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SUMMARY 
A formalization of the representativeness error caused by the use of a simplified increment in certain 

implementations of the variational formalism is introduced. The incremental representativeness-error can be 
determined by summing up the part of the background-error power-spectrum that is beyond the truncation of 
the simplified increment. Thus, this error will be more important for fields, such as humidity, whose forecast 
errors have large components at small scales. The length scale and the oscillating structure of this incremental 
representativeness-error are explained as the consequences of the application of a square window in spectral 
space to the corresponding background-error covariances. A computation of the covariances of this error has been 
performed in a realistic framework given by the French numerical weather prediction system. In particular, it 
shows that this error is not negligible, and that its size is of the same order as that of observational instrument 
error which occurs when using a T63 spectral resolution of the analysis increment. 
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1. INTRODUCTION 

Since the first applications of the variational formalism in data assimilation with 
simplified models (Lewis and Derber 1985; Le Dimet and Talagrand 1986; Courtier 
and Talagrand 1987), the potential of this approach for numerical weather prediction 
(NWP) has been amply demonstrated. In particular, variational methods allow the use 
of a wider range of observations that are only indirectly linked with model variables: as 
an example, the benefit of using a variational scheme for assimilating satellite radiances 
has been established by a number of authors (Eyre et al. 1993; Andersson et al. 1994; 
Derber and Wu 1998). This gain is already possible in a three-dimensional variational 
scheme (3D-Var), that also permits one to avoid the data selection necessary in optimal 
interpolation schemes. The use of four-dimensional variational assimilation (4D-Var) 
adds the advantage of producing an analysis that is dynamically consistent with the 
prediction model. The implicit use of more realistic flow-dependent structure-functions 
in 4D-Var and the relation between this algorithm and the extended Kalman filter have 
also been shown by ThCpaut et al. (1996). 

Variational assimilation schemes are now being progressively implemented in large 
operational schemes (Parrish and Derber 1992; Rabier et al. 1998; ThCpaut et al. (1998) 
in either their 3D-Var or 4D-Var formulation. This implementation has been made 
possible by reducing the cost of such methods: a pre-conditioning of the problem 
(Lorenc 1988), based on a change of the control variables, is commonly used that 
allows one to limit the number of iterations, but it is especially the use of the so-called 
incremental formulation that has made the application of variational methods affordable. 

The principle of the incremental formulation of 3D/4D-Var algorithms (Courtier 
et al. 1994) is to reduce the dimension of the minimization space and to simplify 
the assimilating model through, for example, the use of a simplified physical package 
(Janiskovh et al. 1999). Various implementations of the incremental formulation have 
shown that it provides an excellent approximation to the original full 4D-Var formulation 
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and is now in operational use at ECMWF (Rabier et al. 2000). A theoretical justification 
of this approach has also been investigated by Laroche and Gauthier (1998). 

In order to obtain a still larger reduction of the 4D-Var computational cost, a 
multiple-truncation incremental approach was proposed by Veers6 and ThCpaut ( 1998) 
and is implemented in the operational 4D-Var scheme used by MMo-France. In such 
a formulation, which is a generalization of the incremental approach and which also 
has connections with multigrid methods, the resolution of the analysis increment is 
progressively increased, starting from an increment whose resolution can be much 
coarser than that of the prediction model. In this case, with such a large reduction of 
the resolution of the control variable, it appears that some scales will obviously not be 
described by the tangent linear model used in the assimilation procedure and that this 
will lead to a particular kind of representativeness error. The aim of this paper is to 
formalize this error (section 2), to illustrate it in a simple one dimensional (1-D) case 
(section 3) and also to evaluate it in a realistic framework (section 4). 

2. INCREMENTAL REPRESENTATIVENESS-ERROR 

(a)  Incremental formulation 
The principle of the incremental formulation of 3D/4D-Var algorithms (Courtier 

et al. 1994) is to seek the increment Sx to add to the background xb-so that the analysis 
is given by xa = xb + Sx-as the vector minimizing the cost function 

(1) 

with d = yo - H(xb) the vector of departures between observations yo and the back- 
ground xb; H is the linearized version of the observation operator H, that allows the 
computation of the model equivalents at observation locations. In Eq. (1) the superscript 
T denotes matrix transpose. 

The background term measures the distance between the analysis xa and the short- 
range forecast xb, with B the forecast-error covariance matrix. In the observation term, R 
denotes the observation-error covariance matrix, including the representativeness error 
(Lorenc 1986). 

This formalism rather corresponds to the 3D-Var case. The extension of the temporal 
dimension (4D-Var) can, however, be introduced. The observation operator H then 
includes the integration of the forecast model, xa stands for the initial conditions at the 
beginning of the assimilation period and an outer loop in the minimization process is 
introduced in order to take into account some parts of the nonlinearities contained in H. 
Although the following developments stand in a 4D-Var framework, this paper focuses 
on the 3D-Var case for the sake of simplicity. 

The practical interest of the incremental formulation is to allow a further simplifi- 
cation by reducing the resolution of the analysis increment Sx. This is formalized by 
introducing a simplification operator S (possibly nonlinear) and performing the change 
of variable Sw = S6x where S is the linearized version of S. Then the previous cost- 
function J can be rewritten as a function of Sw: 

(2) 

with G an approximation of HS-', where S-' is the generalized inverse of S such 
that xa = xb + S-'Sw and BW is the appropriate forecast-error covariance matrix in 
simplified space. Matrix RS is the new observation-error covariance matrix, associated 
with the simplified space, that should be different from R. 

J(SX) = ;GX*B-'SX + ;(d - HSX)~R-'(~ - HSX), 

T w -1 J(SW) = f6w (B ) SW + f (d  - GSW)T(RS)-'(d - GSW), 
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(b )  Observation-error expression 
Following Lorenc (1986)' Daley (1993) and Ide et al. (1997), observation errors can 

be split in two parts in the first formulation (1) of J (with no simplification by S); if X' 
stands for the unknown true state and Sx' = X' - xb the difference between the truth and 
the background, it follows that 

d - HSX' = yo - H(xb) - HSX' 
% yo - H(x') 
M {yo - Y'} + {y' - H(x')} 
= eo + eH. 

The term co denotes the observational instrument error which depends on the 
engineering specifications only and is henceforward called merely 'observation error'. 
The second term cH corresponds to the forward interpolation error directly related to the 
form of H. This last error depends on the type of relation between yo and x', but also on 
the resolution of the analysis grid. 

Introducing the simplification by S, and Sw' such as Sw' = SSx', the observation 
error takes a new form, 

d - GSW' = yo - H(xb) - GSW' 
% {yo - y'} + {y' - H(xb) - HSxt} + (HSx' - GSw'} 
% {yo - y'} + (y' - H(x')} + HSX' - GSW' 

co + eH + cO*s. 
Thus, the introduction of the simplification operator S has a consequence in terms 

of observation error: it adds a new error cOvs that could be defined as 'incremental 
representativeness-error', caused by the lack of resolution in the simplified increment. 
This error can be rewritten 

coVs = HSX' - G ~ w '  
= HSX' - HS-ISGx' 
= HRSX' 
= HeS 

with R = I - S-'S (where I is the identity matrix) and cs = JRSx' is the incremental 
representativeness-error in model space. It means that cs is the difference between a 
given increment SX' at the full model-resolution and this same increment projected on 
the simplified space by S and then brought back to the full resolution space by S-I. 
Since S-' is not the true inverse of S, there is an obvious loss of the smallest structures 
in this operation. 

( c )  Observation-error covariance 
The covariance of the incremental representativeness-error in observation space, 

denoted FS, is 
FS = E(co~S(co*S)T) 

= HRE(SX' (GX' )~ )R~H~ 

= H R B R ~ H ~ .  
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If the cross-correlations between co, cH and c0*' are neglected, then the observation- 
error covariance is written RS = E + F + FS. 

This expression is what is needed for the analysis algorithm with the incremental 
formulation. At this stage, the difference between the two kinds of representativeness 
error must be pointed out. 

The original representativeness-error covariance F contains all the energy in the 
atmospheric scales that are not resolved by the model. On the other hand, the above 
expression of FS shows that the incremental-error covariances are related to the forecast 
errors that are not described by the increment. Since the level of the forecast error is 
normally lower than the energy of the corresponding atmospheric field, then FS will 
not be as large as the increase in F that would occur if the resolution of the model was 
reduced to that of the increment. 

The present study was motivated by suspicious results obtained with a dense 
network of dropsondes (Desroziers et al. 1997) and the 3D-Var assimilation scheme of 
the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) model. Spurious 
increments in the analysis of the humidity field were observed around the edges of 
the dense network. Furthermore, the amplitude of these increments increased as the 
resolution of the increments became coarser. The ARPEGE prediction model is a 
spectral global model (Courtier et al. 1991) based on a stretched geometry (Schmidt 
1977; Courtier and Geleyn 1988), that allows a very high resolution locally. In that 
case, the classic representativeness-error covariance F should be very low in the high- 
resolution area of interest and non-negligible in the low-resolution area at the antipodes 
of that region. On the other hand, the ARPEGE 3D/4D-Var scheme is based on the 
use of a non-stretched increment with a uniform resolution over the globe: thus, the 
incremental representativeness covariance FS could be large in the high-resolution area 
(see section 4 for a quantitative evaluation of this error). Then, in this particular case, 
the covariance of cH + cOis is more homogeneous than either term separately. 

( d )  Innovation covariance and optimal solution 
The use of the incremental formulation also has a consequence on the way the 

matrix BW has to be specified in the Jb term of the cost function. Since this matrix 
should reflect the covariance of the simplified forecast error Sw' = Sax', BW is given 
by BW = SE(SX'(SX')~}S~ = SBST (this is what is done, for example, in the operational 
implementation of 4D-Var at MCt6o-France). This specification of BW corresponds to a 
decrease of the variances of the forecast errors and an increase of the length-scales of 
the associated structure-functions, as a result of the filtering of the small-scale part of 
these errors. (See section 3 for an illustration of this in a simple case.) 

Since the innovation vector d = yo - H(xb) is unchanged in the incremental for- 
mulation, its error covariance remains equal to HBHT + E + F. If D denotes this co- 
variance of the innovation vector, using the classical expression for the solution of 
the analysis problem, gives Sxa = BHT(HBHT + E + F)-'d = BHTD-'d, in the non- 
incremental formulation and 6xa = S-'BWGTD-'d, in the incremental formulation. The 
vector 6xo = D-'d has the same dimension as the vector of observations yo and is 
known to be the solution of the dual formulation of the analysis problem in observa- 
tion space (Courtier 1997). Thus, it will be unchanged with a low-resolution increment 
since D is not modified. The change in the final analysis will only come from the term 
S-'BWGT instead of BHT that will map the modification to the background coming 
from each observation differently. Omission of FS from the observation term results 
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in the observations being given too much weight. The impact of this is discussed in 
subsection 3(b). 

3. ILLUSTRATION WITH A SIMPLE 1-D CASE 

(a )  Documentation of the incremental representativeness-error 
The incremental representativeness-error is first illustrated in a simple toy problem 

given by an analysis on a circle. A spectral Fourier decomposition of the signal, assumed 
here to be a temperature increment (K), is used. The analysis formulation is as in (2) with 
Sw the vector of corresponding spectral coefficients in the simplified space. 

To define the background error covariance matrix B, a Gaussian shape structure 
function is first specified in physical space. The representation of B in spectral space 
is given by B = 7kT,  where % is the forecast-error covariance-matrix in physical 
space and 7 is the Fourier transform. Assuming a homogeneity hypothesis on the 
domain, it can be shown that B is diagonal and that its diagonal is obtained by applying 
the Fourier transform to the Gaussian correlation in physical space. Note that some of the 
following relations, derived in this simple case, are valid only under this homogeneity 
hypothesis introduced here, for the sake of simplicity, to give an insight into the structure 
of the representativeness-error covariance. 

A background-error vector cb is simulated with the following procedure: if qb is 
a vector of random numbers with Gaussian distribution, then writing cb = B'/*qb is a 
way to simulate background errors consistent with the matrix B since E{qb(qb)T) = I, 
where I is the identity matrix, and then E ( c ~ ( c ~ ) ~ )  = B'/2E{qb(qb)T}B'/2 = B. It will 
be further assumed that xb = 0, so that xt = -cb. 

Figure 1 shows the signal obtained with such a procedure (solid line), using a 
100-km length-scale for the structure function. Here the standard deviation of the 
background error is assumed to be uniform on the domain and equal to 1 K. The length 
of the domain is arbitrarily set to 40,000 km and a high K = 400 spectral truncation 
is chosen to specify this reference signal. The simplification operator S introduced in 
the previous section is defined as the operator projecting the signal onto its K S  first 
spectral components only (S is thus linear in this simple case). The generalized inverse 
S-' is also defined by completing with zero padding a vector of spectral coefficients of 
the simplified space. The composition of operators F = S-'S then acts like a low-pass 
filter in spectral space. The difference between the original signal cb and the filtered 
signal S c b  is the error of representativeness (dashed line in Fig. 1) resulting from the 
loss of resolution caused by the projection of cb on the simplified space (this error is 
also given by Reb, with the definition of R introduced in the previous section). 

Panels (a) and (b) of Fig. 2 show the spectrum of the spectral variances (the 
diagonal of B) associated with two structure functions with different length-scales 
(100 km and 200 km respectively) in physical space. The covariance of the incremental 
representativeness-error is written R B R T  with R = I - S-'S = I - S. This means 
that the spectrum of the spectral variances for the incremental representativeness-error 
is simply the smaller-scale part of the background-error spectrum beyond the truncation 
K S  of the simplified space. The total variance of the representativeness error in physical 
space is, in particular, the sum of the spectral variances between K S  and K and the 
covariance of this error is obtained by applying the spectral inverse transform to this 
part of the spectrum (in this simple case where the original forecast errors are assumed 
to be homogeneous). 
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Figure 1.  Simulated signal resulting from the specification of a Gaussian structure-function in physical space 
and a 100 km length-scale (solid line); the dotted line shows the filtered signal with KS = 79 and the dash-dotted 

curve the resulting incremental representativeness-error. 

If b ,  b3 and bg respectively stand for the diagonals of matrices B, B3 = F B F ' ,  
Bg = RBRT, then the corresponding structure-functions for the background error p,  
the filtered background-error 9~~ - p3 and the incremental representativeness-error 
p g ,  are obtained with p = T i ( b ) ,  p3 = Ti(b3) and ps = T i ( b g ) ,  where Ti is the 
inverse spectral transform. 

Panels c, d, e and f in  Fig. 2 show the corresponding covariances in physical space 
for two length-scales of the original structure function (100 km for the left-hand panels 
and 200 km for the right-hand panels) and two resolutions of the increment ( K s  = 95 
and K S  = 63 respectively, corresponding to a 200 km and 300 km length for the shortest 
half-wave described). It can be seen that the forecast error correlations appear broader 
in the simplified space (dotted lines) than in the full resolution space (solid lines). This 
is especially true when the original length-scale becomes significantly shorter than the 
resolution of the increment (Figs. 2(c), (e)). In this case, the variance of the incremental 
representativeness error also becomes large (dashed lines). Of course, this simply says 
that, if the cost of computation is not to be too high, the increments need to have a 
resolution which resolves the background-error covariance properly. 

The filtered spectrum b3 can also be written b3 = fb, with f a square window 
in spectral space, zeroing the values of the spectrum beyond truncation KS. Then, the 
convolution theorem leads to the relation p3 = Ti(b3) = Ti(fb) = Ti(f) * p, where 
* is the convolution operator and Ti(f) is the image in physical space of the square 
window in spectral space f. This last function is known to turn on and off rapidly and 
thus p3 will also show oscillations. 
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Figure 2. (a, b) Power spectra resulting from the specification of a Gaussian structure-function in physical space 
with length-scales of (a) 100 km and (b) 200 km. (c, d, e, f) Structure function in full-resolution physical space 
(solid line) and in simplified space (dotted line), and incremental representativeness-error covariance (pecked 
line): (c) 100 km length-scale, K S  = 95; (d) 200 km length-scale, K S  = 95; (e) 100 km length-scale, KS = 63; 

(f) 200 km length-scale, K S  = 63. 
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Figure 3. True signal S(x'), corresponding to a 100 km length-scale with a uniform standard deviation ab after 
projection on simplified space (solid line), associated observations with 8t = (a")'I and a" = ab/10 (crosses), 
and resulting sub-optimal analysis with no introduction of the incremental representativeness-error (pecked line). 

This explains the oscillating shape of the representativeness-error structure-function 
pR and that the length-scale of the representativeness error correlation is directly related 
to the smallest scale that can be described in the simplified space (the length-scale of 
pR increases when KS decreases). 

(b)  Impact of the representativeness error in the analysis 
The impact of neglecting the incremental representativeness-error is shown here in 

the same simple 1-D analysis scheme. It is again assumed that xb = 0 and then that 
xt = -eb. A realization of eb corresponding to a 100 km length-scale is produced 
with the same procedure as above with a high K = 400 spectral truncation. Precise 
observations yo are also simulated with yo = H(xt) + RqO, where qo is a vector of 
random numbers with normal distribution, R = (0")~1 and u0 is ten times less than ob. 
In order to evaluate the performance of the analysis scheme, the true signal xt is first 
projected on the simplified space (this projection S(xt) is represented by the solid line 
in Fig. 3). (Here KS = 79 corresponds to a roughly 250-km length for the shortest half- 
wave described (and thus much broader than the length-scale of the forecast errors)). 
Dense observations (one observation every 50 km) are set in a part of the domain only 
(crosses in Fig. 3). 

The resulting analysis with no introduction of the incremental representativeness- 
error is shown in Fig. 3 (dashed line): locally, it is far from the filtered truth (solid line) 
and especially presents unrealistic structures on both sides of the observation network. 
(These spurious increments are similar to those observed with the ARPEGE 3D-Var and 
dense observations as mentioned above.) On the other hand, the analysis with the correct 
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Figure 5.  True signal S(x'), corresponding to a 100 km length-scale with a uniform standard deviation ab after 
projection on simplified space (solid line), associated observations with R = ( O O ) ~ I  and a" = ab/10 (crosses), 
and resulting analysis taking into account the correct variance of the representativeness error (pecked line), but 

assuming it to be diagonal in observation space. 

Figure 4. True signal S(x'), corresponding to a 100 km length-scale with a uniform standard deviation ob after 
projection on simplified space (solid line), associated observations with R = (o")*I and ao = ob/10 (crosses), 

and resulting optimal analysis taking into account the incremental representativeness-error (pecked line). 



1784 G .  DESROZIERS et al. 

specification of the representativeness error (Fig. 4) shows a better fit to S(x') and a clear 
damping of the oscillations on the edges of the observation network. 

Finally, the analysis resulting from the correct specification of the variance of the 
representativeness error but assuming it to be diagonal in observation space, appears to 
be between both previous ones (Fig. 5). In particular, it allows for a damping of the 
spurious increments on the edges of the observation network. This could be a simple 
but rather efficient way to take the incremental representativeness-error into account in 
practical implementations that do not usually allow for the specification of correlations 
between observation errors. 

4. EVALUATION IN A REALISTIC FRAMEWORK 

(a) Introduction 
The aim of this section is to present a description of the incremental representative- 

ness-error in a realistic framework, given by the French ARPEGE N W P  system. This 
operational system currently uses a 4D-Var (previously 3D-Var) analysis scheme based 
on an incremental formulation. 

In the ARPEGE 3D/4D-Var formulation, the simplification operator S corresponds 
to both a reduction of the resolution of the analysis increment and a change of geometry 
(the full-resolution model has a stretched geometry whereas the resolution of the 
analysis increment is uniform over the whole globe). 

(b) Computation of forecast-error statistics 
The spectral background-error covariances are determined using the method pro- 

posed by Parrish and Derber (1992), where statistics are computed for the differences 
between forecasts at different ranges (here respectively 24 h and 48 h) but valid at the 
same time, assuming that these differences represent forecast errors. Here, this method 
has been applied to a winter period (three months from 1 December 1996 to 28 February 
1997). At that time, the model had a T149 spectral resolution on the stretched grid and 
a stretching factor 3.5 corresponding to a T149 x 3.5 T520 resolution on the true 
geographical sphere near the pole of interest centred on France. 

Since the resolution of the ARPEGE model varies over the geographical sphere, a 
spatial window was applied in order to obtain forecast-error covariances valid for the 
high-resolution area (Desroziers et al. (1995) had already applied such a method to 
determine the geographical dependency of the ARPEGE model forecast-errors). Since 
the ARPEGE stretching varies only slowly in the high-resolution area, the resolution of 
the model in this region is assumed to be homogeneous and close to T520. 

If Y is a field of background errors over the sphere, then Y (A, p)  is written 
n 

n m=-n 

where h is the longitude, p the sine of the latitude cp, e: the spectral coefficients 
associated with the total wave-number n and the zonal wave-number m. Here Y," is a 
spherical harmonic defined by Y,"(h, p )  = P,"(p) eimh, where P,"(p) is the Legendre 
polynomial with degree n and order m. 

Although this is certainly a crude approximation, especially in the high-resolution 
area, the spectral covariances are assumed to be homogeneous. The two spherical 
harmonics Y," and YT' are then correlated only if they are equal, and the modal variance 
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bn is independent of the zonal wave-number rn. The total variance Pn for a given wave- 
number n is given by 

m=-n 

The procedure used to get local error statistics valid for the high-resolution area 
can be summarized as follows. First, a spatial window is applied, on the ARPEGE 
transformed sphere, to the physical space representation of the fields: 

Since the northern hemisphere of the transformed sphere corresponds to the high- 
resolution area on the true geographical sphere, this parabolic window gradually 
changes the fields to zero outside the high-resolution area. The fields Y are then trans- 
formed to the spectral space corresponding to the ARPEGE computation sphere, and 
to the spectral space corresponding to the geographical space, by a spectral transform 
implemented in the ARPEGE system. The tests performed by Desroziers et a f .  (1995) 
showed that this procedure allows one to recover a good description of the forecast-error 
covariances in the high-resolution area. 

These statistics have been computed over the three-month period for each model 
variable and level (viz. temperature, specific humidity, vorticity and divergence at all 
27 model levels and at surface pressure). As an example, the resulting power-spectra for 
temperature are shown in Fig. 6(a). They present characteristic shapes with, in particular, 
increasing energy in the small scales at the lower levels. 

(c)  Computation of incremental representativeness-error statistics 
The same statistics have also been computed for the incremental representativeness- 

errors defined by cR = c - S-ISc, as in previous section. Because there is no lin- 
earized version S of the simplification operator S, the term S-ISc has been computed as 
S-'S(X~~) - S-'S(X~~), where x24 and x48 respectively correspond to ARPEGE fore- 
casts at 24 h and 48 h ranges and valid at the same time. 

Figure 6(b) shows the representativeness-error power-spectra for temperature. There 
is a clear jump in the spectra at the increment resolution (here T95). Some energy 
remains below this resolution, since S is not a perfect filter in spectral space. However, 
it appears that the parts of these representativeness-error power-spectra located between 
the resolution of the simplified increment (T95) and the maximal resolution (T520) 
are very similar to their corresponding parts for the background-error power-spectra 
(Fig. 6(a)). The same result is found for specific humidity, vorticity, divergence and 
surface pressure (not shown). This is in agreement with the idea developed in the 
previous section that the incremental representativeness-error variances can be deduced 
simply from the background-error spectra. 

The structure function p of the background error can be obtained by applying the 
inverse spectral transform. Because of the hypothesis of homogeneity and isotropy, p 
can be projected on zonal spherical harmonics P t  only (Courtier et af. 1998): 
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Figure 6. ARPEGE spectra for temperature for three model-levels, 8 (curve A 2 300 Wa), 12 (curve B 
500 hPa) and 20 (curve C % 850 Wa): (a) background error; (b) incremental representativeness-error. 

with r = ap/2n, a is the earth radius and p = sin(rp). 
The structure function p3 of the incremental representativeness-error can be deter- 

mined in the same way. 
The temperature background-error correlations drop to zero monotonically at a 

distance around 1500 km, but with length-scales increasing with altitude (Fig. 7(a)). 
On the other hand, the corresponding correlations for the incremental error (Fig. 7(b)) 
show oscillations and shorter length-scales in good agreement with the 1-D case. 



REPRESENTATIVENESS ERROR 

.9 

.8 

.? 

.6 

i: .5 

z -  
0 

2 -  
g . 4 -  
0 u -  

.3 

.2 

.1 

0 -  

0 
-.l 

1787 

- (a)  
- 

- 

- 

- 

- 

- 

- 

1000 2( 
' I I ' ' I ' I " I I ' I 

1.0, 

HORIZONTAL DISTANCE (KM) 

Figure 7. Structure functions for temperature corresponding with the spectra shown in Fig. 6 for three model- 
levels, 8 (curve A % 300 hPa). 12 (curve B % 500 hPa) and 20 (curve C % 850 hPa): (a) background error; 

(b) incremental representativeness-error. 
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HORIZONTAL DISTANCE (KM) 

Figure 8. Length scales of the correlation functions for temperature: curve A, background errors; curve B, 
incremental representativeness-errors. 

The length-scales d: at different levels for both errors can be computed explicitly 
using an expression used by Daley (1991): 

Figure 8 shows that the horizontal length-scales of the background-error correlations 
for temperature increase with altitude over horizontal distances of 100 km to 500 km. 
These values are less than those obtained by some other authors, such as Rabier et al. 
(1 998). This may be because the ARPEGE model has a very high resolution in this area 
and because Rabier et al. (1998) computed the error statistics at T106 resolution. As we 
showed in subsection 3(a), this may have increased the derived length-scales artificially. 
On the other hand, Fig. 8 shows that the length-scales of the incremental error are rather 
constant and much shorter (around 50-80 km), which is also consistent with the 1-D 
case. 

The homogeneity hypothesis can be extended to the covariance between two distinct 
model levels. Then the vertical covariance b:" between two levels 1 and 1', for the total 
horizontal wave-number n is written b; - C:=-n E ( c c ( c r n ) * ) ,  where ( e r n ) *  is the 
complex conjugate of c F n .  Such a computation allows the specification of fully non- 
separable correlation structure-functions with a different vertical correlation for each 
wave-number (Courtier et al. 1998; Rabier et al. 1998). The total vertical correlation 

1 1 ' -  
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Figure 9. Vertical correlation for temperature between model level 1 2 ( ~  6 km x 500 hPa) and levels above 
below it: curve A, background error; curve B, incremental representativeness-error. 

and 

V'." is given by V'," = C, bf;"/(a'a"), where a' and ,I' are the standard deviations 
of the error at level 1 and 1' respectively. Figure 9 shows that the simplification made 
in the horizontal on the vertical correlation of the incremental representativeness-error 
has an impact. Indeed, this vertical correlation becomes very similar to the one obtained 
by summing up the individual vertical correlations for each wave number n between 
K S  (here T95) and the full model resolution (here T520). Since the length-scales of the 
vertical correlations of the forecast errors are shorter at highest wave-numbers, then the 
length-scales of the total vertical correlations of the incremental representativeness-error 
(Fig. 9, curve B) will be shorter than the length-scales of the vertical correlations of the 
forecast errors (Fig. 9, curve A). 

Finally, since the covariances of the incremental error can be deduced from the co- 
variances of the background error, the variance of this error has been determined for the 
model variables and for different truncations K S .  For each level these variances 
are simply computed with = C,"=,s P,, where K = 520 is the full resolution of 
the ARPEGE model. 

The background error for temperature (Fig. lO(a)) shows decreasing values with 
altitude: the profiles for representativeness error resemble the background-error profile, 
but with diminishing amplitudes with the augmentation of K S .  The ratio between 
representativeness error and background error also decreases with altitude because 
background-error spectra have more energy in the large scales at the highest levels. Note 
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Figure 10. Variation with height of standard deviations of errors: (a) temperature; (b) specific humidity. In each 
panel, curve A shows the background errors and curves B, C and D, the (progressively smaller) associated 

representativeness-errors for resolutions of T42, T63 and T95 respectively. 

that for K S  = 42 the mean value of this representativeness error is close to the typical 
value of observation error given to radiosounding measurements (about 1 K). 

Figure 10(b) shows background and incremental error standard deviations for spe- 
cific humidity: all curves show a maximum around 700 hPa and a ratio between rep- 
resentativeness error and background error larger than for temperature, since humidity- 
error spectra have more energy in the small scales than temperature-error spectra. The 
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Figure 1 1 .  Variation with height of standard deviations of errors: (a) rotational component of the wind; 
(b) divergent component of the wind. In each panel, curve A shows the background errors and curves B, C and D, 
the (progressively smaller) associated representativeness-errors for resolutions of T42, T63 and T95 respectively. 
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representativeness error at 700 hPa represents about 70% of the background error and 
is greater than the observation errors given to radiosounding measurements (about 
0.8 g kg-'). 

The standard deviation of background error for the rotational part of the wind shows 
a typical peak at 9 km (Fig. 1 l(a)). The representativeness error also has large values 
around this level, that can again be more important than typical values of observation 
error (about 3.5 m s-l) for a truncation K S  = 42, and still very important for K S  = 63. 
The representativeness error for the divergent part of the wind is lower but increases 
close to the surface (Fig. 1 l(b)): the ratio of representativeness error to background 
error is also fairly large, because, just as do those for specific humidity, divergent-wind 
error spectra have a good deal of energy in the smaller scales. 

5 .  CONCLUSION 

The incremental formulation of the variational assimilation schemes has contributed 
greatly to the operational implementation of the variational approach in a number of 
NWP centres. However, this formulation leads to an inevitable representativeness-error, 
that is not the result of the potential high resolution of the forecast model, but of the 
resolution of the analysis increment (which can be much coarser). 

The aim of this paper has been to formalize this particular representativeness-error 
but also to try to evaluate it in a realistic framework. Such results can lead to the choice 
of a sufficient resolution in order to cancel this error, or to provide a way to take it into 
account if the required computation cost with this resolution is too high. 

In particular, it has been shown that the variance of the incremental representative- 
ness-error can be determined by summing up the part of the background-error power- 
spectrum that is beyond the truncation of the simplified increment: this error will thus 
be larger for fields such as humidity that show more energy in the forecast errors for the 
smallest scales (and so are associated with shorter length-scales in physical space). Since 
the incremental representativeness-error can be seen as the result of the convolution of 
the background-error spectrum with a square window in spectral space, the correlation 
for this error presents a typical oscillating shape. Furthermore, the length-scale of the 
incremental representativeness-error correlation is directly related to the truncation K 
of the simplified space: this length-scale is longer for a coarser resolution K '. 

The computation of the statistics of both the ARPEGE background and incremen- 
tal representativeness-errors confirms the fact that the latter can be roughly deduced 
from the application of a square window to the former. The characteristics of the 
representativeness-error correlations shown in the simple 1 -D case are retrieved in this 
realistic framework: they show the same oscillating behaviour and their length-scales are 
more constant in the vertical than the corresponding background length-scales (which 
typically increase with altitude). 

So, the variance of the representativeness error can be parametrized by summing up 
the part of the background-error power-spectra that is truncated by using a simplified 
increment. It is shown that the level of this error is not negligible at truncations T63 or 
T42, for instance, when values may be close to the observation error, or even greater for 
parameters such as humidity. 

The computation of these variances was here assumed to be made for in situ 
instruments, measuring parameters close to model variables, such as radiosounding 
or aircraft measurements. Of course, there is a need to extend this computation to 
observations, such as satellite radiances, that give measurements indirectly linked to 
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model variables and that also sample a given volume of the atmospheric flow. This 
corresponds to a case when the observation operator H becomes more complex. 

In a similar way, the present study focused on the 3D-Var case: however, it is clear 
that the assimilating model, used in a 4D-Var formulation (and that can be formally 
included in H), will also spread the representativeness error in a complex way. In 
particular, Fischer et al. (1998) showed, using a Kalman filter with a low-dimensional 
semi-geostrophic uniform potential-vorticity model, that maximal forecast-errors are 
concentrated along fronts and lead to some flow-dependency and anisotropy in the 
covariances that will also appear for the representativeness error. Some authors have 
proposed changes of coordinates in order to recover isotropy that may also help for the 
representativeness-error problem (Benjamin et al. 199 1 ; Desroziers 1997). 
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