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The accuracy of a liquid water content profile retrieval using microwave radiometer brightness
temperatures and/or cloud radar reflectivities is investigated for two realistic cloud profiles.
The interplay of the errors of the a priori profile, measurements and forward model on the
retrieved liquid water content error and on the information content of the measurements is
analyzed in detail. It is shown that the inclusion of the microwave radiometer observations in
the liquid water content retrieval increases the number of degrees of freedom (independent
pieces of information) by about 1 compared to a retrieval using data from the cloud radar alone.
Assuming realistic measurement and forward model errors, it is further demonstrated, that the
error in the retrieved liquid water content is 60% or larger, if no a priori information is available,
and that a priori information is essential for better accuracy. However, there are few
observational datasets available to construct accurate a priori profiles of liquid water content,
and thus more observational data are needed to improve the knowledge of the a priori profile
and consequentially the corresponding error covariance matrix. Accurate liquid water content
profiles are essential for cloud-radiation interaction studies. For the two cloud profiles of this
study, the impact of a 30% liquid water content error on the shortwave and longwave surface
fluxes and on the atmospheric heating rates is illustrated.
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1. Introduction

Clouds are the most significant modulator of the surface
radiation budget and strongly affect the vertical redistribu-
tion of energy in the atmosphere, which may influence the
cloud structure itself, but also the large-scale dynamics
(Wang and Rossow, 1998). In the last decade several studies
focused on the characterization of long-term cloud properties
and their associated effects on radiative fluxes and heating
rates (e.g. Mace et al., 2006a; Mace et al., 2006b; Mace and
Benson, 2008; Mather et al., 2007; McFarlane et al., 2008). In
order to assess these effects, the cloud macrophysical and
microphysical properties, including the liquid water content
(LWC) profile, must be accurately described. However, in-situ
measurements of LWC are only available for certain cam-
paigns (e.g. Korolev et al., 2007) and are therefore strongly

limited in space and time. Thus, other retrieval techniques,
which include, for example, cloud radar information, have to
be applied to retrieve long-term data sets of cloud liquid
water profiles. Such data sets are not only desirable for cloud-
radiation interaction studies but also for the development of
parameterizations for cloud microphysical processes and for
the evaluation of cloud liquid water profiles in numerical
weather prediction (NWP) and climate models. Due to the
lack of observations, the evaluation of this prognostic model
variable is rather difficult compared to other model variables.

In order to retrieve vertical information on cloud water,
the vertical profile of cloud radar reflectivity is commonly
used (e.g. Mace et al., 2006a; Mather et al., 2007; McFarlane
et al., 2008). Since the radar reflectivity and the liquid water
content are both functions of the cloud droplet spectrum,
attempts have been made to relate the radar reflectivity Z, i.e.
the sixthmoment of the drop size distribution, with the liquid
water content, i.e. the third moment (Atlas 1954; Sauvageot
and Omar 1987; Fox and Illingworth 1997). The cloud droplet
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spectrum results from a number of complex processes (e.g.
nucleation, diffusion, collision and coalescence) and is
therefore highly variable even within a cloud (Khain et al.,
2008). As a result, no unique Z-LWC relation exists. If a few
drizzle drops are present in a cloud, they dominate the
reflectivity, but contribute negligibly to the LWC. This effect
leads to large errors in the derived LWC values (see, for
example, Fig. 2 in Löhnert et al., 2008) and the empirical
relationships fail.

To better constrain LWC profiles, passive atmospheric
emission measurements in the microwave region can be
used. Although microwave radiometer (MWR) observations
alone show only little skill in determining the vertical
distribution of cloud liquid water (Crewell et al., 2009),
they are very well suited to derive the vertically integrated
liquid water content, the liquid water path (LWP; e.g.,
Westwater, 1978). In the microwave regime, the cloud
emission is proportional to the frequency squared and the
cloud contribution to the signal strongly increases with
frequency. Two-channel microwave radiometers usually
measure at one frequency in the window region where liquid
water dominates the emission (e.g., between 30 and 36 GHz)
and at another one on the wing of a water vapor absorption
line (e.g., 24 GHz). The latter channel is used to correct for the
influence of the water vapor in the LWP retrieval. The
accuracy of such dual-channel retrievals is typically about
25–30 gm−2 (Turner et al., 2007a). The uncertainty can be
improved by including additional frequencies in the retrieval,
for example the 90 or 150 GHz channel, which are both very
sensitive towards liquid water. Crewell and Löhnert (2003)
have shown, for example, that the inclusion of the 90 GHz
channel leads to an accuracy in LWP of better than 15 gm−2.
In order to further decrease the uncertainty of LWP in cases
where LWP is low (b100 gm−2), Turner (2007) followed a
sensor synergy approach combining MWR and spectral
infrared data. He showed that the random error for LWP
using this synergetic approach is less than 4% in cases with
LWPb50 gm−2.

The need for sensor synergy, i.e. the combination of
information from different active and passive remote sensing
instruments, to derive cloud macrophysical (e.g. Wang and
Sassen, 2001; Illingworth et al., 2007) and microphysical
properties (e.g. Frisch et al., 1998; Löhnert et al., 2004) has
been identified in the past. For example, Frisch et al. (1998)
derived profiles of LWC by taking the LWP of the MWR and
applying the normalized square root of the radar reflectivity
as a vertical weighting function. Löhnert et al. (2004, 2008)
took a step forward and integrated ground-based microwave
radiometer, cloud radar and a priori information, e.g. from
radiosondes, in the framework of the optimal estimation
equations (e.g. Rodgers, 2000). This so-called Integrated
Profiling Technique (IPT) has been successfully used to derive
profiles of temperature, humidity and liquid water content
and corresponding error estimates. The resulting cloud water
profiles are not only consistent with respect to the cloud
radar measurements but also to the MWR brightness
temperatures (TBs).

Generally, deriving such profiles directly from the mea-
surements is an ill-conditioned problem, because many
solutions fit the data and small errors in the measurements
may have a large effect on the derived atmospheric profiles.

Thus, it is indispensable to include additional information,
namely a priori data, in the retrieval to constrain the solution
space. For temperature and humidity profiles, radiosonde
data can be used in this respect, since radiosondes directly
provide profile information on these variables. For LWC, the
provision of an a priori profile is a more demanding task,
since, as mentioned previously, in-situ measurements are
strongly limited in space and time. Thus, this information has
to be obtained from the output of NWPmodels or from simple
cloud models (e.g., Karstens et al., 1994; Salonen and Uppala,
1991; Mattioli et al., 2006), which diagnose the LWC from the
humidity profiles measured during radiosonde ascents. These
cloud models first detect the cloud boundaries by threshold
values in the relative humidity and subsequently calculate the
LWC as a function of height above the cloud base. In the cloud
model by Karstens et al. (1994), for example, the adiabatic
LWC is calculated first and then corrected for effects of dry
entrainment, freezing drops, and precipitation using an
empirical relationship by Warner (1955). Usually, these
models are tuned to fit observed MWR brightness tempera-
tures (e.g. Mattioli et al., 2006). However, the accuracy of the
LWC determined by the cloudmodels is not well known and a
derivation of a quantitative error estimate is in general
difficult.

In this study, we want to analyze the interplay of the errors
of the a priori profile, measurements and forward model in
the LWC retrieval and the associated effect on the retrieved
LWC error and on the information content of the measure-
ments. Given realistic error estimates for the measurements
and the forward model, the accuracy of the a priori profile
required for a reasonable LWC error is assessed. Furthermore,
the information content of different measurement combina-
tions with respect to the derivation of cloud liquid water
profiles is investigated. The measurements encompass mi-
crowave radiometer brightness temperatures and/or cloud
radar reflectivities depending on the chosen configuration of
the experiment. By means of two typical cloud cases, the
benefit of the synergy of MWR and cloud radar is demonstrat-
ed. Thus, this work is a follow-up of the study by Crewell et al.
(2009), who focused on the LWC retrieval using MWR
measurements alone. In the next section, we introduce the
two cloud cases and the analysis method used, followed by a
comprehensive evaluation of the information content and the
retrieved LWC error given different measurement combina-
tions and error assumptions (Section 3).

2. Methodology

For this analysis, we have selected two single-layer liquid
cloud cases (Fig. 1) observed at the Atmospheric Radiation
Measurement programs Mobile Facility (AMF) site in the
Black Forest, Germany. Both profiles are solutions of the IPT,
which has been applied to the whole data set of the nine-
month AMF measurement period, from April to December
2007. Information on the occurrence and vertical location of
clouds is included in the retrieval by means of the Cloudnet
Target Categorization product (Illingworth et al., 2007),
which is itself a synergy product of cloud radar, ceilometer,
microwave radiometer andmodel data. Once the position and
extension of a cloud are known, microwave radiometer, cloud
radar and radiosonde information are integrated via the
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optimal estimation technique to retrieve profiles of LWC, as
well as temperature and humidity profiles. The LWC profiles
are defined on the AMF cloud radar height grid that has a
spatial resolution of about 43 m. The selected profiles
represent a cloud with a LWP of about 90 gm−2 (case A)
and a thickness of about 640 m, or 16 cloud radar levels, and a
thick cloud (case B) having a LWP of about 690 gm−2 and a
thickness of about 1160 m, or 28 cloud radar levels (Fig. 1).
Crewell et al. (2009) have shown that the median LWP and
thickness of a single-layer water cloud for the AMF site in the
Black Forest is about 80 gm−2 and 300 m, respectively (Table
1 in Crewell et al., 2009). With regard to LWP, cloud A
represents a common cloud, whereby its vertical extension is
rather thick compared to the average value. However, about
50% of all single-layer water clouds have a cloud thickness
between 300 and 700 m at this AMF site. Note that the IPT-
retrieved profiles must not be interpreted as an explicit
solution of the inverse problem but as the most probable
solution of a Gaussian-distributed probability density func-
tion. Thus, both profiles describe a realistic vertical distribu-
tion of cloud liquid water.

On the basis of these two profiles, we perform our analysis
employing optimal estimation theory (Rodgers, 2000). This
formalism allows for a detailed analysis of the retrieved LWC
error andof the information content of a set of observations. For
this purpose, the covariance matrix Sa of the a priori LWC
profile, the error covariance matrix of the observations Se, and
the Jacobian of the forward model F for microwave and radar
observations with respect to the LWC profile K have to be
defined. The Jacobian K is given by K=∂F(x)/∂x=∂y/∂x, with
x=log10(LWC) and y=(Z,TB). The optimal estimation ap-

proach assumes that the retrieved parameters are Gaussian-
distributed. Since this is not valid for the LWC, we consider
log(LWC) instead, which more closely conforms to a Gaussian
distribution. Themeasurement vector y encompasses the cloud
radar reflectivity at 95 GHz andMWR brightness temperatures
in the K-band (22–32 GHz, 7 channels) and in the V-band (51–
59 GHz, 7 channels) as well as at 90 and 150 GHz. The K-band
and the K-band plus V-band frequencies are typical for a dual
frequencyMWR and for a standardMWRprofiler, respectively.
For the theoretical studies presented here, only the measure-
ment errors have to be known rather than the measurements
themselves.

The error covariance of the optimal solution S can be
calculated by

S = KTS−1
e K + S−1

a

! "−1
ð1Þ

The diagonal elements of S give an estimate of the mean
quadratic error of the LWC. The off-diagonal components
describe the correlation of the retrieved LWC errors at
different heights.

A measure for the information content of an observation
in the retrieved profile is the number of degrees of freedom for
signal (DGF) which provides the number of independent
pieces of information that are determined from the measure-
ment. In this context, the averaging kernel matrix A has to be
calculated, which describes the sensitivity of the retrieved
profile to the true state, i.e. A=δ log(LWCretrieved)/δ log
(LWCtrue). The averaging kernel matrix can be determined
from the optimal estimation equations as

A = S· KTS−1
e K

! "
: ð2Þ

The number of degrees of freedom for signal is given by
the trace of A.

If not explicitly mentioned, Se and Sa are set to diagonal
matrices in this analysis. This means that we assume the
measurement and forward model errors encapsulated by Se,
as well as the errors of the a priori profile in Sa, to be
uncorrelated (the effect of correlated errors are discussed in
Sections 3.3 and 3.4). For the brightness temperatures, a
random error of 0.5 K is applied, which is on the order of
magnitude of the measurement noise (Rose et al., 2005). For
the radar reflectivities, a random error of 3 dB is assumed,
which is a reasonable estimate for the calibration error of
most cloud radar systems. In particular, intercomparison
measurements of the AMF cloud radar and the collocated
35.5 GHz MIRA36-S cloud radar revealed differences in the
radar reflectivities of 3 dB (Handwerker and Miller, 2008).
Systematic errors cannot be included in Se, which may lead to
bias errors in the retrieval solution. In case of the TBs,
systematic errors in the forward model may be related, for
example, to inaccurate humidity and temperature profiles or
to uncertainties in the absorption model (see discussion
below).

The MWRmeasurements and the LWC profiles are related
by a forward model, which is a microwave radiative transfer
operator for nonscattering cases. Absorption due to water
vapor and oxygen are calculated by the Rosenkranz absorp-
tion model (Rosenkranz, 1998), and absorption due to liquid

Fig. 1. LWC profiles of two water clouds without drizzle on 8 Sep 2007 at
14:19 UTC (cloud A) and on 12 Sep 2007 at 10:50 UTC (cloud B) at the AMF
site in the Black Forest, Germany. Cloud boundaries have been determined
from the Cloudnet Target Categorization product. The LWC profiles have
been retrieved by combining a priori, cloud radar andmicrowave radiometer
information in the framework of an optimal estimation technique.
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water is computed according to Liebe et al. (1991). It is
difficult to estimate the error of the Rosenkranz model itself.
Differences in simulated and observed brightness tempera-
tures may not only be attributed to deficiencies in the
radiative transfer model but also to inaccurate input and
measurement data. However, Turner et al. (2009) applied
carefully checked, cloud-free radiosonde data to different
microwave radiative transfer models and compared the
computed brightness temperatures at 150 and 31.4 GHz to
independent measurements of two collocated MWRs. Both
MWR showed an excellent agreement at 150 GHz with a bias
of −0.12 K and a root mean square difference of 1.29 K. In
case of the Rosenkranz model, the comparison between
simulated and observed brightness temperatures at 150
(31.4) GHz revealed a bias and a root mean square error of
0.74 (−0.08) K and 2.52 (0.28) K, respectively. Compared to
other models, e.g. Liebe et al. (1993) and Clough et al. (2005),
these differences are relatively small. However, the forward
model uncertainty may be larger than themeasurement error
itself and generally cannot be neglected.

In order to model the radar reflectivities, we use the
relation by Fox and Illingworth (1997) for a cloud without
drizzle, which has the form Z=a⁎LWCb, with the parameters
a=0.012 and b=1.6. Krasnov and Russchenberg (2002,
2006) applied this Z-LWC relation to in situ aircraft
measurements and estimated the error of the forward
model to be 1.5 to 3 dB. In drizzle situations, Z-LWC
relationships are considerably less accurate and the forward
model error becomes substantially larger than the measure-
ment error. However, we start with an overall error of 0.5 K
and 3 dB for the brightness temperatures and the radar
reflectivities, respectively, keeping inmind that the errormay
be considerably larger due to forward model uncertainties.
The effect of larger errors in Se on the retrieved error and the
information content will be investigated in Section 3.2 and
3.5.

3. Information content and error estimates

Given the diagonal matrices Sa and Se as defined in
Section 2, we calculated corresponding error estimates
according to Eq. (1) for the profiles in Fig. 1 (see example
for one experiment configuration in Fig. 2). Since we derive
log(LWC), errors in LWC are not symmetric. For the following
analysis we computed a mean error of the profile by
calculating a mean relative error for each height and by
averaging these errors over all height levels.

In order to characterize the influence of the a priori LWC
profile on the retrieved LWC error and on the DGF, the
uncertainty in the a priori profile is increased step-wise from
6·10−4 gm−3 (0.2% rel. error) to 7 gm−3 (2733% rel. error)
for a fixed set of observations. A small uncertainty implies
that the a priori profile has a large weight in the solution. If
the uncertainty of the a priori LWC profile increases, the
influence of the a priori profile in the LWC retrieval decreases
and more weight is put on the measurements. This variation
of the a priori uncertainty has an effect on the DGF as well as
on the retrieved LWC error. As an example, Fig. 3 shows the
impact of the a priori uncertainty on the DGF and on the
retrieved LWC error for a retrieval including only the K-band
measurements of the MWR. In Fig. 3a, the DGF and the

retrieved LWC errors are shown as a function of the a priori
uncertainty. For a better comparison to Fig. 3a, the chosen a
priori errors are plotted against the retrieved LWC errors in
Fig. 3b. Note, however, that the retrieved error is a function of
the a priori error, and not vice versa.

Increasing the magnitude of the diagonal elements in Sa,
i.e. increasing the a priori uncertainty, yields an increased
LWC error and a larger number of DGF implying that the
measurements have more weight in the solution. In other
words, the better known the a priori profile is, the smaller is
the error of the solution and the smaller is the influence of the
measurements. If the a priori profile would be the true profile,
the measurements would add no information at all. However,
in virtually all cases the a priori profile is not the true profile
(else there would be no need to perform a retrieval), and the
DGF is much lower than the desired resolution of the LWC
profile.

3.1. Dependence on measurement vector

We start the analysis by investigating the effect of
different measurement combinations on the retrieved LWC
error (diagonal elements of S) and on the number of degrees
of freedom (trace of A) for the average cloud A (Fig. 4 a,c) and
the thick cloud B (Fig. 4 b,d). The different symbols in the
diagram represent different a priori uncertainties, which have
been varied from 6·10−4 to 7 gm−3 (cf. Fig. 3a). The
maximum possible number of DGF corresponds to the
number of cloud layers on which the LWC is retrieved, i.e.
16 for cloud A and 28 for cloud B. When using the K-band
(22–32 GHz) channels only (for cloud A: same curve as in
Fig. 3b), there is essentially only one piece of information in

Fig. 2. Example for the retrieved errors of the LWC profiles in Fig. 1. A TB error
of 0.5 K and an a priori uncertainty of log(LWC/gm− 3 )=0.175
(corresponding to a relative a priori uncertainty of 34%) is assumed. In this
example, the retrieval includes the MWR brightness temperatures of the K-
band only.
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the measurements, which corresponds to the column
integrated LWC, the LWP. Adding the V-band (51–59 GHz),
90, and 150 GHz channels leads to a slightly increased
number of DGF for cloud A. Furthermore, this measurement
combination reduces the error in the LWC. The maximum
information content of the K-band retrieval, i.e. 0.9, is
reached for an a priori uncertainty of about 100% corre-
sponding to a LWC error of the same order of magnitude.
When adding the other microwave radiometer channels,
this value is reached already for a relative error of 10% in the
a priori profile. This effect is due to the increased sensitivity
of liquid water at 90 and 150 GHz relative to the channels in
the K- and V-bands. The TB enhancement of the cloud A on
the 90 and 150 GHz TBs is 17 and 19 K, respectively, and
only 2–4 K for the K-band and maximum 4 K for the V-band
channels (not shown). For the thick cloud (case B), the
signal is strong in all channels, namely about 20 K for the K-
and V-band and 100 K for the 90 and 150 GHz channels, so
that the saturation value of 1 DGF for the K-Band retrieval is
reached for a LWC error of 10%. If the V-Band channels and
the 90 and 150 GHz frequencies are included, there is a small
amount of information on the LWC profile (1.5 DGF).
However, this increased information content is reached at
a large error in LWC.

Extending this analysis for the inclusion of cloud radar
reflectivity data. we start with the simple case that only cloud
radar reflectivity (Z) data are used in the retrieval. Recall that
we assume an error in Z of 3 dB and, as for the microwave
brightness temperatures, that the error is uncorrelated
between different radar height bins. In this case, the DGF
rapidly increases when the influence of the a priori informa-
tion is reduced (i.e., when the uncertainty in the a priori
profile is increased). The number of DGF is maximal (16 and
28 for cloud A and cloud B, respectively, corresponding to the
number or radar bins) for a relative LWC error of 63% in both

cases. In this situation, the a priori profile has virtually no
effect on the retrieved LWC profile. If the MWR radiometer
frequencies are additionally included in the retrieval, the
amount of information increases roughly by the number of
DGF that are in the MWR observations alone. In Table 1, the
DGF associated to a retrieved LWC error of 30% are
summarized for the different measurement combinations. A
value of 30% is a realistic lower bound for a LWC error using
the combination of a cloud radar and microwave radiometer
(Löhnert et al., 2001). It is clearly visible that the retrieval
including all measurements outperforms the other combina-
tions. The amount of information coming from the measure-
ments increases from about 3% (only K-Band TBs, i.e. 0.5 and 1
of the maximum 16 and 28 DGF, respectively) to 30% (all
measurements, i.e. 5 and 8 of the maximum 16 and 28 DGF,
respectively). For the thick cloud, the inclusion of the V-band
and 90/150 GHz channels only marginally increases the
information in the observations compared to the Z-TBK

retrieval.
In order to achieve a relative LWC error of 30%, the a priori

uncertainty must be smaller than 34%. Thus for small LWC
errors, the retrieved LWC error is of the same order of
magnitude as the a priori error itself. However, the spread
between a priori and retrieved error and therefore the benefit
of the retrieval rapidly increases for a priori errors of about
30% or larger. If the a priori error is about 100%, for example,
the retrieval reduces the LWC error to 50%.

3.2. Dependence on measurement error

As mentioned in Section 2, the combined measurement
and forwardmodel error in Se may be substantially larger.We
now want to assess the effect of increasing the measurement
error, i.e. the diagonal elements in Se, on the DGF. For this
purpose, we perform an experiment in which we set the TB

Fig. 3. Degrees of freedom for signal and LWC errors (%) for cloud A assuming different a priori errors (a). The corresponding a priori uncertainties (relative and
absolute in gm−3) are shown for reference (b). Different values of the a priori uncertainty are represented by different symbols. The retrieval only includes the
MWR brightness temperatures of the K-band.
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error to 1 K (Fig. 5a) and leave the Z error unchanged (3 dB)
and another one in which the Z error is set to 4 dB and the TB
error (0.5 K) is not modified (Fig. 5b). Compared to Fig. 4a,
increasing the error in the TB observations reduces the
number of DGF for the same relative error in LWC. In other
words, the microwave radiometer measurements contribute
less to the retrieved LWC profiles as the uncertainty in the
radiometer's TB measurements increase. This is especially
true for the K-channels (Table 2), since the random error in
this spectral band is of the same order of magnitude as the

cloud signal in the TBs; the 90 and 150 GHz channels are less
affected to small changes in the error in the TB observations
because the signals in these channels are stronger. In case of
the modified Z errors, the maximum relative error in LWC
increases to 88% (not shown) as opposed to the 63% shown in
Fig. 4, if the measurements have full weight in the retrieval
using reflectivity alone, i.e. if the uncertainty in the a priori
profile is large. For the retrieval including all measurements,
the maximum LWC error is slightly reduced from 88% to 84%.
The increase in the maximum errors reduces the DGF

Fig. 4. Degrees of freedom for signal and retrieved LWC errors for cloud A (left panels) and cloud B (right panels) assuming different a priori uncertainties and
measurement combinations. The different curves in each panel correspond to different measurement combinations in the retrieval; the seven K-Band channels
only (22–32 GHz)(dash-dotted), K- and V-Band channels (51–59 GHz) plus 90 and 150 GHz channels (long dashes), the cloud radar reflectivity measurements
only (solid), K-band channels plus cloud radar reflectivities (dotted) and all microwave channels (K-, V-Band, 90, 150) plus cloud radar reflectivities (dashed).
Same symbols lying above each other indicate same a priori uncertainties. c) and d) show an image detail of a) and b), respectively.
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compared to Fig. 4a (Fig. 5b). In terms of relative changes, the
reduction of the DGF is strongest in the retrieval including Z
only (about 44%). For small LWC errors, this reduction is

significantly less pronounced in the retrievals which also
encompass the MWR TBs, in particular the measurements at
90 and 150 GHz. For a 30% LWC error, the number of DGF is
reduced by about 34% (radar plus all MWR TBs) to 44% (only
radar) corresponding to about 1.8 DGF, so that the DGF range
between 2.2 (only radar) and 3.1 (radar plus MWR). In other
words, only 14 to 19% of the vertical information on the LWC
profile comes from the measurement.

3.3. Dependence on correlated measurement and forward model
errors

In the previous sections, we have assumed the measure-
ment errors to be uncorrelated and random, and the errors in
the forward model to be uncorrelated and random, too. With
regard to calibration and forward model errors, this assump-
tion is generally not valid. For theMWRHATPRO, for example,
an absolute calibration against an internal hot load target is
performed every 5 to 10 min. If the temperature of this
internal calibration load is not measured correctly, the MWR
brightness temperatures will be systematically too high or
too low and the errors of the different channels will be
correlated among each other. While such a calibration error
can be treated as a systematic error on shorter time scales, i.e.
between two calibrations of the instrument, it may be
described as a random error on longer timescales, i.e. over
several calibration procedures, with significant off-diagonal
entries in the covariance matrix Se.

The effect of such correlated errors on the retrieved error
and on the DGF is investigated next. For this purpose, one
experiment has been performedwith brightness temperature
covariances of (0.2 K)2 and another experiment assuming
(1 dB)2 reflectivity covariances for all corresponding off-
diagonal elements in Se. In general, assuming constant
correlations is a rather strong simplification. Nevertheless,
this is sufficient for a first qualitative assessment of the
influence of correlations. The variances are set to (0.5 K)2 and
(3 dB)2, respectively. If the measurement errors are correlat-
ed, we obtainmore information about themeasurement, than
in the case when the off-diagonal elements are set to zero.
Introducing correlated radar reflectivity errors leads to an
increased number of DGF and a reduced LWC error calculated
for the same a priori errors. For the chosen configuration, up
to 0.4 DGF are added, while the relative LWC error is reduced
by up to 3%.

Introducing TB covariances of (0.2 K)2 does not increase
the information content of the microwave measurements
with regard to the LWC retrieval. Only when very large TB

Table 1
Number of DGF for a retrieved LWC error of 30% assuming different
measurement combinations. The maximum number of DGF is 16 for cloud A
and 28 for cloud B.

Cloud A
(16 radar bins)

Cloud B
(28 radar bins)

TBK 0.5 1.0
TBK+TBV+TB90+TB150 0.9 1.1
Z 4.0 6.7
Z+TBK 4.5 8.0
Z+TBK+TBV+TB90+TB150 5.0 8.0

Fig. 5. Percental changes in the DGF compared to results in Fig. 4 a) when
assuming larger measurement errors in Se. (a) Results when setting the TB
error to 1 K, leaving the Z error at 3 dB and (b) when setting the Z error to
4 dB, leaving the TB error at 0.5 K.

Table 2
Number of DGF for a retrieved LWC error of 30% assuming different
measurement combinations and measurement errors for cloud A.

TBerr=0.5 K,
Zerr=3 dB

TBerr=1 K,
Zerr=3 dB

TBerr=0.5 K,
Zerr=4 dB

TBK 0.5 0.2 0.5
TBK+TBV+TB90+
TB150

0.9 0.8 0.9

Z 4.0 4.0 2.2
Z+TBK 4.5 4.2 2.8
Z+TBK+TBV+TB90+

TB150

5.0 4.8 3.1
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error correlations of 0.95 and more are introduced, the DGF
increases by about 0.6 for small a priori errors.

3.4. Dependence on cloud vertical correlation

In the previous sections, we have assumed that the cloud
layers in the a priori profile are uncorrelated, i.e. the off-
diagonal components in Sa are zero. Since the LWC profiles of
stratiform clouds are often close to quasi-adiabatic (Korolev
et al., 2007), the cloud layers will generally not be
independent from each other. In order to assess the effect of
cloud vertical correlation on the DGFs and on the retrieved
LWC we perform an experiment in which we assume that the
correlation of two cloud layers exponentially decreases with
their distance to each other (Fig. 6a), such that the covariance
of two layers i and j can be written as

Sij = σ2
a exp −0:5 i−jð Þ2 = β2

! "
ð3Þ

where σa
2 is the diagonal entry of Sa. The parameter β is set to

1 and 3, respectively, where the larger value implies a
stronger correlation of the cloud layers in the a priori profile.
If the cloud layers are correlated and therefore also the errors,
the a priori profile hasmoreweight in the retrieval than in the
uncorrelated case. The influence of the a priori profile on the
solution increases with the correlation. The effect on the
relative LWC error and on the pieces of information which
come from the measurement is shown in Fig. 6b. Introducing
correlation leads to a reduced LWC error, but also to a reduced
number of DGF, since we put more confidence in the a priori
profile.

3.5. Drizzle case analysis

As mentioned in Sections 1 and 2, Z-LWC relationships are
less accurate for clouds including drizzle than for clouds
without drizzle. Krasnov and Russchenberg (2002, 2006)
have developed a technique which distinguishes light
drizzling and heavy drizzling clouds from non-drizzling
clouds using radar reflectivity to lidar optical extinction
ratio thresholds. In heavy drizzling situations, they found a Z-
LWC relationhip with parameters a=323.59 and b=1.58. In
this case, the forward model error increases to about 5 dB.
Remember, that in non-drizzling situations the error has been
estimated to be about 1.5 to 3 dB.

We repeat the analysis for cloud A and B assuming that we
are dealing with heavy drizzling clouds. Since we apply a
different forward model, i.e. the formulation for heavy
drizzling clouds by Krasnov and Russchenberg (2002,
2006), with different error characteristics, the Jacobian K
and the elements in Se have to be adapted. The diagonal
elements of Se are now the sum of the square of the
measurement error (3 dB) and the square of the forward
model error (5 dB) and are therefore 34 dB2.

Compared to Fig. 4, the trade-off between the relative
error in LWC and the DGF is qualitatively similar (not shown).
However, the maximum LWC error, i.e. the error associated
with the maximum number of DGF, is 96% for the retrieval
employing the radar reflectivities only. This means that,
without a priori information and fully relying on the Z-LWC
relationship, the error of the retrieved LWC is almost 100%.

For a 30% error in the retrieved LWC, a priori information has
to be included, whose accuracy must be at least 32%.
However, in this case, only 1.9 DGF (cloud A) and 3.3 DGF
(cloud B) are in the measurements. In other words, 88% of the
vertical information comes from the a priori profile. When

Fig. 6. Sensitivity of the DGF to non-zero, off-diagonal elements in Sa.
(a) Correlation between two layers within a cloud as a function of their
distance to each other according to Eq. (3). (b) Relative LWC error (bottom)
and degrees of freedom for signal (top) as a function of the a priori LWC error
for cloud A using all microwave channels (K-, V-Band, 90, 150) and cloud
radar reflectivities. The three curves in each panel of b) represent different
values of β in Sa. No correlation of cloud layers, i.e. zero off-diagonal elements
(β=0, solid), correlation of cloud layers corresponding to curves in
a) (β=1, dotted; β=3, dashed).
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adding the MWR measurements, this is at least reduced to
81%, since the MWR TBs add about 1 DGF.

3.6. Impact on radiative fluxes and heating rates

As mentioned in Section 1, accurate LWC profiles are
essential for radiative transfer applications and for the
assessment of the effect of clouds on broadband fluxes and
heating rates. In order to get an idea of the sensitivity of fluxes
and heating rates with respect to LWC errors, we assumed a
LWC uncertainty of 30% and applied the LWC profiles to a
broadband radiative transfer model, namely the Rapid
Radiative Transfer Model (RRTMG) of the Atmospheric and
Environmental Research (AER), Inc. (Mlawer et al., 1997;
Clough et al., 2005). The RRTMG is a correlated-k model using
the gaseous absorption coefficients directly from the line-by-
line radiative transfer model (LBLRTM) of the AER, Inc. Fluxes
and heating rates are calculated over 14 contiguous bands in
the shortwave and 16 in the longwave regime. For multiple
scattering, a two-stream algorithm is used (Oreopoulos and
Barker, 1999).

Since the droplet effective radius is also needed as an
input parameter in the RRTMG, we calculated the effective
radius according to Frisch et al. (1995) with an assumed total
number concentration of 288 cm−3 and a lognormal size
distribution width of 0.38, which both represent mean values
of continental clouds (Miles et al., 2000). Temporally
interpolated radiosonde data were applied to derive the
required thermodynamic profiles. The solar surface albedo
was set to 0.2 and the cosine of the solar zenith angle to 0.7,
leading to an incident top of atmosphere solar flux of about
945 Wm−2. The radiative transfer calculations have been
performed using the vertical resolution of the cloud radar, i.e.
about 43 m.

First, fluxes and heating rates have been calculated using
the original LWC profiles shown in Fig. 1. Then, the LWC has
been varied by 30% resulting in LWP variations of 27.8 gm−2

and 206.5 gm−2 for cloudA and B, respectively. The calculated
shortwave (SW) and longwave (LW) cloud radiative effect
(CRE) at the surface, which is defined as the difference of the
cloudy and clear sky net surfacefluxes, is shown in Table 3. SW
fluxes are most sensitive to variations in the LWP, when the
LWP is small (cf. Fig. 5 in Sengupta et al., 2003, Turner et al.
2007b). Thus, a LWC uncertainty of 30% leads to a larger
uncertainty in the SW CRE for cloud A than for cloud B, since
the LWP of cloud A (92.7 gm−2) is considerably smaller than
the LWPof cloud B (688.4 gm−2). Reducing the LWC leads to a

reduced SW cooling by 46.9 Wm−2 (cloud A) and 19.9 Wm−2

(cloud B), while enlarging the LWC enhances the SW cooling
by 30.4 Wm−2 (cloud A) and 11.1 Wm−2 (cloud B). The
variations in LWC have only a small effect on the cloud
induced LW warming at the surface with differences of up to
0.5 Wm−2 because the clouds are opaque in the infrared and
the LWwarming at the surface is more sensitive to changes in
cloud base height.

Table 3
Shortwave and longwave cloud radiative effect (CRE) at the surface (Wm−2)
for cloud A and B assuming an LWC error of 30%. The cloud radiative effect is
defined as the difference between the cloudy and clear sky net fluxes. The
corresponding values of the LWP (gm−2) are also shown.

Cloud A Cloud B

LWP
(gm−2)

SW CRE
(Wm−2)

LW CRE
(Wm−2)

LWP
(gm−2)

SW CRE
(Wm−2)

LW CRE
(Wm−2)

Orig.
LWP

92.7 −422.3 68.1 688.4 −551.4 80.5

−30% 64.9 −375.4 67.8 481.9 −531.5 80.3
30% 120.5 −452.7 68.3 894.9 −562.5 80.7

Fig. 7. Sensitivity tests of SW and LW heating rates with respect to LWC
variations of 30%. Changes are relative to the HR of the original LWC profiles.
(a) and (b), SW and LWHR differences (K day−1) for cloud A; (c) and (d) SW
and LW HR differences for cloud B. The cloud boundaries are indicated by
horizontal solid lines.
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The effect on the LW heating rates, especially at the cloud
boundaries can be significant. Fig. 7 shows the differences of
the heating rates compared to the results with the original
LWC profiles. LW cooling at cloud top is about −137 and
−265 K day−1 for clouds A and B, respectively. LW warming
in the lower cloud levels is about 10 and 23 K day−1. For
cloud A, a reduced LWC leads to a reduced cooling at cloud
top by 18% (25 K day−1) but also to a reduced warming at
cloud base by 30% (3 K/day−1). Increasing the LWC leads to
an opposite effect (stronger cooling at cloud top, stronger
warming at cloud base). The LW heating rate differences of
the thicker cloud are less pronounced, especially with respect
to the large cloud top cooling of −265 K day−1.

For the SW heating rates, the differences are visible in the
uppermost cloud levels. Increasing the LWC by 30% results in
an increased absorption of SW radiation in these levels and
increases the SW heating rate by about 4 K day−1 (cloud A)
and 9 K day−1 (cloud B), which corresponds to a relative
increase of about 16% and 12%, respectively. Reducing the
LWC reduces the SW heating rate by essentially the same
amounts.

It has been shown that variations in the LWC profiles can
strongly affect the surface energy balance and the atmo-
spheric heating rates. Since the vertical redistribution of
energy by clouds has an important impact on the atmospheric
dynamics and the hydrological cycle (Stephens, 2005),
uncertainties in LWC and therefore corresponding uncertain-
ties in heating rates will have an impact on related physical
processes, too. However, to assess the overall impact on other
NWP model variables, sensitivity studies have to be per-
formed in the whole model framework including all physical
components.

4. Summary and outlook

In this study, we assessed the influence of a priori,
measurement and forward model errors on the information
content in the measurements with respect to the LWC
retrieval and on the retrieved LWC errors. If the a priori
uncertainties are small compared to the measurement and
forward model errors, the a priori profile dominates the
solution; if they are large, the LWC profile information comes
primarily from the measurements. The DGF and the retrieved
LWC errors are also sensitive to the measurements them-
selves which are included in the retrieval, i.e. MWR TBs, radar
reflectivities or a combination of both.

By means of two realistic LWC profiles, we have
demonstrated that sensor synergy, i.e. the combination of
cloud radar reflectivity and MWR brightness temperature
observations, outperforms other retrievals using data from
one instrument alone. More precisely, MWR measurements
can increase the information content compared to a retrieval
using radar reflectivities alone and add about 1 degree of
freedom for signal corresponding to the information of the
LWP. Thus, the results of Crewell et al. (2009) are confirmed
in that the zenith MWR measurements alone do not contain
enough information about the vertical profile of LWC. Radar
reflectivity measurements alone do include information on
the vertical distribution of liquid water content. However, for
the two non-drizzling cloud cases, the error in the derived
LWC is 63% assuming that the a priori profile is unknown and

the measurement error is 3 dB. This error is reduced by a few
percent, if the individual measurement errors are correlated.

In drizzle situations, Z-LWC-relationships are less reliable
and retrieved LWC errors are 100% or larger. LWC profiles
with such large errors are not desirable, as the uncertainty in
the radiative fluxes that arise from the uncertainties in LWC
can be significant. In order to diminish the LWC errors,
appropriate a priori information has to be included. By means
of the two cloud cases, we demonstrated that for realistic
measurement errors of 0.5 K and 3 dB for MWR brightness
temperatures and radar reflectivities, respectively, the un-
certainty of the a priori profile must be smaller than 100% to
achieve a relative LWC error of 50% in non-drizzling cases.
While for small a priori uncertainties the retrieved LWC error
is of the same order of magnitude as the a priori error itself,
the spread between a priori and retrieved error and therefore
the benefit of the retrieval rapidly increases for a priori errors
of about 30% or larger.

The importance of the a priori profile has been empha-
sized with regard to a drizzle situation, when the Z-LWC
relationship is less accurate. In order to achieve a 50% (30%)
LWC error in the drizzling cloud case, the a priori uncertainty
must be smaller than 65% (32%).

If the information content in the observation is low
because of large measurement or forward model errors,
accurate a priori information on the LWC profile is required to
keep the error of the solution small. However, the accuracy of
the a priori profile (in the IPT the accuracy of the cloud model
by Karstens et al. (1994)), is not well known and it is
questionable if a 32% a priori uncertainty is a realistic value.
Furthermore, the correlation of the cloud layers, and
therefore the off-diagonal elements in Sa, are relatively
unknown and better statistics are needed in this respect to
describe the errors accurately. Furthermore, it is likely that
the a priori profile, and especially the correlation between
different levels in the a priori profile, is very dependent on the
synoptic and mesoscale conditions that are driving the cloud
formation/evolution. Therefore, not only the accuracy of the
measurements and the forward models must be improved,
but also the knowledge of the a priori profile. In this respect,
more in situ data are needed which span the wide range of
atmospheric conditions and corresponding LWC profiles. This
information could be gained, for example, from unmanned
aerial vehicles (UAVs), which are equipped with a LWC
sensor, e.g. a forward spectral scattering or a Nevzorov probe.
From such measurements, more accurate a priori LWC
profiles and realistic layer to layer covariances could be
derived. In this context, the RACORO experiment of the ARM
Aerial Vehicle Program is promising, which took place from
January to June 2009 in the vicinity of the ARM Southern
Great Plains measurement site (http://acrf-campaign.arm.
gov/racoro). For the first time, a long-term aircraft campaign
was undertaken for the systematic in situ sampling of
boundary-layer water cloud properties.

The applied formalism allows for the inclusion of
additional measurements or instruments to further constrain
the solution. Since cloud radars are insensitive to the smallest
droplets located near the bottoms of cloud, lidar measure-
ments, which are sensitive to higher concentration of smaller
particles, can provide valuable information for these heights.
In this context, Raman lidar measurements can be used to
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derive vertical profiles of LWC (Whiteman and Melfi, 1999).
The drizzling clouds (Section 3.4) can be identified and
mitigated by using information of a dual-wavelength radar.
Hogan et al. (2005) showed that in boundary layer clouds,
accurate LWC profiles can be retrieved from 35 GHz and
94 GHz cloud radar measurements, if the droplets scatter in
the Rayleigh regime at both frequencies. The advantage of
this technique is that no assumptions on the droplet size
distribution have to be made. Spectral infrared measure-
ments could also improve the solution in cases where LWP is
low (b50 gm−2) since they are very sensitive to changes in
liquid water in this regime (Turner 2007). As a first step,
Löhnert et al. (2009) successfully combined MWR measure-
ments with information of an infrared spectrometer in the
framework of the IPT to derive profiles of temperature and
humidity. As a next step, it is planned to extend this retrieval
to a combined scheme for thermodynamic and cloud
properties, and to incorporate cloud radar measurements to
aid in the retrieval of cloud microphysical properties.

Retrievals as described in this paper have a large potential
since the strengths of individual measurement systems are
combined yielding a comprehensive characterization of the
atmospheric state.

Acknowledgements

The IPT retrieval used data obtained by the Atmospheric
Radiation Measurement (ARM) Program sponsored by the U.S.
Department of Energy, Office of Science, Office of Biological
and Environmental Research, Climate and Environmental
Sciences Division. We would like to thank Ewan O'Connor
who provided the Cloudnet Target Categorization product
included in the IPT and Wenchieh Yen who helped with the
radiative transfer calculations.

References

Atlas, D., 1954. The estimation of cloud parameters by radar. J. Meteor. 11,
309–317.

Clough, S.A., Shephard, M.W., Mlawer, E.J., Delamere, J.S., Iacono, M.J., Cady-
Pareira, K., Boukabara, S., Brown, P.D., 2005. Atmospheric radiative
transfer modeling: A summary of the AER codes. J. Quant. Spectrosc.
Radiative Trans. 91, 233–244.

Crewell, S., Löhnert, U., 2003. Accuraccy of cloud liquid water path from
ground-based microwave radiometry. Part II. Sensor accuracy and
synergy. Radio Sci. 38 (3). doi:10.1029/2002RS002634.

Crewell, S., Ebell, K., Löhnert, U., Turner, D., 2009. Can liquid water profiles be
retrieved from passive microwave zenith observations? Geophys. Res.
Lett. 36. doi:10.1029/2008GL036934.

Fox, N.I., Illingworth, A.J., 1997. The retrieval of stratocumulus cloud
properties by ground-based cloud radar. J. Appl. Meteor. 36, 485–492.

Frisch, A., Fairall, C., Snider, J., 1995. Measurement of stratus cloud and drizzle
parameters in ASTEX with a Kα-Band doppler radar and a microwave
radiometer. J. Atmos. Sci. 52, 2788–2799.

Frisch, A.S., Feingold, G., Fairall, C.W., Uttal, T., Snider, J.B., 1998. On cloud
radar and microwave measurements of stratus cloud liquid water
profiles. J. Geophys. Res. 103, 23195–23197.

Handwerker, J., Miller, M.A., 2008. Intercomparison of measurements
obtained by vertically pointing collocated 95 GHz and 35.5 GHz cloud
radars. Proc. Fifth European Conference on Radar in Meteorology and
Hydrology, Helsinki, Finland, Finish Meteorological Institute, P5.3.
Available online at http://erad2008.fmi.fi/proceedings/extended/
erad2008-0124-extended.pdf.

Hogan, R.J., Gaussiat, N., Illingworth, A.J., 2005. Stratocumulus liquid water
content from dual-wavelength radar. J. Atmos. Oceanic Technol. 22,
1207–1218.

Illingworth, A.J., Hogan, R.J., O'Connor, E.J., Bounoil, D., Brooks, M.E., Delanoë,
J., Donovan, P., Eastment, J.D., Gaussiat, N., Goddard, J.W.F., Haeffelin, M.,

Klein, H., Baltink, H.K., Krasnov, O.A., Pelon, J., Piriou, J.-M., Protat, A.,
Russchenberg, H.W.J., Seifert, A., Tompkins, A.M., van Zadelhoff, G.-J.,
Vinit, F., Willén, U., Wilson, D.R., Wrench, C.L., 2007. CLOUDNET
continous evaluation of cloud profiles in seven operational models
using ground-based observations. Bull. Amer. Meteor. Soc. 88 (6),
883–898.

Karstens, U., Simmer, C., Ruprecht, E., 1994. Remote sensing of cloud liquid
water. Meteor. Atmos. Phys. 54, 157–171.

Khain, A., Pinsky, M., Magaritz, L., Krasnov, O., Russchenberg, H., 2008.
Combined observational and model investigations of the Z-LWC
relationship in stratocumulus clouds. J. Appl. Meteor. Clim. 47, 591–606.

Korolev, A.V., Isaac, G.A., Strapp, J.W., Cober, S.G., Barker, H.W., 2007. In situ
measurements of liquid water content profiles in midlatitude stratiform
clouds. Q. J. R. Meteorol. Soc. 133, 1693–1699.

Krasnov, O.A., Russchenberg, H.W.J., 2002. The relation between the radar to
lidar ratio and the effective radius of droplets inwater clouds: an analysis
of statistical models and observed drop size distributions. Preprints, 11th
Conf. on Cloud Physics, Ogden, Utah. Amer. Meteor. Soc, p. P1.7.

Krasnov, O.A., Russchenberg, H.W.J., 2006. A synergetic radar-lidar technique
for the LWC retrieval in water clouds. Preprints, Seventh Int. Symp. on
Tropospheric Profiling: Needs and Techniques, Boulder, CO.

Liebe, H.J., Hufford, G.A., Manabe, T., 1991. A model for the complex
permittivity of water at frequencies below 1 THz. Int. J. Infrared &
Millimeter Waves 12 (7). doi:10.1007/BF01008897.

Liebe, H.J., Hufford, G.A., Cotton, M.G., 1993. Propagation modeling of moist
air and suspended water/ice particles at frequencies below 1000 GHz.
Atmospheric Propagation Effects through Natural and Man-Made
Obscurants for Visible through MM-Wave Radiation, AGARD-CP-542,
pp. 3.1–3.10.

Löhnert, U., Crewell, S., Simmer, C., Macke, A., 2001. Profiling cloud liquid
water by combining active and passive microwave measurements with
cloud model statistics. J. Atmos. Oceanic Technol. 18, 1354–1366.

Löhnert, U., Crewell, S., Simmer, C., 2004. An integrated approach towards
retrieving physically consistent profiles of temperature, humidity and
cloud liquid water. J. Appl. Meteor. 43, 1295–1307.

Löhnert, U., Crewell, S., Krasnov, O., O'Connor, E., Russchenberg, H., 2008.
Advances in continuously profiling the thermodynamic state of the
boundary layer: integration of measurements and methods. J. Atmos.
Oceanic Technol. 25, 1251–1266.

Löhnert, U., Turner, D.D., Crewell, S., 2009. Ground-based temperature and
humidity profiling using spectral infrared and microwave observations:
Part 1. Retrieval performance in clear sky conditions. J. Appl. Meteor.
Clim. 5, 1017–1032.

Mace, G.G., et al., 2006a. Cloud radiative forcing at the atmospheric radiation
measurement program climate research facility: 1. Technique, valida-
tion, and comparison to satellite derived diagnostic quantities.
J. Geophys. Res. 111, D11S90. doi:10.1029/2005JD005921.

Mace, G.G., Benson, S., Kato, S., 2006b. Cloud radiative forcing at the
atmospheric radiation measurement program climate research facility:
2. Vertical redistribution of radiant energy by clouds. J. Geophys. Res.
111, D11S91. doi:10.1029/2005JD005922.

Mace, G.G., Benson, S., 2008. The vertical structure of cloud occurrence and
radiative forcing at the SGP ARM site as revealed by 8 years of continuous
data. J. Clim. 21, 2591–2610.

Mather, J., McFarlane, S., Miller, M., Johnson, K., 2007. Cloud properties and
associated radiative heating rates in the tropical western Pacific. J. of
Geophys. Res. 112, D05201. doi:10.1029/2006JD007555.

Mattioli, V., Basili, P., Bonafoni, S., Ciotti, P., Pulvirenti, L., Pierdicca, N.,
Marzano, F.S., Consalvi, F., Fionda, E., Westwater, E.R., 2006. Cloud liquid
models for propagation studies: Evaluation and refinements. Proc.
‘EuCAP 2006’ , Nice, France, 6–10 November 2006 (ESA SP-626, October
2006).

McFarlane, S., Mather, J., Ackerman, T., Liuand, Z., 2008. Effect of clouds on the
calculated vertical distribution of shortwave absorption in the tropics.
J. Geophys. Res. 113, D18203. doi:10.1029/2008JD009791.

Miles, N., Verlinde, J., Clothiaux, E., 2000. Cloud droplet size distributions in
low-level stratiform clouds. J. Atmos. Sci. 57, 295–311.

Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono,M.J., Clough, S.A., 1997. Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k
model for the long wave. J. Geophys. Res. 102, 16,663–16,682.

Oreopoulos, L., Barker, H.W., 1999. Accounting for subgrid-scale cloud
variability in amulti-layer 1-D solar radiative transfer algorithm. Quart. J.
Roy. Meteor. Soc. 125, 301–330.

Rodgers, C.D., 2000. Inverse methods for atmospheric sounding: Theory and
practice. World Scientific. 238 pp.

Rose, T., Crewell, S., Löhnert, U., Simmer, C., 2005. A network suitable
microwave radiometer for operational monitoring of the cloudy
atmosphere. Atmos. Res. 75, 183–200.

Rosenkranz, P.W., 1998. Water vapor microwave continuum absorption: a
comparison of measurements and models. Radio Sci. 33, 919–928.

67K. Ebell et al. / Atmospheric Research 98 (2010) 57–68



Salonen, E., Uppala, S., 1991. New prediction method of cloud attenuation.
Electronic Newsletter 27 (No.12), 1106–1110.

Sauvageot, H., Omar, J., 1987. Radar reflectivity of cumulus clouds. J. Atmos.
Ocean. Tech. 4, 264–272.

Sengupta, M., Clothiaux, E., Ackerman, T., Kato, S., Min, Q., 2003. Importance
of accurate liquid water path for estimation of solar radiation in warm
boundary layer clouds: an observational study. J. Clim. 16, 2997–3009.

Stephens, G.L., 2005. Cloud feedbacks in the climate system: a critical review.
J. Atmos. Sci. 18, 237–273.

Turner, D.D., 2007. Improved ground-based liquidwater path retrievals using
a combined infrared and microwave approach. J. Geophys. Res. 112,
D15204. doi:10.1029/2007JD008530.

Turner, D.D., Clough, S.A., Liljegren, J.C., Clothiaux, E.E., Cady-Pereira, K.E.,
Gaustad, K.L., 2007a. Retrieving liquid water path and precipitable water
vapor from the atmospheric radiation measurement (ARM) microwave
radiometers. IEEE Trans. Geosci. Remote Sens. 45 (11), 3680–3690.

Turner, D.D., et al., 2007b. Thin liquid water clouds: their importance and our
challenge. Bull. Amer. Meteor. Soc. 88, 177–190.

Turner, D.D., Loehnert, U., Cadeddu, M., Crewell, S., Vogelmann, A., 2009.
Modifications to the water vapor continuum in themicrowave suggested
by ground-based 150 GHz observations. IEEE Trans. Geosci. Remote Sens.
47, 3326–3337. doi:10.1109/TGRS.2009.202262.

Wang, J., Rossow, W.B., 1998. Effects of cloud vertical structure on
atmospheric circulation in the GISS GCM. J. Clim. 12, 3010–3029.

Wang, Z., Sassen, K., 2001. Cloud type and macrophysical property retrieval
using multiple remote sensors. J. Appl. Meteor. 40, 1665–1682.

Warner, J., 1955. The water content of cumuliform clouds. Tellus 7, 449–457.
Westwater, E., 1978. The accuracy of water vapor and cloud liquid

determination by dual-frequency ground-based microwave radiometry.
Radio Sci. 13, 667–685.

Whiteman, D.N., Melfi, S.H., 1999. Cloud liquid water, mean droplet radius,
and number denisity measurements using a Raman lidar. J. Geophys. Res.
104 (D24), 31,411–31,419.

Webpage of RACORO experiment: http://acrf-campaign.arm.gov/racoro. Last
accessed on 7 May 2010.

68 K. Ebell et al. / Atmospheric Research 98 (2010) 57–68


	On characterizing the error in a remotely sensed liquid water content profile
	Introduction
	Methodology
	Information content and error estimates
	Dependence on measurement vector
	Dependence on measurement error
	Dependence on correlated measurement and forward model errors
	Dependence on cloud vertical correlation
	Drizzle case analysis
	Impact on radiative fluxes and heating rates

	Summary and outlook
	Acknowledgements
	References


