RAOB (72 cases). (Left) MDs
(RAOB minus retrievals or simulations). (Center) STD difference. (Right) RMS
difference. The legend in the top-right corner indicates the line color/style
coding.

TABLE III
COMPARISON OF IWV ESTIMATES WITH VALUES OBTAINED FROM

RADIOSONDES. MD, STD, RMS DIFFERENCE, CORRELATION

COEFFICIENT (COR), ESTIMATED STATISTICAL ERROR (SDE),
SLOPE (SLP ), AND OFFSET (OFS) OF A LINEAR FIT ARE

INCLUDED. SEVENTY-TWO CASES WERE USED. (∗) THE VALUES

ARE IN KILOGRAMS PER SQUARE METER

we compare IWV values computed from LAPS and retrieved
from NNs, NNz, and 1-DVAR, with the corresponding IWV
values computed from RAOB humidity profiles. Table III
includes the MD, STD, and rms, as well as the correlation
coefficient (COR), the estimated statistical error (SDE), and
the slope (SLP ) and offset (OFS) of a linear fit. Adopting
RAOB as reference, 1-DVAR shows the best accuracy for the
IWV range under analysis in terms of the highest correlation
coefficient (0.96) and the smallest mean (−0.1 kg/m2), STD
(0.8 kg/m2), and rms (0.8 kg/m2) differences with respect to
RAOB. However, we acknowledge that the SLP and OFS for
the implemented 1-DVAR (including options for B and R) are
the farther from the perfect match (one and zero, respectively).
This implies that the 1-DVAR retrieval is optimized for the IWV
range under study and it will need to be adapted in different
IWV climatologies.
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C. Cloud Liquid Profiles

The profiles of cloud liquid water content in Fig. 3(e) and (f)
deserve careful explanation. It is anticipated that the accuracy
of these liquid profiles may not be adequate for microphysical
studies, but here, it is assumed to be adequate for nowcasting
purposes. In fact, cloud liquid is not measured by opera-
tional meteorological radiosondes such as the RS92 launched
at Nesters, and its estimate from ground-based microwave
observation alone is limited by lack of degrees of freedom
(i.e., vertical resolution) in microwave signals [25]. However,
it is recognized that accurate estimates of the vertically in-
tegrated liquid water path (LWP) are retrieved from MWRP
observations, providing spatial and temporal constraints on the
liquid profile. Moreover, the zenith IR observations provide
information on cloud-base temperature and height. With these
considerations, Fig. 3(e) and (f) provides cloud liquid profiles
from (a) LAPS output, (b) NNs, NNz, and 1-DVAR retrievals,
and (c) indirect derivation from RAOB. These profiles are
obtained as follows.

1) For the LAPS profiles, the nonprecipitating liquid water
content is produced within LAPS from the 3-D analyzed
cloud field by using an adiabatic parcel model [15].

2) For the 1-DVAR profiles, the cloud structure is initialized
with LAPS background and is inherently present in the
state vector throughout the retrieval process. Conversely,
NNs and NNz estimate cloud liquid profiles directly
from MWRP microwave and IR channels. Therefore,
1-DVAR, NNs, and NNz methods all ingest inde-
pendent information on cloud vertical structure other
than microwave observations alone (LAPS background
in 1-DVAR; IR cloud-base temperature in NNs/NNz).
Nonetheless, even with a priori knowledge of cloud
boundaries, the vertical distribution of liquid water within
the cloud layer is difficult to retrieve from standard
MWRP observations, as demonstrated in [25].

3) Liquid profiles from RAOB were obtained using the
Decker model. This model has been validated against
ground-based microwave radiometer and ceilometer ob-
servations [26] and was found to be robust enough for
LWP and CBH estimations. However, cloud determina-
tion from relative humidity profiles is generally problem-
atic. When compared with other meteorological fields,
relative humidity shows much more variation in space and
time and, thus, smaller representativeness. Cloud liquid
water fields are even more variable than relative humidity
fields. Therefore, inherent uncertainties and nonrepresen-
tativeness in the relative humidity field can lead to large
scatter between the observed relative humidity and cloud
presence [25].

Having these considerations in mind, Fig. 3(e) and (f) shows
that 1-DVAR and NN retrievals provide realistic cloud bound-
aries and liquid water content even in the presence of rain
[Fig. 3(e)]. Note that ground-based microwave radiometry can-
not reliably discriminate between rain and cloud water, unless
polarized channels are used ([27] and the references therein), so
the retrieved cloud liquid water during rainy conditions may be
affected by some rain water contamination. However, the case

TABLE IV
STATISTICS OF CBH WITH RESPECT TO CEILOMETER MEASUREMENTS.

CLOUD DETECTION SCORES ARE PODC, PODN, AND FAR.
ONE-HUNDRED SIXTY-FOUR CASES WERE USED.

(∗) VALUES ARE IN KILOMETERS

in Fig. 3(e) shows that both 1-DVAR and NN place the cloud
base at some 400-m altitude effectively, where the humidity ap-
proaches saturation, as demonstrated by the L profile estimated
from the RAOB with the Decker model. For the cloudy case
[Fig. 3(f)], LAPS and RAOB both place a liquid cloud from
1.5 km aloft, while NNs and NNz show little liquid and
1-DVAR shows no liquid at all. The 1-DVAR estimate is
supported by the sky IR temperature (T ir ∼ 246 K), which
indicates that the cloud is likely formed by ice water only.

A reference measurement for liquid water content profile
was not available during the period under analysis. In fact,
although radar observations were made in the Whistler region
during the period analyzed here, liquid water retrievals from
C-band radars carry information about large precipitating drops
and lack sensitivity to small nonprecipitating droplets forming
clouds. As a result, radar observations—of sufficient quality to
generate meaningful liquid water retrievals—were not available
to us at the time this work was prepared. On the other hand,
accurate measurements of CBH were provided by a ceilometer
colocated with the MWRP; CBH can also be extracted from
liquid water profiles as the height of the lowest level where
liquid water content is greater than zero. Therefore, in Table IV,
we present the analysis of cloud detection and CBH from cloud
liquid profiles by LAPS, NNs, NNz, and 1-DVAR, assuming
the ceilometer estimates as the reference. Ceilometer data are
available at 1-min resolution, and CBH is estimated as the
minimum height detected within the observation interval. For
that, the MWRP and ceilometer cloud-base estimates were
averaged in 10-min windows, centered at the LAPS hourly-
analysis times. This averaging resulted in 164 cases where
all the data sources (ceilometer, MWRP, and LAPS) were
available, including both clear and cloudy weather conditions.
Note that there may be ceilometer detections caused by pure
ice clouds, which are ignored in the 1-DVAR process. Part of
these cases were removed by assuming −40 ◦C as the limit
for liquid water presence (roughly corresponding to 6 km) and
thus purging ceilometer CBH > 6 km. Table IV reports the
scores for cloud detection skills, as well as for CBH quantitative
estimation. According to Table IV, LAPS provides the best
PODC but the worst PODN and FAR, suggesting a tendency
to overestimate the cloud presence. With regard to quantitative
estimation, LAPS and 1-DVAR provide the best accuracy for
CBH retrievals in terms of both the correlation coefficient
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(0.70), and the mean (0.16 km) and rms (0.60 km) differences.
Clearly, the 1-DVAR results do not add significant improvement
to the CBH given by LAPS; the cloud boundary information
residing in the LAPS background and initially ingested into the
1-DVAR is generally left nearly unchanged during the 1-DVAR
iterative process. That is, 1-DVAR produces liquid water pro-
files that benefit from the LAPS cloud boundary information
but, in addition, are consistent with both the measured Tb
(leading to more accurate integrated content) and the retrieved
temperature and total water profiles.

IV. DISCUSSION AND CONCLUSION

This paper has presented a 1-DVAR technique for tem-
perature, humidity, and cloud liquid profile retrievals from
ground-based radiometric observations. The technique was
tested during a 24-day period, including the Vancouver 2010
Olympic Winter Games. These 1-DVAR retrievals have been
compared with the MWRP NN retrievals, nearby RAOBs, colo-
cated ceilometer observations, and objective analyses from an
NWP model. The results tend to confirm that the 1-DVAR tech-
nique, being an optimal combination of ground-based obser-
vations (from the MWRP) and background information (from
objective analyses), outperforms the background initialization,
as well as other inversion methods (NN retrievals).

The achieved accuracy has been evaluated assuming that
simultaneous radiosonde and ceilometer observations are repre-
sentatives of the radiometer sampling volume. When comparing
1-DVAR retrievals with radiosonde profiles up to 10 km, we
obtained an rms difference within 1.5 K for temperature and
within 0.5 g/m3 for water vapor density. If these 1-DVAR-
versus-RAOB differences are considered as the retrieval error,
then they correspond to a reduction of 50%–65% (0%–50%)
of the temperature (vapor density) field variability, considered
as the STD of the entire radiosonde sample (see Fig. 5). Note
that, limiting the analysis to clear sky only, we did not notice a
clear improvement either in 1-DVAR temperature or humidity
retrievals. However, we expect retrieval performances to change
with weather conditions. In principle, for nowcasting and data
assimilation purposes, as well as other applications, it is de-
sirable to provide an error to each individual retrieved profile.
The 1-DVAR expected error profile [i.e., (2)] can be adopted for
this purpose; for example, the expected error for water vapor
profiles is given in Fig. 6, which indeed suggests the degrada-
tion of retrieval performances from clear sky (February 17–24)
to dynamical (February 11–16 and 24–28) weather conditions.
Quantitative comparison of retrieval accuracy during clear,
cloudy, and precipitating conditions is desirable, but it requires
an extended data set (one year minimum) to be statistically
meaningful. Such a data set would also be useful to refine
covariance matrices during dynamical weather conditions. Note
also that the 1-DVAR retrieval error is fairly insensitive to
the Tb bias correction introduced in Section III. This can
be appreciated in Fig. 7, where 1-DVAR rms profiles with
and without bias correction are plotted for both temperature
and vapor density. However, we acknowledge that the bias
correction would have had larger impact if the lower frequency
V-band channels were included in the 1-DVAR observation

Fig. 6. Contour of time–height cross section of the estimated statistical error
for water vapor density retrievals. The values are in grams per cubic meter. The
period shown is the same as that in Fig. 2, i.e., clear sky is from February 18
to 24, while precipitation is detected in the February 11–14, 16–17, and 24–28
periods.

Fig. 7. Errors for temperature and water vapor density estimates. The dashed
gray lines correspond to observation errors designated by NCEP to RAOB
data assimilation. The solid lines correspond to the 1-DVAR retrieval accuracy
(rms difference with respect to RAOB) as obtained with (black) and without
(gray) Tb bias correction. The dashed–dotted black lines show the variability
for RAOB observations of temperature and water vapor density in terms of STD
during the study period (72 RAOB profiles).

vector. Fig. 7 also shows the observation errors associated
by NCEP to the RAOBs assimilated in the NCEP analysis
and forecast models [28], [29]. Note that NCEP observation
errors are larger than the 1-DVAR retrieval errors throughout
the vertical range from the surface up to 10-km height. The
water vapor burden obtained by integrating the retrieved water
vapor profiles showed an rms accuracy (assuming RAOB as
the reference) within 0.8 kg/m2, with small bias (−0.1 kg/m2)
and excellent correlation (0.96). The 1-DVAR rms error corre-
sponds to ∼9% of the average IWV, with ∼43% improvement
with respect to the NWP background, and to ∼67% reduction
of the IWV field variability.
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Unfortunately, no reference measurement was available for
the cloud liquid water content or integrated cloud liquid path.
Therefore, we do not attempt the estimate of the 1-DVAR
retrieval accuracy for either liquid water profiles or integrated
amounts. Conversely, cloud detection and base height esti-
mates were validated by using ceilometer data as reference.
The results indicate that 1-DVAR provides high PODC/PODN
(0.8/0.9, respectively) and low FAR (0.1), with an rms error of
∼0.60 km, although most of the CBH information comes from
the LAPS background.

Finally, considering that the rms errors in Fig. 7 include
radiosonde sensor and flight path drift errors, we conclude that
the retrievals based on MWRP (1-DVAR, as well as NN) are
better than 1 K in the first kilometer. Noteworthy, this result is
obtained for real-time operations, because no data were culled
during rain, sleet, and snow events. Such accuracy in capturing
boundary layer and lower tropospheric thermodynamic effects
is critical to improving local short-term forecast accuracy, for
example, for managing high-profile outdoor sporting events,
aviation weather, air quality, fire weather, hazardous airborne
material dispersion, and renewable (wind and solar) energy
management.
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