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Abstract-Since 1981, the Wave Propagation Laboratory of NOAA
has operated a ground-based zenith-viewing microwave radiometer.
This radiometer, designed to measure precipitable water vapor, cloud
liquid, and temperature profiles, has two moisture-sensing channels
and four temperature-sounding channels. Data from this system, taken
at Denver, Colorado, are used to derive geopotential heights and thick-
nesses from the surface (about 830 mbar) to 300 mbar. Time series
and spectra of several directly measured and inferred quantities are
analyzed for different meteorological situations: a period of unusual
calm in surface pressure, a frontal passage, and a gravity wave event.
The three cases presented illustrate how rapid variations in meteoro-
logical variables can be studied using ground-based radiometers. These
radiometers provide temporal continuity not hitherto available. The
performance of the radiometer, both in observing a blackbody target
and during an unusually calm pressure event, shows high sensitivity to
changes in geopotential height and thickness and to integrated water
vapor. Consequently, the combination of high temporal resolution and
high sensitivity allows unique monitoring of rapidly changing condi-
tions, such as frontal passages and gravity wave events. Comparisons
of these data with various sources of ground truth, including radio-
sondes, satellite cloud observations, and arrays of microbarographs,
show excellent agreement.

I. INTRODUCTION
S TUDIES have shown that ground-based radiometers

can indicate the presence of atmospheric waves [1]-
[3]. Spectral analysis of downwelling infrared radiance
showed sharp spectral peaks that were associated with
waves in the nocturnal boundary layer [1]. Microwave
observations also showed peaks that were associated with
oscillations of water-vapor density and temperature [2],
[3]. The periods of these disturbances are of the order of
a few minutes. It would be of practical benefit to observe
such oscillations routinely and to interpret them in terms
of atmospheric stability, waves, and turbulence.
The ability of a dual-channel microwave radiometer to

provide nearly continuous observations of atmospheric
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precipitable water vapor was shown in [4], [5]. Time se-
ries of these data, recorded as 2-min averages, showed
rapid moisture variations that would be difficult, if not
impossible, to measure by conventional meteorological
instrumentation. Spectra of such data showed measurable
power up to the 15-cycles/h Nyquist frequency [6]. Since
these original observations were made, the radiometric
system has been expanded to include four channels in the
60-GHz emission band of molecular oxygen [7]. The
complete observing system also includes surface meteor-
ological measurements. The system, except for minor in-
terruptions, has run continuously since 1981 at Stapleton
International Airport, Denver, Colorado. Twenty-minute
averages of derived temperature and moisture parameters
are sent in real time to local users. An archive of 2-min
radiometric data is also maintained.
An accuracy analysis of radiometrically derived tem-

perature profiles, based on 20-min averaged data and using
colocated National Weather Service (NWS) radiosonde
observations (RAOB's) as ground truth, showed rms dif-
ferences of less than 2°C up to about 500 mbar above the
surface [8]. Although the profiles lack high vertical res-
olution, geopotential heights, derived by integrating these
profiles, have an accuracy in the lowest half of the atmo-
sphere comparable to that of RAOB's. Thus, this instru-
ment is capable of providing highly accurate measure-
ments of the short-term behavior of several meteorological
parameters. To illustrate this capability, we present 2-min
observations of precipitable water vapor, geopotential
heights and thicknesses that were taken during three dif-
ferent meteorological situations: a period during which
the surface pressure showed a small variance about a near-
zero tendency, the passage of a cold front, and a gravity
wave event. These observations illustrate how rapid vari-
ations in meteorological variables can be studied using
ground-based radiometers. By providing a temporal con-
tinuity not hitherto available, the high sensitivity of these
instruments allows unique monitoring of rapidly changing
events.

II. DESCRIPTION OF EQUIPMENT
The radiometer is a component of a ground-based ob-

serving system designed to measure profiles of tempera-
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ture and wind, as well as integrated amounts of precipit-
able water vapor and cloud liquid. Instrumental details of
the system are described in [7]. Here, we describe only
the radiometric portion of the system. The radiometric
system is located less than 50 m from the NWS RAOB
launch site. The six-channel radiometer has one channel
operating at 20.6 GHz, one at 31.65 GHz, and channels
at 52.85, 53.85, 55.45, and 58.8 GHz. All channels of
the zenith-viewing system have equal beamwidths of 2.3
degrees. The lower two channels are sensitive to water
vapor and cloud liquid; the weak absorption at these fre-
quencies allows calibration by the "tipping curve"
method [5]. The upper four channels are most sensitive to
temperature. Their calibration requires comparison of
clear-sky measurements with calculations of brightness
temperature ( Tb) from height profiles of temperature, ab-
solute humidity, and pressure measured by RAOB's. The
absolute accuracy of the channels is discussed in Section
IV.
The emission measurements are supplemented with sur-

face observations of temperature Ts, pressure Ps, and rel-
ative humidity (RH)s. Two-minute averages of all nine
observations are sampled every 2 min. For approximately
6 min at the start of every hour, an internal calibration
cycle is performed. Thus, for every hour, a total of 27
nine-component data vectors are recorded and archived,
and three data points are missing.

III. METHODOLOGY

A. Retrieval Method
We derive vertical profiles of temperature and humidity

from sky brightness observations by linear a priori statis-
tical inversion [8]. With this technique, a profile is esti-
mated from a linear combination of the components of the
measured data vector; the coefficients used in this com-
binatiop are determined by minimizing, over a suitably
chosen ensemble, the expected mean square error be-
tween a profile and its estimate. Let y be a vertical coor-
dinate (such as height) and yi, i = 1, 2, - * *, m, be a
suitably dense set of discrete values of y. We represent a
vertical profile of a parameter p ( y) by an m-dimensional
vectorp = (P(YI), P(Y2 ), * * , P(ym ))T; similarly, n

separate components of data are represented by an n-di-
mensional column vector d. Our particular data vector
consists of optical depth derived from brightness temper-
atures (2 components), brightness temperatures (4 com-
ponents), and surface meteorological observations (3
components). We derive p by a minimum variance un-
biased estimator p given by

A = (p) + (p'd T) (d'dtT)1 (d - (d)) (1)

where < > represents ensemble averaging over a joint dis-
tribution of profiles and data, vT is the transpose of the
vector v, and the primes refer to departures from ensem-
ble averages, e.g., v' = v - < v >. Application of (1)
requires knowledge of 1) the mean vectors ( < p >, < d > );
2) the cross-covariance matrix between profiles and data

((<p'd T> ), and 3) the covariance matrix describing the
noise degraded data ( < d'dT>).

For our ground-based radiometric application, an ex-
tensive set of both profiles and brightness temperature ob-
servations was not available. However, given that our
equipment noise levels are known, and that microwave
brightness temperatures can be accurately calculated from
RAOB's [8], we relied on a past history of RAOB's to
calculate the required statistical quantities in (1). In par-
ticular, the ensembles we used to compute retrieval coef-
ficents from (1) were selected from NWS RAOB's taken
at Denver, Colorado, during 1972-1977. For the ith
month (i = 1, 2, - * *, 12), coefficients were computed
from data representing the months (i - 1), i, and (i +
1). Clouds were simulated using models [9], and radio-
metric noise levels were determined experimentally as de-
scribed in Section IV.
The geopotential height h (P) in meters at pressure P

-in millibars is related to the virtual temperature profile
Tv(P) in degrees Kelvin by

( -nP
() ( /g) JlInPs , (2)

where Ps is the surface pressure, R is the gas constant for
dry air, and g is the acceleration of gravity. For h (P) in
geopotential meters, R/g= 29.29. The geopolitical
thickness between two pressure levels P1 and P2 is given
by

t(P1, P2) = h(P2) - h(P1)
-nP2

= -(R1g)
InPi

TV(P) d ln P. (3)

Alternatively, (3) can be related to an average virtual tem-
perature T*(P1, P2) by

T* (P1, P2) = (g/R) t(P1, P2) /ln (P1/P2). (4)
Since h (P) and t (PI, P2) are linear measures of the
Tv(P) values, and since Tv(P) is approximately linearly
related to the actual temperature and absolute humidity,
we greatly simplified the retrieval procedure by directly
estimating h (P) at 100-mbar increments from 800 to 300
mbar. In a few cases, we checked this approximation by
inserting the radiometrically derived temperature and hu-
midity profiles in (2), and compared the results with the
directly estimated quantities. In these cases, the heights
agreed to within 1 m.

B. Method for Inserting Missing Data-
As discussed in Section II, each hour of data consists

of equally spaced 2-min samples (sampling frequency is
30 cycles/h) of 2-min averages, with three missing data
samples at the start of each hour. To compute spectra from
the data over time intervals greater than 54 min, a scheme
to insert the three missing 2-min averages was necessary.
Let di, i = 1, 2, - - *, 9 be consecutive data three points
before, three points during, and three points after calibra-
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tion time. The data d4, d5, and d6 are missing. In terms of
the quantity bij = di-dj, we computed the missing points
by

d4 = d3- 0.562,3

d5 = [(d3 - 0.361,3) + (d7 + 0.367,9)]/2
d6 = d7 + 0.567,8. (5)

This scheme is illustrated in Fig. 1. Tests of the method
were made using time series of uncorrelated Gaussian
noise. We observed only negligible differences between
spectra calculated from the original and from the inter-
polated time series.

C. Spectral Analysis
In the following sections, we present radiometric data

that were obtained when gravity wave activity was known
independently to be occurring. In general, our measured
brightness temperatures are influenced by "white" noise
of the radiometer's receiver, by turbulent fluctuations of
temperature and water vapor, and by coherent oscillations
of waves. The spectra of atmospheric turbulent fluctua-
tions are frequently characterized by a "-5/3" law.
Thus, to analyze such complex data, some care is needed
in choosing both a spectral analysis method and the pa-
rameters associated with the method. We selected two
types of spectral analysis procedures to apply to radio-
metrically derived quantities. The first was conventional
discrete Fourier transform analysis (FT); the second, the
autoregressive spectral method (AR). Our computer codes
used routines from the National Bureau of Standards Sta-
tistical Library (STARPAC) that were coded following
[10]. For completeness, we will outline below a short de-
scription of the two methods.
We assume that we have a digital time series obtained

by sampling a finite length realization of a stationary ran-
dom process x(t), -oo < t < oo. The random process
is characterized by a spectral density Cxx ( f ) as a function
of frequency f. The function Cxx ( f ) is theoretically equal
to the Fourier transform of the autocovariance function
cxx ( -r), where

c. (T) = ((x(t) - (x)) (x(t + r) - (x))). (6)
In (6), ( x > is the ensemble average of x ( t), r is the tem-
poral lag, and the expectation operation is taken over an
ensemble of realizations of x ( t). Assuming that time av-
erages are equivalent to ensemble averages, from a single
realization of x (t), the FT method estimates the spectral
density as the Fourier transform of the sample autoco-
variance function. However, as is clearly discussed in
[ 10], [ 1 1 ], smoothing (or averaging) in the frequency do-
main is necessary to reduce statistical variance of the es-
timate. Furthermore, as the variance is reduced by
smoothing, the bias is increased. A reasonable compro-
mise between bias and variance is required to achieve a
meaningful estimate. The required smoothing can be
achieved by operations either in the frequency domain or
in the time domain.

62,3 67,9

61,3~

56 58 0 2 4 6 8 10 12 time (min)
di d2 d3 d4 d5 d6 d7 de dg

d4 =d3 - 0.5 62,3
d5=[(d3 -0.3 61,3)+(d7+0.3 67,9)1/2
d6 = d7 + 0.5 67,8

Fig. 1. Schematic drawing of the method used to insert missing data.

From a digital time series of xi, i = 1, 2, * * * , N, with
a sampling period of A, the FT algorithm computes a
smoothed spectrum estimator C,, ( f ) as

N-I

Cx(f) = 2A c, (0) + 2 E c,x(k) w(k)

1
* cos (2irkfA)K0A < f <.-.

The sample autocovariance function cx(k) is
1 N-k

c. (k) = - E (xi- x) (Xi+k -)INt-i=

0 <t k < N-1.

(6)

(7)
In (6) and (7), x is the sample average of xi, k is the lag,
and the weighting function w (k) is called the lag window.
A discussion of several choices of w(k) is given in [10]
and [11]. The Fourier transform of the lag window is
called the spectral window W( f ). Various numerical fac-
tors have been adjusted in (6) to preserve the Fourier
transform relationship between the sample spectrum and
the sample autocovariance function. Usually, for a given
lag window, a maximum lag M, called the lag truncation
point, is chosen. In terms of the sampling period A, the
length of the lag window is MA.
We chose for our FT analysis the Parzen window Wp

[10], [11] because: 1) it yields a spectral estimate with
small variance, 2) it is strictly positive, and 3) it decays
smoothly with frequency. In the frequency domain, the
form of Wp ( f ) is

Wp(f) MA(sin(;rfMA/2 )4. (8)

The bandwidth, variance ratio, and degrees of freedom
associated with Wp ( f ) are discussed in [10]. In particu-
lar, the (relatively large) bandwidth is 1.86/MA. For all
of the data sets we spectrally analyzed (see Sections IV-
VIII), various choices of M were investigated. For the
time series of approximately 2-h length, a choice of MA
= (record length)/4 gave good stability and yet picked
out spectral peaks.

In contrast to FT methods, which employ smoothing by
means of a suitable spectral window, autoregressive
methods estimate the parameters of an AR model from the
data, and then substitute those values in the theoretical
expression for the spectral density function [11]. To use
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Fig. 2. Spectral density of brightness temperatures obtained with the radiometer's antennas viewing a blackbody target. Spectral densities of all figures
are normalized such that their integrals are equal to one half of the total variance. AR, the order of autogressive spectrum, is 8; FT, the maximum lag
of Fourier spectral method, is 16; record length is 12 h; NS is the sample size of 360.

this method, the order m of the AR model must be spec-

ified. The uncertainty in the choice of m corresponds
roughly to the choosing M for the FT method. Again, by
trial and error and by comparing results with the FT
method, we chose m = M/2.

IV. NOISE AND ACCURACY
In subsequent portions of this paper, we report on ob-

servations based on the temporal and spectral variation of
atmospheric thermal emission. To establish a baseline
value against which atmospheric variations could be com-

pared, Tb's were measured with the radiometer's antennas
pointing at a blackbody target that was located on the
ground outside the radiometer's equipment trailer. From
a 12-h segment of detrended data, we derived 1) spectra
of Tb's at each of the 6 channels, and 2) the 6 x 6 co-

variance matrix describing the fluctuation levels. As
shown in Fig. 2, the spectra have a broad maximum at
about 1 cycle/h and then decrease somewhat with fre-

quency. It is suspected that the peak at 1 cycle/h is con-

nected with small instrument changes that occur during
the hourly calibration cycle. However, computer simula-
tions indicated that the peak was not introduced by the
method for inserting missing data (see Section III-B). The
2-min rms noise levels are shown in Table I. In addition,
this table gives absolute accuracies, estimated from a se-

ries of 99 independent comparisons of measurements and
brightness temperatures calculated from RAOB's.
Two recent papers [8], [12] evaluated the accuracies of

ground- and satellite-based radiometric determinations of
h(P) and t(P1, P2). These comparisons, based on one

year of data with a total sample size N of 460, showed
that radiometric accuracies of heights and thicknesses
were achieving parity with those of conventional RAOB's.
As a convenient reference, we show in Table LI various
measures of h(P) accuracy that are relevant here. In in-

terpreting the numbers given in this table, we note that at

Denver, Colorado, the location at which the measure-
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TABLE I
ACCURACY OF THE SIX-CHANNEL RADIOMETER

Frequency Estimated 2-min rms

(GHz) absolute fluctuations

error (K) (K)

20.60 1.05 0.047

31.65 0.75 0.046

52.85 0.86 0.200

53.85 0.63 0.187

55.45 0.90 0.077

58.80 0.64 0.094

TABLE II
COMPARISON OF rms ACCURACIES OF GEOPOTENTIAL HEIGHT (im)

DETERMINATION
(The equivalent accuracies of layer-averaged virtual temperature (in degrees
Celsius) are given in parentheses, using an average surface pressure of 835
mbar.)

Pressure RAOB RAOB- Theoretical Noise equivalent
level precision* Profiler accuracy geopotential
(mb) std. deviation

700 5.1(0.99) 3.8(0.74) 3.5(0.68) 0.7(0.14)

500 12.7(0.85) 13.1(0.87) 12.8(0.85) 2.5(0.17)

300 20.3(0.68) 33.0(1.10) 33.8(1.13) 9.1(0.30)

*From Hoehne 1131.

ments were taken, Ps ranges from about 850 to 820 mbar.
Hoehne's [13] evaluation of RAOB accuracy of h (P) used
observations taken at sea level, and we adjusted his values
to Denver pressures. In Table II, the theoretical rms ac-
curacies are given. These quantities were calculated by
regression analysis using 1) the 1972-1977 data base of
Denver NWS RAOB's, 2) the brightness temperatures
calculated from these RAOB's, and 3) the rns brightness
temperature's errors given in Table I. In addition, rms
absolute accuracies of 0.5'C, 0.05, and 0.1 mbar were
assumed in surface instrument measurements of Ts,
(RH)S, and Ps. We note the close agreement between the
theoretical and achieved (RAOB-Profiler) rms accuracies.
As a measure of the influence of radiometric and sur-

face meterological noise on retrieved heights, we show in
Table lT the noise equivalent geopotential height varia-
tions. These quantities were calculated by applying (1) to
data vectors formed from the 12-h samples of target and
surface instrument noise. The surface meteorological
noise (precision, not absolute accuracy) was simulated by
Gaussian noise of rms values of 0.1°C, 0.01, and 0.01
mbar for T3, (RH),, and P3.

TABLE III
ACCURACY OF RADIOMETRIC DETERMINATION OF MOISTURE

VAPOR

rms accuracy (theoretical) 0.7 mm

rms difference from RAOB's 1.7 mm

2-min rms sensitivity 7.3 x 10 2 mm

LIQUID

rms accuracy (theoretical) 3.3 x 10(2 mm

2-min rms sensitivity 5.2 x 10-3 mm

The derived accuracies and spectra of h (P) are sensi-
tive to the assumed level of surface pressure noise.
Roughly speaking, a 1-mbar change in P, is equivalent to
a 10-m change in h(P). Thus, even a 0.1-mbar uncer-
tainty leads to height uncertainty that is an appreciable
fraction of the radiometer's height measurement capabil-
ity. In the same manner, the absolute accuracy and pre-
cision of the radiosonde baroswitch limit the accuracy of
the radiosonde-derived pressure heights. In Section V, we
present a surface pressure spectrum taken during calm
pressure conditions that is consistent with our 0.01-mbar
assumption.

In addition to the quantities primarily related to tem-
perature, the radiometric Profiler also provides 2-min av-
erages of precipitable water vapor and cloud liquid (the
radiometer is not sensitive to cloud ice). For complete-
ness, we summarize in Table III the accuracies and sen-
sitivities of these quantities. As was noted by Hogg et al.,
[5] RAOB and Profiler measurements of precipitable va-
por are of comparable accuracy. As in the case of geo-
potential height determinations, the sensitivity to mois-
ture changes is roughly an order of magnitude better than
the absolute accuracy.

V. CALM CASE
In Sections VI and VII, an analysis is given of obser-

vations taken during time-varying meteorological events.
As a contrast, and as evidence that our derived noise lev-
els are reasonable, we present here observations taken
during calm conditions. On July 11, 1984, a surface array
of microbarographs had indicated an unusually low level
of pressure fluctuations. To analyze the performance of
the radiometer during such conditions, we examined a
30-h segment of data around this time period. A 2-h pe-
riod was found in which radiometric fluctuations were also
low. We show in Fig. 3 the spectra of the Tb values for
each channel, surface pressure Ps, surface temperature T,
and dew point temperature Td. We also show on the Tb
plots the noise spectra that were estimated from the target
experiment. Fluctuations in the Tb's for the four higher
frequency channels are approaching the noise levels, al-
though slight warming trends were present in the 55.45-
and 58.80-GHz channels. During this time, Ts increased
about 6°C. However, the fluctuations in the 20.6- and the
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31.65-GHz channels were roughly a factor of 5 higher
than the noise. We denote by a, the standard deviation of
the quantity x. Fluctuations in Ps (up = 3.1 x 10-2 mbar)
are from 10 to 100 times less than those of the events that
we analyze in Sections VI and VII. To demonstrate the
impressive precision of microwave radiometers, we show
that during the 128 min of the calm case, PS fluctuations
are almost entirely due to precipitable water vapor V. If
we derive V from the two moisture channels, a value of
orv = 2.9 x 10-2 cm is obtained. This fluctuation of the
total mass of water vapor contributes to the Ps fluctuations
an amount 2.8 x 10-2 mbar, or about 90 percent of the
total.
From the time series of the measured data vector, a cor-

responding series of various meteorological quantities was
derived. Spectra of these quantities are shown in Fig. 4.
We observed that, with the exception of V, the spectra are
close to the estimated noise levels.

VI. PASSAGE OF A COLD FRONT
The ground-based radiometer has the ability to monitor

important features of rapidly changing meteorological
events [14]. We illustrate this capability by presenting ob-
servations taken for a 30-h period on December 19-21,
1983, during which a cold front passed over Denver. In
Fig. 5 time series are shown of several directly measured
and inferred meteorological variables. We focus on the
first 18 h of the record. Starting at 1800 GMT on Decem-
ber 19, Ps decreased steadily to a minimum at 1 100 GMT
on December 20. During this period, the total pressure
drop was 11 mbar. Although substantial decreases were
occurring in Ts, the layer thicknesses showed a slight in-
crease (warming). From (2), h (P) depends on P5, which
was decreasing, and on the mean Tv(P), which was
roughly a constant. Consequently, the decrease in height
was basically due to the trend of Ps. After 1200 GMT,
the thicknesses decreased substantially, reflecting the ar-
rival of the cold air mass. Precipitable water vapor and
cloud liquid are also shown, but no dramatic behavior is
evident in these variables. Because of the low tempera-
tures, the observed liquid is probably supercooled. We
note that there is no "contamination" of the height and
thickness retrievals by either the vapor or the liquid.
RAOB determinations of various quantities are also shown
in this figure.
Another way of depicting the passage of the cold front

is through height contours of potential temperature 0. This
quantity is defined by

0 = T(1000/P)0286 (9)

where T is the absolute temperature in degrees Kelvin and
P is the pressure in millibars. The potential temperature
is a conservative quantity during an adiabatic process. The
time series of these height contours shown in Fig. 6. again
shows the sudden cooling in the atmosphere above 700
mbar that starts around 1100 GMT. Although there is
some cooling of the layers below 700 mbar, as evidenced

by the increase in height of 0, the larger changes are
clearly occurring above this level. Also connected by
straight lines in Fig. 6 are the values of 0 determined from
RAOB's. Although 0 is a point quantity, and hence is not
inferred as well as a spatially integrated quantity, the
agreement with the RAOB determination is generally
good.
The three RAOB's from which heights and thicknesses

were derived are shown in Fig. 7. We note the sharp fron-
tal temperature inversion whose depth increases tempo-
rally as the front undercuts the warmer air aloft. The tem-
perature aloft on December 20 at 2300 GMT is roughly
10°C colder than the previous two soundings. The radio-
metrically derived thicknesses shown in Fig. 5 agree
quantitatively with all three RAOB's. Also, note the high
winds in the 500-300 mbar region and the wind direc-
tional shift in the vicinity of the elevated temperature in-
version at around 700 mbar.

Fig. 5 also shows that the variances of the thicknesses
were substantially greater in the period starting approxi-
mately 12 h before the time of the pressure minimum.
This period was also one of intense wave activity, as was
observed independently by a surface-based microbaro-
graph array. We therefore examined various 1 and 2-h
segments of the 12-h period for the presence of waves.
Typical 128-min spectra of t(PI, P2 ) and Ps are shown
in Fig. 8. We note that Ps has two peaks, one at 8.0
cycles/h and another at 12.5 cycles/h. Each of the ra-
diometrically derived thickness spectra has a spectral peak
in the vicinity of 7.5 cycles /h, and t(600, 500 mbar) also
has a peak at 12.0 cycles/h. The bandwidth of the FT
spectral estimation (64 2-min samples) is 3.48 cycles/h.
Thus, the spectral peaks that are present in Ps (at the ra-
diometer's location) are also present in the thickness.
Pressure data from a microbarograph array, located about
30 km NW of the radiometers, yielded spectral peaks at
7.0 and 15.0 cycles/h.

Surface pressure P5 is one of the components of the data
vector used to estimate h(P) and t (PI, P2 ). Thus, spec-
tral peaks in P5 could induce corresponding peaks of the
derived radiometric spectra. However, the magnitude of
the pressure retrieval coefficient for thickness between
pressure levels is sufficiently small that negligible con-
tamination will arise from this component. For example,
the pressure coefficient for t(600, 500 mbar) is 0.7
m/mbar. From the two-sided spectra of Fig. 8, the pres-
sure variance in the 6.5 to 9.5 cycles/h region is 5 x
10-4 mbar2. If we multiply the square of the coefficient
by the pressure variance to yield thickness variance, we
get 2.5 x 10-4 m2, some 3-4 orders of magnitude less
than the value of the spectral peak in the derived thickness
( _ 1 M2 ) shown in Fig. 8. We also performed a numer-
ical experiment to evaluate this effect. We added a pure
sine wave of 0. 1-mbar amplitude and 10-min period to a
2-h segment of real data and then derived thickness spec-
tra. There was no suggestion of the sinusoid in the derived
spectra. Thus, we feel confident that the correspondence
of the spectral peaks is indicative of physical processes
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that there is a possibility of contamination of the bright- will give rise to changes in Tb by
ness temperature fluctuation data from pressure fluctua- 0
tions. This occurs physically because of pressure Tb= iWp(h)6P(h) dh (10)
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Because of the variation of surface pressure during this event, the pres-

sure ordinate is only approximate. Circled quantities refer to RAOB mea-

surements.

where the pressure weighted functions Wp(h) can be cal-

culated from a perturbation analysis of the radiative trans-

fer equation [15]. The pressure weighting functions for

the six-channel profiler are shown in Fig. 9. It is evident

from this figure that the 52.85 GHz (C3) and the 53.85

GHz (C4) channels are the principal candidates for influ-

ence by pressure fluctuations. We will estimate the mag-
nitude of this effect for the two channels. Fig. 9 shows
that the (C3, C4) weighting functions are approximately
exponentially distributed with scale heights Hw of 9 and
10 km, respectively. We assume, then, that

Wp(h) = Wp(0) e-/Hw (11)

and, also, that

SP(h) = 6P(0) e-h/Hp (12)

where we choose a nominal value for the pressure scale
height Hp to be 7.5 km. Inserting (11) and (12) into (10)
and integrating leads to

6 Tb z Wp(0) Hc bP(0) (13)

where

1 1 1

Hc HwJy,Hp
From the assumed scale heights and the weighting func-
tions at the surface, we estimate

8Tb = 0.216P(0) for C3

608

7410O

7350
E
E
2 7290

I
-0 7230E

§71701

1380

1340
E

C 1300

I

D 1260
E

8
1'- 1220

1180
840

D 836

D 832

0
oD 828

Cv, 824

820

a6 12

E

-

E;4

-

qV
Q2

g

1430. .267.7

1230. 230.33
1265, 290.2

7110' . . .-

1065. 235.9
1125 287.6

925' 236ZJ.5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

'E
.2
:2
CY
-i

W,A libodoftom

-b

-9-

-13

-17-

-21

-25- 11



CIOTTI et al.: RADIOMETRIC OBSERVATIONS OF GEOPOTENTIAL HEIGHT AND THICKNESS

-80 -80 -40 -ZO 0

T(°C), Td(°C)
20

nn I .. . I .

-80 -60 -40 -20 0

T(°C), Td('C)

83 12 20
|2300 GMT|

t 2 3 4 5 6 7 8 9

Absolute humidity
(glm3)

83 12 20
1100 GMT

I 2 3 4 5 6 7 8

Absolute humidity
(g/m3)

9

S

10 20 30 40 50

Wind speed
(mis)

10 20 30 40 50

Wind speed
(mis)

I300 D

E

a')CD)
7500 0)

t 831 Q_

T T -T- ------T
60 120 180 240 300

Wind direction
(degrees)

; 300 D

E
0)

500 L.

C'a)
C')

700 (?

--821 CL

1T -- - ,-
60 120 180 240 300

Wind direction
(degrees)

83 12 19
2300 GMT|

nn J i I I
-80 -60 -40 -20 0

T(°C), Td(0C)
1 2 3 4 5 6 7 8 9

Absolute humidity
(gIm3)

10 20 30 40

Wind speed
(mis)

50

300

E

, 500 a)

CD

E700 0)

830 0L

-§ 1--r-- T 1

60 120 180 240 300

Wind direction
(degrees)
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and

5Tb = 0. 156P(0) for C4.

Now, for pressure changes of - 1 mbar, the resultant
Tb's would be of the order of the noise levels shown in

Table I, and a contamination would result. However, even

for a relatively large perturbation amplitude of 0.1 mbar,
the resulting Tb changes are about a factor of 10 below
the noise. For example, the pressure perturbation ampli-
tudes (relative to the normal background pressure decay
with frequency) for the spectral peak at - 8 cycles/h in
Fig. 8 and at -6 cycles/h in Fig. 12 both have ampli-
tudes of the order of 0.02 mbar. Thus, for the cases pre-

sented in Sections VI and VII, and for the relatively high
noise levels of the 52.85- and 53.85-GHz channels, pres-

sure-induced fluctuations in transmission did not contrib-
ute significantly to the spectra.

For a more sensitive radiometer, noise levels could be
reduced by an order of magnitude. For these instruments,
transmission fluctuations due to large pressure fluctua-
tions could conceivably contribute to spectra. However,
even in this case, nearly uncontaminated spectra of geo-

potential thicknesses could be constructed by using a

modified brightness temperature variable, e.g.,

Tb Tb Wp (0) Hw6P(0)

or

Tb Tb (TbPs) (ps2l (Ps (Ps))

VII. OBSERVATIONS DURING A GRAVITY WAVE EVENT

During February 2-4, 1984, observations from several
different sensors indicated the presence of gravity wave

activity occurring in the middle troposphere. These sen-

sors included a surface array of microbarographs, time
sequences of satellite cloud photographs, and specially in-
strumented research aircraft. In addition, during the 30-h
period that we studied, seven RAOB's, including four
special launches, were available; the 1100 and 2300 GMT
soundings are shown in Fig. 10. Fig. 11 shows a 30-h
time series of derived and directly measured quantities
during this event. In contrast to the cold front case (Sec-
tion VI), no large trends were present in Ps or the derived
quantities. Note, however, the large short-term variances
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occurring in the upper altitude heights and thicknesses
during the 12-h period from 0000 to 1200 GMT on Feb-

ruary 3. We analyzed a 128-min segment of data during
the peak of these variations. Spectra of V, t(800 mbar,
700 mbar), t(500 mbar, 300 mbar), and P, are shown in

Fig. 12. Several clear peaks show up in the spectra; again,

a FT spectral bandwidth of 3.48 cycles/h is associated
with these peaks. The comparison of the radiometrically
derived peaks with those observed independently is given
in Table IV. As is evident from this table, the agreement
between the radiometer and other information is excel-

lent.
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TABLE IV
COMPARISON OF SPECTRAL PEAKS DERIVED BY RADIOMETER WITH THOSE
DERIVED BY OTHER SOURCES OF INFORMATION FOR THE GRAVITY WAVE

EVENT OF FEBRUARY 3, 1984, 0834-1040 GMT

Radiometer Surface pressure array

(cycles/h) or

Satellite cloud motion

(cycles/h)

13.1 ± 1.74 12.5

10.0 ± 1.74 9.4

6.5 ± 1.74 6.6

VIII. DISCUSSION
The three cases presented illustrate how rapid varia-

tions in meteorological variables can be studied using
ground-based radiometers. These radiometers provide
temporal continuity not hitherto available. The perfor-
mance of the radiometer, both in observing a blackbody

target and during an unusually calm pressure event, shows
that its sensitivity to changes in geopotential height and
thickness and to integrated water vapor is very high. Con-
sequently, the combination of high temporal resolution
and high sensitivity allows unique monitoring of rapidly
changing events, such as frontal passages and gravity
wave events.
Ground truth for the radiometrically derived quantities

was available from NWS RAOB's. RAOB's are usually
launched 1 h before 0000 and 1200 GMT, and, at the
surface pressures commonly encountered in Denver, Col-
orado, take approximately 30 min to reach the 300-mbar
level. During high winds, balloons can drift several,
kilometers, making comparisons with zenith measure-
ments difficult. Nevertheless, the agreement of the radi-
ometrically derived quantities with the RAOB's is gen-
erally within the predicted accuracy of the radiometer.

In the case of the cold front, the RAOB-measured pre-
cipitable vapor V was lower than the radiometrically in-
ferred V by about 1 mm. This discrepancy can arise prin-
cipally from three causes: 1) radiometric absolute
calibration uncertainties of about 0.5 K at 20.6 and 31.65
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GHz lead to uncertainties of about 1 mm in V; 2) the cal-
culated water vapor absorption coefficients are too small
by about 5 percent; and 3) the RAOB's measure too low
a humidity under such cold conditions. None of these three
causes can be summarily eliminated, since they are each
approaching their current uncertainties. However, the
"errors" are not important for geopotential height, since,
for example, the 1 mm "error" in V, if caused by Tb cal-
ibration errors at 20.6 and 31.65 GHz, leads to an abso-
lute h (P) error of 0.3 m at 500 mbar; i.e., about 2 percent
of the total difference.

Currently, meteorological information is derived from
radiometric data by mathematical retrieval algorithms that
ignore spectral content of these data. Perhaps, measure-
ments of the location of spectral peaks, their amplitudes,
and their relative phases between the radiometric channels
could contribute significant information to the retrieval
process. For example, dynamical models exist that relate
spectral peaks to the mean properties of wind and tem-
perature [3]. The coupling of models and measurements
can only enhance the already useful radiometrically de-
rived information.
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