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Plot-scale brightness temperature (TB) measurements at 6.9, 19, 37, and 89 GHz were acquired in forest, open,
and lake environments near Churchill, Manitoba, Canadawithmobile sled-basedmicrowave radiometers during
the 2009–2010 winter season. Detailed physical snow measurements within the radiometer footprints were
made to relate the microwave signatures to the seasonal evolution of the snowpack, and provide inputs for
model simulations with the Helsinki University of Technology (HUT) snow emission model. Large differences
in depth, density, and grain size were observed between the three land cover types. Plot-scale simulations
with the HUT model showed a wide range in simulation accuracy between sites and frequencies. In general,
model performance degradedwhen the effective grain size exceeded 2 mmand/or there was an ice lens present
in the pack. HUTmodel performance improvedwhen simulationswere run regionally at the satellite scale (using
three proportional land cover tiles: open, forest, and lake) and compared to Advanced Microwave Scanning
Radiometer (AMSR-E) measurements. Root mean square error (RMSE) values ranged from approximately 4 to
16 K depending on the frequency, polarization, and land cover composition of the grid cell. Snowwater equivalent
(SWE) retrievals produced using forward TB simulations with the HUT model in combination with AMSR-E
measurements produced RMSE values below 25mm for the intensive study area. Retrieval errors exceeded
50 mmwhen the scheme was applied regionally.

Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.
1. Introduction

Reliable information on snow cover is needed for monitoring
purposes, understanding the global climate system, and for the
evaluation of the representation of snow cover and snow cover
feedbacks in climate models. While considerable progress has recent-
ly beenmade in determining trends and variability (including quantify-
ing the statistical uncertainty) in snow extent datasets (Brown &
Robinson, 2011; Brown et al., 2010) this level of understanding for
snow water equivalent (SWE) remains elusive. SWE can be estimated
from ground-based snow depth observations (Jonas et al., 2009;
Sturm et al., 2010) although these methods are negatively impacted
by the sparse spatial coverage of observations particularly in northern
regions. Information on SWE can also be obtained by combining
observations and models in an analytical framework. For example, the
Canadian Meteorological Centre (CMC) produces a daily gridded global
snow depth analysis by combining all available snow observationswith
a simple snow model (Brasnett, 1999), while the National Weather
+1 416-739-5700.
.
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Service produces daily snow information for the United States and parts
of southern Canada through a snow analysis system that also combines
observations with a snow model (Carroll et al., 2006; Rutter et al.,
2008). These analysis systems tend to perform better in observation rich
regions, and the point-wise nature of in situmeasurements systematically
impacts these products. For instance, the CMC analysis has a tendency to-
wards early loss of snow cover in the spring relative to other datasets be-
cause of the shallow bias of snow depths reported from observing sites
that tend to be located in clearings (Brown et al., 2010).

Satellite passive microwave data are commonly used for the re-
trieval of SWE (for example, Kelly, 2009) because of a wide swath,
all-weather imaging capabilities, multi-frequency response to the
presence of snow on land, and a continuous time series that extends
back to 1978. The high uncertainty in SWE retrievals at the hemi-
spheric scale, both in terms of systematic and random error (for ex-
ample, see Armstrong & Brodzik, 2002; Derksen, 2008; Kelly et al.,
2003; Koenig & Forster, 2004), continue to limit the use of these datasets.
A different approach is the use of theoretical or semi-empirical radiative
transfer models for snow cover, coupled with atmospheric and vegeta-
tion models, to simulate microwave emission and inversely calculate
snow characteristics from satellite measurements (e.g. Pulliainen et al.,
1999; Wiesmann & Matzler, 1999). The more complicated models are
ts reserved.
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Fig. 1. 3×3 EASE-Grid cell study area. Radiometer and snowmeasurement site are shown
within grid cell 2.

237C. Derksen et al. / Remote Sensing of Environment 117 (2012) 236–248
sensitive to poorly constrained parameters, computationally expensive,
and require precise ancillary data in order to give accurate predictions
(i.e. Durand et al., 2008). These factors restrict their operational applica-
bility on a global scale.

A new Northern Hemisphere snow water equivalent (SWE) dataset
was recently produced by the European Space Agency GlobSnow initia-
tive (see www.globsnow.info), through an assimilation of satellite pas-
sive microwave retrievals and snow depth observations from synoptic
weather stations, following the method first described by Pulliainen
(2006). When assessed with 21 years of snow survey data (over
178000 samples) from the former Soviet Union, this technique pro-
duced SWE retrievals with RMSE values near 33 mm, and a mean bias
of approximately 3 mm for cases with ground measured SWE below
150 mm (Takala et al., 2011). This represents reduced uncertainty com-
pared to standalone hemispheric passive microwave brightness tem-
perature (TB) difference algorithms for which the RMSE can approach
100% of observations (for example, Foster et al., 1997; Kelly et al., 2003).

The GlobSnow retrievals are produced from a SWE inversion algo-
rithm that utilizes forward TB simulations with the Helsinki University
of Technology (HUT) snow emission model (Pulliainen & Hallikainen,
2001; Pulliainen et al., 1999). In order to improve this retrieval scheme,
we require a better understanding of the sources of uncertainty in the for-
ward TB simulations andhow this uncertainty impacts the SWE retrievals.
A field campaign conducted near Churchill, Manitoba, Canada during the
2009–2010winter provided the unique opportunity to assessmulti-scale
forward TB simulations and SWE retrievals over the course of a complete
winter season. In this study, we utilize this dataset to:

1. Assess the ability of the HUT model to simulate TB at 19 and 37 GHz
as compared to plot scale measurements made with ground based
microwave radiometers at a network of sites through a complete
winter season. Multiple grain size measurement approaches were
utilized in the field, providing the opportunity to better understand
how the treatment of grain size impacts model performance.

2. Compare TB simulations at the satellite scale to measurements
from the Advanced Microwave Scanning Radiometer (AMSR-E)
to gain an improved understanding of model performance at
coarse resolution.

3. Perform an assessment of a SWE retrieval scheme based on for-
ward TB simulations and AMSR-E data (a similar methodology to
that employed within the GlobSnow project) for an observation
rich region and time period.

2. Data and methods

In order to improve understanding of snowpack metamorphosis
over an entire winter, and how these physical changes influence ob-
served TB, sled-mounted microwave radiometers were deployed near
Churchill, Manitoba, Canada between November 2009 and April 2010.
During 2 week periods each month, intensive microwave radiometer
measurements were acquired at multiple sites in a mixed land
cover environment along the forest/tundra transition (Fig. 1).
Snowpack observations corresponding to each microwave measure-
ment included snow depth, density, stratigraphy, grain size, and
temperature. The mobile nature of the experimental approach allowed
radiometer measurements of distinct snowpack types as they evolved
through the winter, including deep taiga snow, snow in an open fen,
and snow over lake ice. These three sites represent the predominant
land cover categories (forest stands, open environments, lakes) found
in this region.

The snowpack in mid-November 2009 was shallow (b20 cm) and
composed of a single layer. The majority of accumulation occurred in
December and January, creating amulti-layered snow cover. Conditions
from late January into March were largely cold (−15 to −30 C) and
clear, with limited fresh snow accumulation, which drove a period of
marked snow metamorphism with dramatic kinetic grain growth. Brief
melt events driven by exceptionally warm temperatures inMarch (near-
ly 25 °C above normal) produced ice lenses and melt crusts with consid-
erable vertical and horizontal variability. End of season snow melt onset
occurred earlier than normal – by mid-April 2010 the snowpack was
saturated.
2.1. Radiometer measurements

Sled-mounted microwave radiometers (6.9, 19, 37 and 89 GHz;
dual-pol; Fig. 2)were deployed to improve understanding of the impact
of seasonal snowpack metamorphosis onmeasured TB. The sled system
was designed specifically for these instruments, and allowed straight-
forward access to all measurement sites. Radiometer specifications are
provided in Table 1.

An overview of the radiometer sampling periods through the cam-
paign is provided in Table 2 (note that Ku- and X-band scatterometer
measurements were also acquired during the campaign, but are not
utilized in this study). At each measurement site, the radiometers
were incrementally shifted slightly (~75 cm) between a series of
three fixed measurement points in order to determine the variability
in measured TB across overlapping footprints. Snowpits were excavat-
ed in the middle of the center footprint immediately after the radiom-
eter measurements were completed.

The radiometers were calibrated at regular intervals through each
intensive observing period for conversion of voltage output to TB. A
two-point calibration technique was used with an ambient tempera-
ture microwave absorber as the ‘warm’ reference, and liquid nitrogen
as the ‘cold’ reference following the technique described in Solheim
(1993). The errors in the measurement of the calibration target
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Fig. 2. The Environment Canada sled-based microwave radiometer system in measure-
ment configuration.

Table 1
Specifications of the Environment Canada radiometer system.

Frequency [GHz] 6.9 19 37 89
Manufacturer/Model Attex

Inc.
Radiometrics
AC1900

Radiometrics
AC3700

Radiometrics
AC8900

Bandwidth [MHz] 500 1000 2000 4000
Integration time [s] 1 1 1 1
Sensitivity [K] 0.2 0.04 0.03 0.08
Accuracy [K] b2 b2 b1 b1
Beam width [°] 9 6 6 6
Incidence angle [°] 53 53 53 53
Footprint size (m; ~1.5 m
instrument height)

1×1 0.6×0.6 0.6×0.6 0.6×0.6
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temperatures were estimated to be less than 2 K, due to the influence
of the liquid nitrogen containment target at the cold point, anduncertain-
ty in the physical temperaturemeasurement of themicrowave absorbing
material at the warm point.
Table 2
Overview of campaign schedule and activities. For a description of manual versus enhanced

Campaign period Date Radiometer Sca

IOP1a 11–26 November 2009 Roving Rov
EP1b 27 November–18 December 2009 Roving Fixe
IOP2 7–15 January 2010 Roving Rov
EP2 16 January–8 February 2010 No Fixe
IOP3 9–18 February 2010 Roving Rov
EP3 19 February–16 March 2010 No Fixe
IOP4 17–25 March 2010 Roving Rov
EP4 26 March–8 April 2010 No Fixe
IOP5 9–17 April 2010 Roving Rov

a Intensive observing period.
b Extended observing period.
For each calibration period and target, a stable three minute mea-
surement period was selected. For the 19, 37, and 89 GHz radiometers,
such measurements from two consecutive two-point calibrations (typ-
ically separated by 2 to 5 days)were then input to a non-linear, iterative
procedure (developed by Radiometrics Inc.) which produced the final
coefficients for converting the raw measured target, load, and noise
diode voltages to TB. For the 6.9 GHz radiometer, each set of warm
and cold point measurements were used to determine the voltage ver-
sus TB relationship for each calibration. Coefficients derived from this
linear relationship were utilized to convert measured voltage to TB.

Calibrations from before and after each measurement were there-
fore utilized in the processing of the final TB values for a given mea-
surement. From this procedure, the stability of the radiometers
between each calibration period was identified: TB uncertainty was
estimated at each calibration point from the differences between
the calculated and theoretical liquid nitrogen measurement (~80 K),
and the calculated and measured warm point physical temperature,
or the b2° uncertainty in the target temperature, whichever was
higher. Table 3 provides the root mean square error (RMSE) for
each frequency and polarization at the cold and warm points. RMSE
for the 6.9 V measurements was not calculated due to the failure of
the vertical channel receiver of this instrument in November. 6.9 V
measurements continued to bemade for the remainder of the campaign
by physically rotating the H-pol antenna.
2.2. Snow measurements

Manual snowpit observations were made at each radiometer mea-
surement site. These observations provided baseline information on
the evolving vertical structure of the snowpack through the season.
Standard field methods were used to measure snow stratigraphy,
density, and SWE (Colbeck et al., 1992). Stratigraphic observations in-
cluding layer thickness were determined by visual and physical ex-
amination of the snowpit face. The minimum, mean, and maximum
snow grain axes dimensions in each layer were estimated from man-
ual observations using a stereo-microscope and comparator card.
Density profiles were determined with 100 cm3 cutters. During the
November and December measurement periods (see Table 2) manual
snowpits following this protocol were performed within the radiom-
eter footprints at the disturbed sites.

From January onwards, an enhanced snowpit sampling protocol
was employed within the radiometer footprints. Within this en-
hanced protocol, approximately 20 snow grains were extracted at
5 cm vertical increments and photographed using a directional lighting
system whereby the grains were deposited onto a snow pit card and a
successive sequence of photoswere taken using a single LED illumination
source from the four cardinal directions. Digitization of the resulting
grain shadows was used to quantify grain dimension (short/long axis,
projected surface, and eccentricity) and other characteristics including
snowpits, see Section 2.2.

tterometer Manual snowpits Enhanced snowpits Snow surveys

ing Yes No Yes
d Yes No Yes
ing Yes Yes Yes
d Yes No Yes
ing Yes Yes Yes
d Yes No Yes
ing Yes Yes Yes
d Yes No Yes
ing Yes Yes Yes

image of Fig.�2


Table 3
RMSE for measured TB based on cold (liquid nitrogen) and warm (microwave absorb-
ing material) point calibration measurements, and estimated accuracy.

6.9H 19 V 19H 37 V 37H 89 V 89H

Calibrations (n) 15 19 19 19 19 18 18
Cold point RMSE (K) 5.0 3.8 3.8 3.6 3.6 4.7 4.7
Warm pt. calibration RMSE (K)/
Estimated accuracy (K)

1.2
b2.0

1.3
b2.0

1.2
b2.0

1.1
b2.0

1.2
b2.0

1.7
b2.0

1.6
b2.0
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specific surface area (SSA). This method does not provide a full three-
dimensional visualization, and subjectivity is introduced by manually
selecting the grains to be photographed and analyzed. However, these
quantitative grainmeasurements provide an additional and uniquemea-
surement approach tomanual snow grain size observationsmadewith a
field microscope. The enhanced protocol also included direct measure-
ment of SSA using hemispheric laser-induced reflectance at 1300 nm fol-
lowing the technique described in Gallet et al. (2009). Due to the
mechanics of sample removal from the snowpit, the vertical resolution
of the laser measurements was approximately 5 cm.

In order to independently assess the seasonally evolving snow
cover within each land cover type, 100 meter snow survey lines
were established at each site, and surveyed weekly. For each survey,
201 depth measurements were made at 0.5 m spacing over a 100 m
line. Bulk SWE and density were calculated from pairs of snow cores
taken every 25 m along the sampling line. An ESC-30 snow corer
(cross sectional area of 30 cm2) was used for these measurements.
Table 4
Land cover composition for the grid cells shown in Fig. 1.

Grid 1 2 3 4 5 6 7 8 9

Open 0.16 0.62 0.62 0.14 0.46 0.77 0.32 0.21 0.43
Forest 0.62 0.27 0.27 0.76 0.26 0.08 0.17 0.06 0.10
Lake 0.22 0.11 0.11 0.10 0.28 0.15 0.51 0.73 0.48
2.3. Brightness temperature simulations

Simulations of TB were performed using the Helsinki University of
Technology (HUT) snow emission model (Pulliainen et al., 1999)
modified for multiple vertical layers as described in Lemmetyinen
et al. (2010). Because this study includes experiments with the SWE
retrieval scheme described in Pulliainen and Hallikainen (2001),
which employs the HUT model as part of the SWE retrieval, we limit-
ed our perspective to this model. A full description of HUT model de-
velopment and evaluation can be found in previous studies (Kontu &
Pulliainen, 2010; Lemmetyinen et al., 2010; Pulliainen et al., 1999;
Rees et al., 2010; Tedesco & Kim, 2006).

The first set of model simulations were performed for comparison
with ground-based radiometer measurements at the forested, open
fen, and lake sites, enabling a plot scale assessment of HUTmodel per-
formance through the winter. Inputs to the model were derived from
snowpit measurements: snow water equivalent, density, and grain
size. Air and snow temperatures were measured at three nearby
weather stations located in forest, open, and lakeshore environments.
Simulations were run at each site with the snowpack optimized to 1
or 2 layers, and the surface roughness varied between 1 and 5 mm.
After the November measurement period, the snowpack at each site
contained more than 2 layers, so vertical simplification was required.
Various characterizations of snow grain size were also utilized, as will
be described in more detail in Section 3. The maximum number of
snow layers was limited to 2 to not exceed the vertical snowpack
complexity that could still be realistically applied in a daily, hemi-
spheric, near real time implementation of the Pulliainen (2006)
SWE retrieval scheme. For the lake ice site, one model layer was
used for the ice, and the second for the overlying snow. The treatment
of lake ice within the HUT model is described by Lemmetyinen et al.
(2010), and further assessed by Gunn et al. (2011).

A second set of simulations were performed at the satellite scale
for comparison with Advanced Microwave Scanning Radiometer
(AMSR-E) measurements (Knowles et al., 2006). The proportional
land cover for three categories (forest, open, lake) was determined from
the National Topographic Data Base for Canada (see geogratis.cgdi.gc.ca)
for a 3 by 3 EASE-Grid (Equal Area Scalable Earth Grid; 25 km resolution;
see Armstrong & Brodzik, 1995) study area (Table 4). A single EASE-Grid
cell encompassed all the groundmeasurement sites (Fig. 1). A scene sim-
ulation versionof theHUTmodelwas utilized for thesemodel runs,which
allowed separate treatment of the forest, open, and lake snowpacks, but
computed an areal-weighted single top of atmosphere TB at each grid
cell for comparison with AMSR-E measurements. At the satellite scale,
the effects of vegetation and the atmosphere are applied in the HUT
model following Kruopis et al. (1999) and Pulliainen et al. (1999),
respectively.

A SWE retrieval experiment using passive microwave (AMSR-E)
measurements following the technique of Pulliainen et al. (1999)
and Pulliainen and Hallikainen (2001) was also conducted for the
study area shown in Fig. 1. This retrieval method is based on the min-
imization of the difference between satellite TB measurements and
simulations through a constrained least-squares algorithm in which
the values for first grain size and then SWE are optimized. A single
layer snowpack was used for the forward modeling components of
the retrieval in order to match the current operational implementa-
tion of this retrieval method. Inputs to the forward TB modeling com-
ponent of the retrieval scheme were determined from the physical
snow measurements made within the three land cover types through-
out the 2009–2010 winter season.

3. Results

3.1. Snow evolution

Snow cover at the forest, open fen, and lake sites evolved uniquely
through the winter season due to the different snow catchment and
metamorphic processes that were predominant at each site. Time se-
ries of snowpack properties are shown in Fig. 3; measurement dates
correspond to when radiometer measurements were also acquired
at each site. The deepest snow occurred at the forest site – the open
canopy coniferous forest is ideal for snow catchment with little redis-
tribution by blowing snow. The density remained low (b0.250 g/cm3)
through the season. The development of large depth hoar at the base
of the pack contributed to an increase in mean grain size through the
season, with clearly defined rounded and recent snow layers at the
top of the pack. The maximum snow depth at the fen site did not ex-
ceed approximately 30 cm – the height of the surface vegetation.
Snow depth does not exceed the vegetation height due to redistribu-
tion during blowing snow events, as described in Pomeroy and Li
(2000). This resulted in little change in snow depth during the coldest
portion of the season, producing large depth hoar grains that eventu-
ally composed nearly 90% of the snowpack. The accumulation pattern
at the lake site was solely the result of wind drifting. Snow depth
remained shallow but dense, and the grains remained small, with lit-
tle depth hoar.

3.2. Plot-scale simulations

Inputs to HUT snow emission model simulations were derived from
snowpit observations: snow water equivalent, density, and grain size.
Air and snow temperature were measured at three weather stations lo-
cated in forest, open, and lakeshore environments. A series of simulations
for the dates shown in Table 5 were run at each site with the snowpack



Fig. 3. Time series of snowpack properties at the forest, open fen, and lake sites. Mean grain size was determined frommanual observations of grain axes dimensions. Ice thickness is
considered from a datum of zero; negative numbers represent ice thickness from the surface.
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optimized to 1 or 2 layers. For the 1 layer simulations, the bulk snowpack
characteristics were derived through a verticallyweighted average of the
snow pit measurements. For the 2 layer simulations, vertically weighted
averages based on proportional layer thicknesseswere calculated for fac-
eted grains (including depth hoar) and layers composed of new/recent
and rounded grains. Emission from the ground/snow interface is deter-
mined with the semi-empirical model by Wegmüller and Mätzler
(1999). The model introduces variability to the Fresnel reflection
coefficients at V and H polarizations depending on the incidence
angle and the effective surface roughness. Forward model iterations
to determine the ideal surface roughness parameter were inconclu-
sive, likely due to uncertainties introduced by manually clearing
shallow snow from the footprint for the measurement of snow
free TB early in the campaign. The surface roughness was therefore
varied between 1 and 5 mm, creating a small range in simulated TB.
For the initial set of model simulations, grain size was set using either
the minimum or mean observations from the manual snowpits. For
Table 5
Radiometer measurement dates corresponding to plot scale TB simulations.

Month Forest Fen Lake

November 16 Nov. 2009 17 Nov. 2009 20 Nov. 2009
December 16 Dec. 2009 17 Dec. 2009 18 Dec. 2009
January 7 Jan. 2010 13 Jan. 2010 9 Jan. 2010
February 12 Feb. 2010 17 Feb. 2010 10 Feb. 2010
March 19 Mar. 2010 23 Mar. 2010 17 Mar. 2010
April 11 Apr. 2010 11 Apr. 2010 NA
each site and time period, this created 20 total simulations due to the
five rms values(1–5 mm), two grain characterizations (minimum and
mean), and two layer configurations (1 and 2 layers).

Simulations were compared to the ground-based radiometer
measurements; 19 and 37 GHz were the focus of this analysis as
these frequencies are utilized within the SWE retrieval scheme
assessed in Section 3.4. We avoided the use of a single measured TB
for evaluation of the simulations because of measurement variability
introduced by radiometer calibration uncertainty and the measure-
ment range from the multiple looks at overlapping footprints (as de-
scribed in Section 2.1, the radiometers were shifted slightly for a
sequence of measurements). This accounts for the range inmeasured
TB illustrated in Figs. 4, 6, 7, and 8; for the calculation of RMSE the
mean measured TB values were used.
3.2.1. Forest site
Two-layer simulation results for the forest site are shown in Fig. 4.

For 19 GHz horizontal polarization (H-pol), the influence of ice lenses
during March and April was the primary cause of an increased range
in TB measurements, and a higher uncertainty in simulated TB as illus-
trated by the vertical lines in Fig. 4. An ice lens was not included as
one of the snowpack layers, hence simulations overestimated TB, con-
sistent with the results of Rees et al. (2010). Because vertically polar-
ized (V-pol) measurements are much less sensitive to ice layers, V-pol
simulation uncertainty was much lower than at H-pol later in the sea-
son when ice lenses were present. At 37 GHz, the minimum grain size
observations produced simulations that were too high; mean grain

image of Fig.�3


Fig. 4. Comparison of observed and 2-layer simulated TB at the forest site using manual grain size observations.
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sizes produced simulations thatwere too low. Reasonable 37H-pol sim-
ulations using the mean grain size during March (when ice lenses were
present) was a case of getting the right answer for the wrong reason:
the larger grain size produced lower TB's which matched the reduction
in measured TB due to the influence of the ice lenses (as described in
Rees et al., 2010).

Ultimately, these results illustrate the unsatisfying subjective nature
of using grain size determined frommanual observations. However, ad-
ditional grain size datasets acquired from January onwards provided a
statistical characterization of grain size (with corresponding uncertainty)
for the latter portion of the field campaign. The grain size datasets pro-
duced from the snowpit observations (minimum and mean), directional
lighting photographs (long axis; short axis; SSA converted to grain size)
and the laser SSAmeasurements (SSA converted to grain size) combined
to produce 6 datasets fromwhich themean grain size and standard error
were calculated:

SE ¼ s
ffiffiffiffiffiffiffiffiffiffi

n−1
p

ð1Þ

which depends on the standard deviation s of the n grain size datasets.
The plot-scale simulations at the forest site were re-run, using the

mean multi-dataset grain size bounded by ±1 SE as illustrated in
Fig. 5. The results were very similar for both 1 layer and 2 layer
representations of the snowpack (Fig. 6), suggesting the accurate
field characterization of grain size for model input is more important
than the number of layers in the simulations. These simulations also
produced a more defensible solution due to the objective treatment of
grain size compared to relying solely on manual snowpit observations.
Statistically, the grain size standard error approach reduced the RMSE
for 1 layer simulations by 2.8 and 9.1 K at 19H and 19 V, and 4.6 and
12.6 K at 37H and 37 V respectively.

3.2.2. Open wetland fen site
The snowpack evolution at the fen site produced very challenging

conditions for plot scale model simulations. From January through
April there was very little fresh snow accumulation, so grain size in-
creased dramatically (because of a strong temperature gradient with-
in the snowpack) with little to no increase in SWE. Results show that
the model simulations were not able to account for the impact of this
exceptional mid to late season grain growth (see Fig. 3), and TB was
progressively overestimated through the season (Fig. 7). By March,
scattering by the snowpack is evident in the 19 GHz measurements,
with very low TB's at 37 GHz, particularly at H-pol, due to the combi-
nation of large grain size and ice lenses.

Improved treatment of grain size through the consideration of multi-
ple datasets, aswas successfully illustrated at the forest site, had little im-
pact at the fen site. Model sensitivity runs showed that the impact of
grain size reaches a threshold after which increased grain growth does
not drive further reductions in simulated TB (Fig. 8a) due to the scattering
parameterization in the HUT model described by Kontu and Pulliainen
(2010). This is problematic because the radiometer measurements at
the fen site between January through April suggest that the growth of
progressively larger grains does produce successively lower TB's at both
19 and 37 GHz in the absence of any change in SWE. In cases where
SWE increases coincident to grain growth (as occurred at the forest
site) the model was able to simulate the very low TB's measured in the
field (as was shown in Fig. 7) because increases in SWE continue to
drive simulated decreases in TB with no maximum SWE threshold

image of Fig.�4
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Fig. 5. Grain size (solid line) ±1 standard error (dashed line) for 1 and 2 layer repre-
sentations of the forest snowpack.
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(Fig. 8b). This is also somewhat problematic, however, because TB at
37 GHz should not continue to decrease with increased SWE above ap-
proximately 150 mmdue to the contribution of emission from the snow-
pack itself (Matzler, 1994; Matzler et al., 1982).

3.2.3. Lake site
Two-layer simulations were used at the lake site: one ice layer and

one overlying snow layer. The snowpack over lake ice was relatively
straightforward to characterize as a single layer because it remained
shallow, dense, and primarily fine grained through the season (see
Fig. 3). The observations and simulation results are shown in Fig. 9.
At 19 GHz, the simulations were too high, but captured the increase
in TB through the season as ice thickness increased. A sensitivity anal-
ysis showed the simulated TB is almost entirely influenced by ice
thickness, with ice growth resulting in higher TB (Fig. 10a and b), con-
sistent with observations. Model performance at 37 GHz was more
difficult to interpret because the measurements indicate sensitivity
to ice growth (which acts to increase TB) early in the season, and scat-
tering from the snowpack (which acts to decrease TB) later in the season.
This complex temporal signaturewas illustrated through correlations be-
tween TB and lake fraction at the satellite scale in Derksen et al. (2009).
The sensitivity analysis, however, showed that the simulated TB 37 GHz
is entirely influenced by the snowpack (Fig. 10c and d); variability in
ice thickness, even under thin ice conditions early in the season, had no
impact on 37 GHz simulations.

3.2.4. Summary
The root mean square error (RMSE) for the 2-layer plot scale

simulations using the mean observed grain size from the snowpit
measurements are shown in Table 6. While other grain size treatments
were utilized (as discussed previously) the mean snowpit measurement
represents a consistent benchmark observation that was consistently
acquired for all sites and all sampling periods. Simulationswere averaged
across the range of surface roughness values (1–5 mm), with the statis-
tics calculated for (1) all cases, and (2) only those cases when the snow-
pack was free of ice lenses. Much lower uncertainty was produced at H-
pol when no ice lenses were present at the forest and fen sites, an
expected result due to the lack of an ice layer in the model configuration
for all simulations.

3.3. Satellite-scale simulations

Land cover information from the National Topographic Data Base
for Canada and forest biomass estimated from forest inventory infor-
mation were compiled for a 3×3 study area of satellite passive micro-
wave EASE-Grid (Equal Area Scaleable Earth Grid) cells (see Fig. 1).
These sources of land cover information were then used for HUT
model simulations that considered the sub-grid fractions of fen, for-
est, and lake cover. Snow inputs to the model (summarized in
Table 7) were identical to those used in the plot scale simulations de-
scribed previously but weighted by the fractional land cover of each
grid cell (Table 4); mean manually observed grain size was used for
all simulations (note that all the snowmeasurements occurred within
grid cell 2, but were assumed to apply to the surrounding grid cells).
The HUT model was configured to weight the simulations by the frac-
tional land cover composition, allowing for direct comparisonwith sat-
ellite measurements. For this purpose, Advanced Microwave Scanning
Radiometer (AMSR-E) TB's were acquired from the National Snow and
Ice Data Center (NSDIC).

A scatterplot of simulated versus observed TB for grid cell 2 is
shown in Fig. 11a. Observed TB's were taken as a five-day moving av-
erage centered on the date of the snow measurements used as HUT
model inputs. Model performance (Table 8) was improved compared
to the plot scale results (Table 6), with RMSE ranging from 4 to 13 K
depending on frequency and polarization. Additional uncertainty
(RMSE ranging from 9 to 16 K)was introduced to the simulations
for the other grid cells (Fig. 11b; Table 8) by using consistent snow
characteristics for each land cover type as model inputs for all grid
cells. In reality, there was likely meso-scale variability in snow and
ice properties across the 3×3 grid cell (5625 km2) study area. As
shown in Table 8, agreement with the satellite observations across
the larger study area (determined by RMSE) was slightly better at
V-pol than H-pol; correlation results were significantly positive at
37 GHz, but weakly negative at 19 GHz. Although the RMSE was
low, the poor correlation results at 19 GHz are due to the clustering
of simulations evident in Fig. 11b. Grid cells 3 and 6 were not plotted
in Fig. 11, or included in the statistics in Table 8 because the AMSR-E
measurements clearly showed the influence of open water and sea
ice introduced through the re-sampling of swath data into the
EASE-Grid.

In summary, the RMSE values at the satellite scale were lower
than at the plot scale. This is a positive result for operational imple-
mentation of the HUT model, and suggests that the impact of local
scale parameters (such as grain size, density, depth hoar fraction,
ice lenses) are clearly evident at the plot-scale and hence illustrate
the model shortcomings. Statistical uncertainty was reduced when
multiple snowpack types, land cover influences, and vegetation
were integrated at the satellite scale, making model uncertainties
less evident.

3.4. Satellite-scale SWE retrievals

A SWE retrieval experiment using passive microwave (AMSR-E)
measurements was conducted for the Churchill area based on the
technique of Pulliainen and Hallikainen (2001). Fig. 1 shows the
25 km resolution AMSR-E grid cells used for the retrievals; Table 4
summarizes the land cover fractions within each grid cell. The current
implementation of the SWE retrieval technique uses a satellite scene

image of Fig.�5


Fig. 6. Comparison of observed and simulated TB at the forest site using the mean multi-dataset grain size bounded by ±1 standard error.
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simulator developed at the Finnish Meteorological Institute (FMI)
which allows for sub-grid cell segmentation by land cover. As with
the satellite scale TB simulations, three tiles (forest, open, lake) corre-
sponding to the dominant cover types in the region were utilized. The
same snow and vegetation data used as inputs to the satellite scale TB
simulations were used as inputs to the SWE retrieval scheme (see
Table 7 for a summary of the retrieval model inputs). A single layer
snowpack was used for the forward modeling components of the
simulations.

A summary of the retrieval simulation results assessed against in-
dependent snow survey measurements is provided in Table 9. The
‘ground truth’ SWE was calculated by taking the landscape weighted
average (forest; open; lake) from the weekly 100 m snow survey
lines described in Section 2.1. Retrievals for grid cells 3 and 6 were
again removed because of the influence of open water/sea ice on the
AMSR-E measurements. It is evident that as lake ice fraction decreases,
the accuracy of the retrievals improves. The results for grid cell 2 repre-
sent the best case scenario because the snow measurements used as
model inputs were all made within this grid cell, and it contains low
fractions of forest and lake cover, respectively. The assumption that
these snow parameters are consistent across the study area introduces
uncertainty into the snowpack characteristics used asmodel inputs, and
for retrieval validation. Regional snow surveys conducted over 4 winter
seasons and reported in Derksen (2008), however, suggest that changes
in snow distribution and properties across the study domain are likely
to be low.

The results in Table 9 are encouraging with respect to passive mi-
crowave SWE retrievals, however, this represents an ideal scenario in
which snow cover characteristics were thoroughly measured through
the complete winter season and available for input to the forward
modeling component of the retrieval. In order to test retrieval perfor-
mance under less idealized circumstances, the retrieval simulations
were re-run with only a single land use tile. This better replicates an
operational scenario where information from only a single snow survey
or weather station would be available. Because these observations are
often located in open areas (i.e. adjacent to airports) only the snow
measurements from the open site were used as model inputs. Table 10
provides a summary of these retrievals; the accuracy is not influenced
appreciably (and actually improved in some cases) compared to the
simulations using the full set of snow observations. This suggests that
snow information for a single land cover class can still result in useful
retrievals.

4. Discussion and conclusions

The first objective of this study was to assess the ability of the HUT
snow emission model to simulate TB as compared to plot scale
measurements made with ground based microwave radiometers at
a network of sites. This fine scale approach is ideal for identifying
the source of uncertainty in model simulations because the small
size of the measurement footprint (~1 m by 1 m) can be precisely
characterized by in-situ measurements. The simulation results
showed that when grain size was relatively small (b2 mm) and no
ice lenses were present, uncertainty was below 10 K. This represents
strong model performance compared to other studies (see Kontu &
Pulliainen, 2010; Lemmetyinen et al., 2010; Rees et al., 2010; Tedesco
& Kim, 2006). When ice lenses were present, however, model perfor-
mance reduced appreciably at H-pol. The proper treatment of ice
lenses requires a layer in the snow emission model dedicated to an
ice lens when appropriate. This creates an implementation issue



Fig. 7. Comparison of observed and 2-layer simulated TB at the fen site using manual grain size observations.
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because only a single snow layer is currently employed for forward TB
simulations at hemispheric/global scales (for example, in the GlobSnow
SWE product) due to difficulties in segmenting the snowpack into mul-
tiple layers from operationally available snow observations. It would be
feasible, however, to test for the presence of ice lenses using satellite pas-
sive microwave polarization ratio thresholds (as illustrated by Derksen
et al., 2009; Grenfell & Putkonen, 2008) and adding an ice lens layer
should one be detected.

The second objective of the study was to compare simulations at
the satellite scale to measurements from the Advanced Microwave
Scanning Radiometer (AMSR-E). The predominant issues at the plot
scale (large grain size; ice lenses) were less evident at the satellite
scale – uncertainty was reduced when the three predominant land
cover types were integrated into a single simulation.

The final objective was to assess a SWE retrieval scheme based on
Pulliainen et al. (1999) using the snowpack measurements acquired
through an observation rich season combined with AMSR-E data.
Results were particularly sensitive to the grid cell lake fraction:
RMSE of the retrievals ranged from 20 to over 70 mm when the
results were segmented by lake fraction. The coarse resolution of
the AMSR-E measurements is also a limiting factor because a single
retrieval is produced for grid cells that contain an implicitly high
level of heterogeneity. Fig. 12 shows the range of SWE measured
from the 100 meter snow surveys across the land cover types. The
passivemicrowave retrieval provides a single value that falls at variable
points within these sub-grid ranges. High resolutionmeasurements, for
instance using Ku- and X-band radar as proposed in the ESA CoReH20
mission (Rott et al., 2009), have the potential to better resolve this
heterogeneity.

image of Fig.�7
image of Fig.�8


Fig. 9. Comparison of observed and simulated TB at the lake site using manual grain size observations.
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The following sources of uncertainty identified in this study re-
quire further attention:

Lake fraction: The retrieval model allows the land surface to be tiled
into fractions with unique snow cover properties. For this experi-
ment, three predominant land cover categorieswere utilized: forest,
open, and lakes. Retrieval uncertainty increased with lake fraction;
beyond a threshold of 50% the retrievals had no relationship with
reference SWE measurements. The HUT emission model for lake
ice assumes the ice to be a non-scattering layer with the absorptive
properties of pure ice. Lake ice cores extracted during the 2009–
2010 winter season near Churchill, however, showed frequent oc-
currence of white ice (snow ice, or superimposed ice), spherical
bubble rich layers near the snow/ice interface, and elongated bub-
bles near the water/ice interface, consistent with measurements
made at other sub-Arctic lakes (Gunn et al., 2011).
Sensitivity to grain size: Snow emission models are highly sensitive
to the treatment of grain size, yet this variable is exceptionally dif-
ficult to measure quantitatively in the field. Considerable effort was
spent on quantitative grain size measurement during the 2009–2010
Churchill campaign, including (1) conventional estimates using a
field microscope, (2) near infrared photography following Langlois
et al. (2010), (3) 2-D grain morphology from crystal photography,
and (4) laser-induced reflectance measurements following Gallet
et al. (2009). These measurement techniques produced a range of
grain sizes for forward TB modeling and SWE retrieval inputs. This
wealth of information is still difficult to apply in a modeling context
because snow is a layered medium that must be simplified to one or
two layers for modeling applications. This vertical simplification of
the snowpack introduces uncertainty. Even within snowpack layers,
grain sizes are not uniform, but occur across a distribution, which is
problematic for models like HUT which require a single grain size
value for each layer. Statistical characterization from multiple obser-
vational datasets of a mean grain size ±1 SE reduced simulation
RMSE errors at the forest site, and better represents the non-
uniformity of naturally occurring grain size both within individual
layers and within the integrated snow volume. Simulations across
this range of observed grain sizes results in a broad distribution of
simulated TB (see Fig. 6) which introduces further challenges for
model application and interpretation. Additionally, considerable
time is required to collect this range of grain size measurements in
the field. At the fen and lake sites, the additional grain size datasets
did not improve model performance because of issues related to the
model parameterization of large grains, and lake ice respectively.
The SWE retrieval simulations showed that good results were
achieved when using the mean grain size measurement available
from manual field observations, but more work is necessary to
quantify grain size in the most objective way possible under field
conditions, and use this information in a meaningful way for
modeling applications. Another approach is to utilize the HUT
model to derive effective grain size as a retrieval output, which
could then be compared to the measured values.
Dependence on high quality snow observations: This SWE retrieval
experiment represented a ‘best-case scenario’ because the study
area was observation rich. Detailed snowpack measurements were
available for all land cover types through the complete winter
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Fig. 10. Simulated TB with the HUT model with varying ice thickness and SWE (density=0.350; rms=1; Tair=−10; Tsnow=−5; Tice=−3; Twater=0).
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season. This allowed the model simulations to be configured based
on high quality observations. In an operational context, it is typical
to only know snow depth for a single point, with large distances be-
tween these observations. It is therefore necessary to infer informa-
tion on variables such as snow density and grain size, either from
climatology, a physical snow model (i.e. Langlois et al., 2009), or
some other stochastic approach. This lack of observations intro-
duces uncertainty in model inputs. While generalizing the snow
le 6
SE (K) for plot scale simulated (2 layers; mean observed grain size) versus mea-
d TB.

ll cases Forest Fen Lake

30 30 25

9H 17.8 28.9 17.6
9V 10.2 20.7 14.3
7H 13.2 34.2 12.1
7V 14.2 23.0 10.1

o lenses Forest Fen Lake

10 10 5
9H 9.3 12.0 14.3
9V 12.4 3.8 12.7
7H 8.7 18.0 12.8
7V 16.9 14.7 11.4
information did not appreciably reduce the quality of the SWE re-
trievals in this study, the assumption of consistent snow properties
across the meso-scale study area will become more problematic as
the study area is increased.

The datasets acquired during the 2009–2010 field campaign
near Churchill, Manitoba represent a unique observational time se-
ries of snow physical properties coupled with passive microwave
measurements. Field observations of passive microwave TB are
Table 7
Configuration for satellite scale TB simulations and SWE retrieval experiments.

Depth (cm) Nov Dec Jan Feb Mar Apr

Open 17 22 31 33 34 30
Forest 21 45 51 71 59 69
Lake 8 8 12 18 14 14

Density (g/cm3) Nov Dec Jan Feb Mar Apr

Open 0.253 0.266 0.273 0.242 0.290 0.300
Forest 0.233 0.174 0.207 0.213 0.221 0.238
Lake 0.205 0.325 0.354 0.380 0.400 0.400
Mean grain size (mm) 0.9 1.0 1.3 1.9 2.9 3.4
Roughness (mm) 3 3 3 3 3 3
Permittivity (F/m) 6-1*j 6-1*j 6-1*j 6-1*j 6-1*j 6-1*j
Biomass volume (m2/ha) 70 70 70 70 70 70
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Fig. 11. Simulated versus observed TB for (a) grid cell 2; and (b) all grid cells with the
exception of 3 and 6.

Table 9
Summary of SWE retrieval results.

do=mean r RMSE (mm) Bias (mm)

All cases 0.34 75 −59
Lakeb50 0.48 56 −35
Lakeb25 0.53 55 −28
Grid 2 0.94 22 −20

Table 10
Summary of SWE retrieval results using simplified snow inputs.

do=mean r RMSE (mm) Bias (mm)

All cases 0.35 63 −49
Lakeb50 0.46 53 −32
Lakeb25 0.51 52 −25
Grid 2 0.95 22 −20

Fig. 12. Solid symbols showmeanmeasured SWE- along 100 m snow surveys for lake, for-
est, and open environments; vertical lines illustrate maximum and minimum measure-
ments. Red symbols show passive microwave retrieved SWE for each month.
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typically acquired at discrete time periods within a winter season.
For example, ground based radiometer measurements acquired
during the Cold Land Processes Experiment (CLPX) conducted dur-
ing 2002 and 2003 in Colorado were limited to only a 2 week peri-
od (Cline et al., 2003). Still, these observations have been widely
used to investigate the performance of snow emission models (i.e.
Durand et al., 2008; Tedesco & Kim, 2006) and SWE retrieval tech-
niques (i.e. Durand et al., 2009). The seasonal perspective of the 2009,
2010 Churchill campaign enhances our ability to assess snow emission
models and SWE retrieval techniques through the evolution of a single
layer, fine grained snow cover to a vertically complex and layeredmedi-
um. Passivemicrowave observations are presently being combinedwith
the Ku- and X-band scatterometer measurements also acquired during
Table 8
Summary of Pearson correlation and RMSE statistics, simulated versus AMSR-E TB. Significa

19H 19 V

RMSE Correlation RMSE Correlatio

Grid 2 5.9 0.44 3.8 0.65
All cases 10.0 −0.01 9.3 0.03
the campaign to address the synergistic (active and passive microwave)
retrieval of SWE, relevant to the proposed ESA CoReH20 mission.
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