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ABSTRACT

A real-time GSI-based and ensemble-based data assimilation (DA) and forecast system was implemented

at the University of Oklahoma during the 2015 Plains Elevated Convection at Night (PECAN) experiment.

Extensive experiments on the configuration of the cycled DA and on both the DA and forecast physics

ensembles were conducted using retrospective cases to optimize the system design for nocturnal convection.

The impacts of radar DA between 1200 and 1300UTC, as well as the frequency and number of DA cycles and

the DA physics configuration, extend through the following night. Ten-minute cycling of radar DA leads to

more skillful forecasts than both more and less frequent cycling. The Thompsonmicrophysics scheme for DA

better analyzes the effects of morning convection on environmental moisture than WSM6, which improves

the convection forecast the following night. A multi-PBL configuration during DA leads to less skillful short-

term forecasts than even a relatively poorly performing single-PBL scheme. Deterministic and ensemble

forecast physics configurations are also evaluated. Thompson microphysics and the Mellor–Yamada–

Nakanishi–Niino (MYNN) PBL provide the most skillful nocturnal precipitation forecasts. A well thought

out multiphysics configuration is shown to provide advantages over evenly distributing three of the best-

performing microphysics and PBL schemes or a fixed MYNN/Thompson ensemble. This is shown using

objective and subjective verification of precipitation and nonprecipitation variables, including convective

initiation. Predictions of the low-level jet are sensitive to the PBL scheme, with the best scheme being variable

and time dependent. These results guided the implementation and verification of a real-time ensemble DA

and forecast system for PECAN.

1. Introduction

It has long been known that the precipitation clima-

tology over the Great Plains region of the United States

has a nocturnal maximum (Kincer 1916; Wallace 1975;

Easterling and Robinson 1985; Heideman and Fritsch

1988; Colman 1990). Nocturnal convection is typically

elevated (i.e., rooted well above ground level) and is

often initiated, organized, and maintained by different

processes than diurnal convection such as bores and

other disturbances on the stable boundary layer (Parker

2008; Trier et al.2011;Marsham et al. 2011; Coleman and

Knupp 2011; Erlingis and Barros 2014) and low-level

jets (LLJs; Carbone et al. 1990; Trier and Parsons 1993;

Trier et al. 2006; Tuttle and Davis 2006; Coniglio et al.

2010; Trier et al. 2010; French and Parker 2010). The

notoriously low skill of warm-season quantitative pre-

cipitation forecasting is due in large part to the low

predictability of nocturnal convective initiation (CI) and

subsequent evolution of nocturnal convection (Davis

et al. 2003; Fritsch and Carbone 2004; Weisman et al.

2008). Improvements to the predictability of nocturnal

convection will therefore require better representation

of the processes across multiple scales that influence

nocturnal convection.

The Plains Elevated Convection at Night (PECAN)

field experiment was designed to comprehensively ob-

serve summer nocturnal convection and related features

over the Great Plains (Geerts et al. 2017). One of the
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primary goals of PECAN was to improve the prediction

of nocturnal CI, nocturnal mesoscale convective systems

(MCSs), atmospheric bores, and nocturnal LLJs ‘‘with a

particular focus on the next generation convective-

permitting models and advanced assimilation tech-

niques’’ (Geerts et al. 2017).

Much of the literature on model configurations for

predicting convection in the Great Plains focuses pri-

marily on daytime convection or discusses only the

forecast lead time, with little or no mention of the

differences between daytime and nighttime results

(e.g., Stensrud et al. 2000; Hou et al. 2001; Mittermaier

2007; Clark et al. 2008; Schwartz et al. 2010; Johnson

et al. 2011, 2014; Johnson and Wang 2012, 2013).

However, nocturnal convection and related phenom-

ena are unique in that they are typically dependent on

processes that are distinct from daytime convection.

For example, idealized (Parker 2008) and real-data

(Trier et al. 2006, 2011; Erlingis and Barros 2014) case

studies have demonstrated the sensitivity to features

such as atmospheric bores, LLJs, elevated frontal

zones, mesoscale regions of elevated ascent, and land–

atmosphere interactions during the previous day.

Therefore, the goal of this study is to determine the

sensitivity of nocturnal convection forecasts to differ-

ent aspects of the ensemble data assimilation (DA)

and forecast system design in order to improve its

configuration for the unique foci of PECAN. In par-

ticular, this paper will focus on the configuration of the

cycled ensemble Kalman filter (EnKF) radar DA (i.e.,

number of cycles, interval between cycles, and total

length of DA) and the physics configuration of the DA

and forecast ensembles. This paper presents the first

work specifically focused on a systematic evaluation of

convection-permitting modeling system configurations

specifically for nocturnal convection. This evaluation

of retrospective forecasts from 2014 focuses on

morning (i.e., 1300 UTC) initialized forecasts for

consistency with the real-time PECAN forecasts from

2015, which are guided by these results (Johnson et al.

2016, manuscript submitted to Wea. Forecasting,

hereafter Part II).

Early studies using cycled EnKF for radar DA have

shown a 60-min period of DA to be sufficient to analyze

convective systems (e.g., Aksoy et al. 2009; Dowell et al.

2011; Yussouf et al. 2013). Yussouf and Stensrud (2012)

have also shown promising results with only 30min of

radar DA. Since these past studies have taken place in a

research setting where the time constraints of a real-

time setting are not present, there has not been much

careful examination of the marginal benefit of 60 versus

30min of radar DA in the published literature. This

study will therefore conduct such an examination. It has

been shown that cycling the radar DA at too frequent of

an interval does not give the increments enough time to

adjust to the model while cycling at too infrequent of an

interval can degrade analysis quality if four-dimensional

assimilation techniques are not used (Wang et al. 2013).

This study will therefore also examine the impact of the

time interval between radar DA cycles.

Another important aspect of the DA configuration is

the physics parameterizations used during DA, which

may be different than the optimal configurations during

the longer free forecasts (e.g., Yussouf and Stensrud

2012). The impact of adding similar parameter pertur-

bations to the microphysics scheme during radar DA as

in Yussouf and Stensrud (2012) will therefore also be

examined within the context of larger-scale and longer-

lead-time forecasts of nocturnal convection than the

observation system simulation experiment (OSSE)

forecasts of a discrete supercell in Yussouf and Stensrud

(2012). The impacts of using an entirely different mi-

crophysics scheme (i.e., Thompson; Thompson et al.

2008) during DA will also be evaluated, as well as the

impacts of different boundary layer parameterization

scheme configurations during DA.

Convective precipitation forecasts are highly sensitive

to uncertainties in the parameterization schemes rep-

resenting microphysical and boundary layer processes

(e.g., Johnson et al. 2011; Duda et al. 2014). However,

there is still limited theoretical or experimental guid-

ance on how to optimally sample these sources of

uncertainty in the convection-permitting ensemble

forecast design (e.g., Duda et al. 2014). Such guidance is

even sparser within the context of nocturnal convective

systems. This study will use the many physics options in

theWeatherResearch and Forecasting (WRF)Model to

examine not only the best physics options for predicting

nocturnal convection but also the sampling of physics

error in the ensemble configuration to generate forecast

spread. Emphasis will be placed on features relevant for

the unique PECAN foci of nocturnal MCSs, nocturnal

CI, and nocturnal LLJs. Atmospheric bore predictions

will be evaluated in Part II only, given the availability of

observations on sufficient time and space scales only

during the 2015 PECAN field experiment.

This paper is part one of a two-part study on the de-

sign and implementation of a multiscale Gridpoint Sta-

tistical Interpolation analysis system (GSI) based EnKF

DA (Johnson et al. 2015) and ensemble forecast system

during PECAN. In the remainder of this paper, section 2

describes the setup of the different experiments that

were conducted to study the optimal system configura-

tion for nocturnal convection prediction. Results are

presented and discussed in section 3 while section 4

contains a summary and conclusions. Part II will describe
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the real-time implementation of the system for daily

forecasts in support of PECANfield operations and some

preliminary verification of the real-time forecasts.

2. Methods and experiments

a. GSI-based multiscale data assimilation system

The GSI-based DA system that was described and

extended to a multiscale framework including direct as-

similation of radar data in Johnson et al. (2015) is used in

this study. The GSI-based DA system uses a 40-member

ensemble based on the Advanced Research version of

WRF (ARW) version 3.6.1 with the EnKF configuration

described in Johnson et al. (2015). Conventional surface

and upper-air observations from the data stream of the

operational North American Mesoscale Forecast System

at the National Centers for Environmental Prediction

(NCEP), including surface andmesonet stations, Aircraft

Communication, Addressing, and Reporting System

(ACARS), NOAA wind profiler platforms, and radio-

sondes, are assimilated every 3h on a domain approxi-

mately covering the continentalUnited Stateswith 12-km

grid spacing (Fig. 1). For the outer domain, a 3-h obser-

vation window is used with 4D EnKF, which uses first-

guess and ensemble covariance values valid at the same

time as the observation, which can be different than the

analysis time (Johnson et al. 2015). Additional quality

control checks are also performed with the GSI part of

the system to check for gross observation errors (e.g.,

excessive departure from first guess) and to adjust the

observation error statistics of questionable observations.

Increasing the observation error of a questionable ob-

servation reduces the impact that it has on the analysis

because it causes more weight to be given to the first

guess. Before making such adjustments, the observation

error statistics are based on observation type and altitude

and are provided by a static table within theGSI package.

Nested within the 12-km domain is a convection-

permitting domain with 4-km grid spacing covering the

region of interest for PECANoperations on which radar

observations of reflectivity and radial velocity are as-

similated (Fig. 1). An observation error standard de-

viation of 5 dBZ and 2ms21 is assumed for reflectivity

and velocity, respectively. The quality control of radar

observations is described in detail in Johnson et al.

(2015). In short, theWarning Decision Support System–

Integrated Information (WDSS-II; Lakshmanan et al.

2007) software (available online at www.wdssii.org) is

used to dealias the velocity observations and remove

suspected nonmeteorological reflectivity observations.

The checks for remaining gross observation errors are

then also performed for the radar observations within

GSI. Covariance inflation and localization are typically

used with EnKF to account for sampling errors of the

finite ensemble size and underrepresentation of the

model error. The inflation and covariance localization

parameters follow the settings described in Johnson

et al. (2015).

b. Experiments on radar data assimilation
configuration

Unlike the 0000 UTC initialization time in Johnson

et al. (2015), an initialization time of 1300 UTC is used

for the 2014 forecasts to follow the initialization time of

the 2015 real-time PECAN forecasts (the subject of Part

II of this study). The 1300 UTC initialization time is

chosen as a compromise between assimilating as much

up-to-date data as possible and producing forecast

products in time to be useful to PECAN forecasters

during the late morning and early afternoon. Down-

scaling from the outer domain is performed at 1200UTC,

followed by the inner domain radarDA for 1h.While the

motivation for this work is an evaluation of the nocturnal

period of approximately 0300–0900 UTC, the forecast

period between 1300 and 0300UTC is also considered for

completeness.

Given the 1300 UTC initialization time and nocturnal

focus of these experiments, past studies using cycled

EnKF radar DA with afternoon initialization for day-

time storm prediction (e.g., Aksoy et al. 2009; Dowell

et al. 2011; Yussouf and Stensrud 2012; Yussouf et al.

2013; Wang et al. 2013) may not provide directly appli-

cable guidance on the optimal number of, and time in-

terval between, radar DA cycles. In addition to the

primarily diurnal focus of such earlier studies, the length

of forecast time (;15–21h) preceding the forecast

FIG. 1. Model domains used in this study. The outermost domain

has a grid spacing of 12 km. The domain enclosed by the blue box

has a grid spacing of 4 km.
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features of interest is also much greater than in the

earlier studies (typically minutes to a few hours). Fur-

thermore, there has not been extensive investigation of

the many different combinations of these settings in the

published literature, with the exception of Wang et al.

(2013), who used a simplified observation system simu-

lation experiment framework. Such an investigation is

needed for implementation of the real-time cycled

EnKF radar DA system because the added time and

computational cost of additional cycles ormore frequent

cycles may not be justified within the context of other

design trade-offs that may need to be made to meet

operational deadlines. Therefore, the first set of exper-

iments is designed to determine the sensitivity to, and

optimal configuration of, the radar DA cycling.

The first three experiments use a fixed length of DA

(60min), with cycling intervals of 5, 10, and 15min (5min.12-

cycle, 10min.6cycle, 15min.4cycle, respectively; Table 1). A 5-

min observation window is used in all experiments, as also

done in Wheatley et al. (2015). Two additional experiments

are then conductedwithonly a 30-min lengthofDA,with and

without a 30-min spinup period (10min.3cycle.1200downscale

and 10min.3cycle.1230downscale, respectively; Table

1). The experiment 10min.3cycle.1200downscale is

similar to 10min.6cycle in that the analyses are

downscaled from the outer domain at 1200 UTC, with

the difference that radar DA does not begin until

after 1230 UTC in 10min.3cycle.1200downscale. In

10min.3cycle.1230downscale, the downscaling from the

outer domain is done at 1230 UTC. Comparison of the two

experiments with 30min of radar DA controls for the

greater spinup time of convective-scale features on the

convection-allowing domain in 10min.6cycle than

10min.3cycle.1230downscale and would reveal any advan-

tages of a 30-min spinup period before beginning radarDA.

The above experiments are all conducted with the

WRF single-moment 6-class (WSM6; Hong and Lim

2006) microphysics scheme with parameter perturba-

tions during DA. The parameter perturbations were

applied to the variables listed in Table 2 of Yussouf and

Stensrud (2012) using values randomly selected from a

uniform distribution. The parameter values were ran-

domly selected once and remained fixed for all forecast

days and all experiments. Yussouf and Stensrud (2012)

showed the advantage of such perturbations within an

OSSE context for short-term predictions of a splitting

supercell. However, the suitability of such perturba-

tions for more complex real-data analyses used to ini-

tialize forecasts over larger space and time scales

remains unknown. Two additional experiments are

conducted to evaluate the sensitivity to this design

choice. In these experiments the WSM6 scheme with

parameter perturbations (i.e., WSM6*) is compared with

WSM6 without parameter perturbations (i.e., WSM6)

and a different microphysics scheme, also without per-

turbations (Thompson microphysics). These last two

experiments are labeled NOPERT and THOM in Table

1, respectively.

All of the above experiments result in analyses valid at

1300 UTC, which are used to initialize a deterministic

forecast from the ensemble mean analysis. The quality of

the analyses is evaluated by verification of the forecasts,

which all use the same physics configuration and differ

only in their initial conditions. The forecast physics con-

figuration is Thompson’s microphysics scheme, the

Mellor–Yamada–Nakanishi–Niino (MYNN; Nakanishi

andNiino 2009) planetary boundary layer (PBL) scheme,

the Goddard shortwave (Tao et al. 2003) and Rapid

Radiative Transfer Model for GCMs (RRTMG; Mlawer

et al. 1997) longwave radiation schemes, and the Noah

(Ek et al. 2003) land surface model. The forecasts are on

the convection-permitting 4-km domain (Fig. 1), so no

cumulus parameterization is used.

In addition to the deterministic forecasts described

above, three experiments are performed using different

PBL configurations during DA and 20-member ensem-

ble forecasts to evaluate the analysis quality (Table 2).

The three experiments are configured with a fixed

MYNN PBL scheme, a fixed quasi-normal scale elimi-

nation (QNSE; Sukoriansky et al. 2005) PBL scheme,

TABLE 1. Deterministic forecast experiments used to evaluate aspects of the radar data assimilation configuration. The asterisk after

WSM6 indicates the parameter perturbations as described in the text. The ‘‘10min.6cycle’’ experiment is also referred to as the control

(CTL) experiment.

Expt Cycling interval (min)

Length of

DA (min)

Start time of

DA (UTC)

Downscale time from

outer domain (UTC)

MP scheme

during DA

5min.12cycle 5 60 1200 1200 WSM6*

10min.6cycle (i.e., CTL) 10 60 1200 1200 WSM6*

15min.4cycle 15 60 1200 1200 WSM6*

10min.3cycle.1200downscale 10 30 1230 1200 WSM6*

10min.3cycle.1230downscale 10 30 1230 1230 WSM6*

NOPERT 10 60 1200 1200 WSM6

THOM 10 60 1200 1200 Thompson
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and a multi-PBL configuration (Table 2). Ensemble

forecasts are used for evaluation so that the full advan-

tage of the multi-PBL configuration might be seen. The

forecast physics configuration is the same for all three

of these experiments, selected based on the forecast

physics experiments below, and is shown in Table 3. The

multi-PBL DA configuration also follows the PBL col-

umn of Table 3, extended to the 40-member DA ensem-

ble by configuring the PBL schemes of members 21–40

the same as members 1–20 in Table 3.

c. Experiments on forecast physics configuration

Experiments are also conducted to understand the

impacts of using different physics parameterizations

during the forecast period. One goal of these experi-

ments is to understand which physics configurations

provide the best predictions of nocturnal convection and

related features. A second goal of these experiments is

to understand which combination of physics configura-

tions best represents the forecast uncertainty through

ensemble spread. Convective-scale forecasts can be

sensitive to many aspects of themodel physics, including

the microphysics scheme, PBL scheme, land surface

model, radiation scheme, and cumulus scheme of the

model driving the lateral boundary conditions. To keep

the number of experiments manageable, the focus of

these experiments is on the microphysics (MP) and PBL

physics parameterizations based on their demonstrated

importance in convection-permitting forecasts (Johnson

et al. 2011). For all of these experiments, the forecasts

are initialized with the analyses from the 10min.6cycle

experiment so the only differences among them are the

forecast physics (Table 4).

The relative biases of different PBL schemes in WRF

depend strongly on the time of day at which they are

evaluated (Coniglio et al. 2013). Past studies of forecast

sensitivities to the PBL scheme have focused on very

specific features or applications such as dryline location

(Coffer et al. 2013), tropical cyclones (Hill and

Lackmann 2009), the southwest U.S. monsoon (Bright

and Mullen 2002), or air quality forecasting (Hu et al.

2010). Erlingis and Barros (2014) showed differences in

nocturnal MCS simulation attributable to whether

Mellor–Yamada–Janjić (MYJ; Janjić 1994, 2001) or

Yonsei University (YSU; Noh et al. 2003) was the PBL

scheme for a single case study. However, there has not

been a systematic study over many cases and many PBL

schemes of how the PBL scheme impacts nocturnal

convection. One way that nocturnal convection differs

from diurnal convection is that it typically occurs in the

presence of a very stable PBL butmay also be influenced

by PBL processes from the previous day (Erlingis and

Barros 2014). This study systematically evaluates the

impact of PBL scheme configuration, within both de-

terministic and ensemble contexts, on forecasts of noc-

turnal convection and related features in the Great

Plains. Toward this end, five deterministic forecasts are

initialized from the ensemble mean analysis with the

physics configuration described in section 2b (i.e., CTL

in Table 4), except that each forecast uses either the

MYJ, MYNN (i.e., CTL), QNSE, the Asymmetric

Convective Model version 2 (ACM2; Pleim 2007), or

YSU PBL scheme, all with the Thompson MP scheme.

Past studies have also shown a strong sensitivity of

convection-permitting forecasts to the MP parameteri-

zation scheme (e.g., Gilmore et al. 2004; Clark et al.

2008; Johnson et al. 2011; Yussouf and Stensrud 2012;

Cintineo et al. 2014; Duda et al. 2014). However, these

studies have also primarily emphasized daytime,

surface-based convection, which is strongly impacted by

TABLE 2. Ensemble forecast experiments used to evaluate the PBL

scheme configuration during the DA period.

Expt

Radar DA

configuration

Forecast

physics

PBL scheme

for DA

QNSE 10min.6cycle See Table 3 QNSE

MYNN 10min.6cycle See Table 3 MYNN

MULTIPBL 10min.6cycle See Table 3 See Table 3

TABLE 3. Forecast configuration for the experiments described

in Table 2 and the experiment labeled MULTI in Table 4. The

second through fourth columns show the MP, PBL, and cumulus

parameterization (CP) schemes, respectively. The last column is

also used during outer-domain DA for all experiments, and the

third column is also used during DA for the experiment labeled

MULTIPBL in Table 2.

Member MP scheme PBL scheme

CP scheme

(outer domain only)

001 Thompson MYNN Grell-3

002 WDM6 QNSE Kain–Fritsch

003 Lin YSU Kain–Fritsch

004 Thompson ACM2 Grell–Freitas

005 WDM6 MYJ Grell-3

006 Morrison MYNN Kain–Fritsch

007 Thompson QNSE Kain–Fritsch

008 WDM6 YSU Grell–Freitas

009 Lin ACM2 Grell-3

010 Thompson MYJ Kain–Fritsch

011 WDM6 MYNN Kain–Fritsch

012 Morrison QNSE Grell–Freitas

013 Thompson YSU Grell-3

014 WDM6 ACM2 Kain–Fritsch

015 Thompson MYJ Kain–Fritsch

016 Morrison MYNN Grell–Freitas

017 Thompson QNSE Grell-3

018 Thompson YSU Kain–Fritsch

019 Thompson ACM2 Kain–Fritsch

020 Thompson MYJ Grell–Freitas
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the cold pool evolution. The cold pool evolution is in

turn strongly influenced by the MP scheme (e.g.,

Dawson et al. 2015). For nocturnal convection which,

tends to be elevated and often owes its initiation and

maintenance to features such as gravity waves and

bores, rather than surface-based cold pools, the forecast

sensitivity to the MP scheme has not been as well stud-

ied. Therefore, this study systematically evaluates the

impact of the MP scheme configuration in a similar

manner as the PBL configuration. A second set of de-

terministic forecasts are identical to the first set except

that each forecast uses either the Thompson (i.e., CTL),

WSM6, Morrison (Morrison et al. 2009), WRF double-

moment 6-class; (WDM6; Lim and Hong 2010), or Lin

(Lin et al. 1983) MP scheme, all with the same MYNN

PBL scheme.

The experiments employing deterministic forecasts

are used to choose a fixed-physics ensemble configura-

tion as a baseline of comparison against different mul-

tiphysics ensemble configurations. The fixed-physics

ensemble configuration (FIXED) uses the MYNN PBL

scheme and the Thompson MP scheme. The first mul-

tiphysics ensemble (MULTI) uses the configuration

shown in Table 3. TheMULTI configuration was chosen

based on three considerations. First, early tests indicated

relatively similar performance among the different PBL

schemes, so all five PBL schemes that were considered

are evenly distributed across the ensemble members.

Second, early tests indicated a more pronounced ad-

vantage of Thompson relative to the other microphysics

schemes so the distribution of microphysics schemes

is skewed toward Thompson while also including at

least one member with each of the other four micro-

physics schemes. Third, a 10-member subensemble with

Thompson microphysics and two of each PBL scheme is

included to facilitate planned future studies on PBL

scheme sensitivities. The second multiphysics ensemble

(MULTI2) provides an alternative configuration based

on evenly distributing the three of the better performing

PBL and MP schemes across the ensemble members

(Table 6).

3. Results

The experiments in this study are performed on 20

cases selected during the period 1 June–15 July 2014

based on the presence of nocturnal convection similar to

what PECAN forecasters would be interested in pre-

dicting during field operations on 1 June–15 July 2015.

The selected cases are listed in Table 5. To calculate the

Brier score of the deterministic forecasts, they are first

converted to a neighborhood probability forecast with a

radius of 48 km, which reduces the oversensitivity to

small spatial forecast errors (Schwartz et al. 2010;

Johnson and Wang 2012). The ensemble forecasts are

also evaluated using the neighborhood ensemble prob-

ability. A Brier skill score is then calculated using a

deterministic forecast with no-radar DA as a reference

forecast. Statistical significance tests on the differences

between experiments shown in a given figure are con-

ducted using a one-sided permutation resampling test

(Hamill 1999; Johnson and Wang 2012) and plotted at

the 90% confidence levels in Fig. 2 (as well as in Fig. 8).

In sections 3a and 3b, the available computational re-

sources are used to conduct many experiments with the

deterministic forecasts instead of fewer experiments

TABLE 5. Analysis time and date of the 20 cases from 2014 that

were used for the experiments in section 3. The second column

notes whether (subjectively) robust convection was ongoing within

the 4-km domain during radar DA.

Analysis time Convection ongoing during radar DA?

1300 UTC 3 Jun Yes

1300 UTC 4 Jun No

1300 UTC 5 Jun Yes

1300 UTC 6 Jun Yes

1300 UTC 8 Jun Yes

1300 UTC 11 Jun No

1300 UTC 14 Jun No

1300 UTC 18 Jun No

1300 UTC 20 Jun No

1300 UTC 21 Jun No

1300 UTC 22 Jun Yes

1300 UTC 24 Jun Yes

1300 UTC 26 Jun Yes

1300 UTC 27 Jun Yes

1300 UTC 28 Jun Yes

1300 UTC 30 Jun Yes

1300 UTC 6 Jul No

1300 UTC 8 Jul No

1300 UTC 9 Jul Yes

1300 UTC 12 Jul No

TABLE 4. Deterministic and ensemble forecast experiments used to

evaluate the physics configurations during the forecast period.

Expt

No. of

members MP scheme PBL scheme

PBL scheme

during DA

YSU 1 Thompson YSU MYNN

MYJ 1 Thompson MYJ MYNN

ACM2 1 Thompson ACM2 MYNN

QNSE 1 Thompson QNSE MYNN

CTL 1 Thompson MYNN MYNN

MORR 1 Morrison MYNN MYNN

LIN 1 Lin MYNN MYNN

WSM6 1 WSM6 MYNN MYNN

WDM6 1 WDM6 MYNN MYNN

FIXED 20 Thompson MYNN QNSE

MULTI 20 See Table 3 See Table 3 QNSE

MULTI2 20 See Table 6 See Table 6 QNSE
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FIG. 2. BSS, using a deterministic forecast without radar DA as the reference forecast, of neighborhood probability (48-km radius) of

deterministic forecasts initialized from the ensemble mean analyses from the experiments with different data assimilation configurations

(Tables 1 and 2). Statistically significant differences at the 90% confidence level between the black vs red, black vs blue, and blue vs red are

indicated by the plus sign, circle, and ex symbols along the bottom axes, respectively.
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with a full ensemble of forecasts (Table 4). Observations

of precipitation for verification are the gauge-adjusted

radar-derived quantitative precipitation estimates in the

National Severe Storms Laboratory next-generation

QPE products (Q2; Zhang et al. 2011).

a. Radar DA configuration

1) OBJECTIVE EVALUATION USING BRIER SKILL

SCORES

The first question to be answered with these experi-

ments is whether it is even necessary to assimilate radar

observations at 1200 UTC for forecasts intended to

predict nocturnal convection at least 12 h later. Earlier

studies have suggested that the advantage of radar DA

may be too short lived to justify the computational ex-

pense (e.g., Johnson et al. 2015). However, our experi-

ments show that although the advantage of assimilating

radar data is most pronounced during the first;6 h there

is still an advantage of assimilating radar data at 1200

UTC during the nocturnal forecast period of 0300–

0900 UTC, as indicated by the positive skill relative to

the no-radar DA reference forecast through about 18-h

lead time (i.e., 0600 UTC; Figs. 2a–c).

Another question that these experiments aim to an-

swer is how frequently radar observations should be

assimilated. In addition to the experiment with 1h of

radar DA, cycled every 10min (i.e., 10min.6cycle), ex-

periments were also run with the hour of radar DA cy-

cled every 5 and 15min (Figs. 2a–c). The experiment

with 10-min cycling has the greatest skill during about

the first 6 h (Figs. 2a–c). During the early nocturnal pe-

riod (i.e., before;0600 UTC) there is little difference in

skill between 5- and 10-min cycling while 15-min cycling

still shows slightly degraded performance (Figs. 2a–c).

However, after 0600 UTC all three of the experiments

have slightly less skill than the no-radar experiment,

with the 15-min cycling experiment having the least

negative skill at the two higher thresholds (Figs. 2a–c).

Unlike the differences after 0600 UTC, the differences

before 0600 UTC are consistent across many lead times

and thresholds (Figs. 2a–c).

The question of how long the radar DA should

continue for is addressed next with two experiments

exploring the impact of the length of radar DA

(Figs. 2d–f). In addition to the shorter period of DA

compared with 10min.6cycle, 10min.3cycle.1230-

downscale also has less time for convective scale fea-

tures to ‘‘spin up’’ after being downscaled from the

12-km domain at 1230 UTC instead of 1200 UTC. The

experiment 10min.3cycle.1200downscale controls for

this difference, although it introduces a 30-min free

forecast before beginning the radar DA, making both

experiments necessary. Both experiments with 30min of

radarDAhave less skill than 10min.6cycle during the first

;6h as well as much of the ;2100–0300 UTC period at

lower precipitation thresholds (Figs. 2d–f). However,

there is not a consistent advantage of the full hour of DA

during the 0300–0900 nocturnal period (Figs. 2d–f).

The importance of the choice of microphysics

scheme during radar DA is another question that

we address with the next three experiments. The

10min.6cycle configuration uses the WSM6 micro-

physics scheme with parameter perturbations following

Yussouf and Stensrud (2012). Additional experiments

are also conducted without the parameter perturba-

tions and with a different (Thompson; experiment re-

ferred to as THOM) microphysics scheme to evaluate

the impact of this design choice (Figs. 2g–i). The reader

will recall that all of the forecasts here used the same

forecast physics configuration (Thompson for micro-

physics), so the DA configuration impacts are evalu-

ated through the differences in the resulting ensemble

mean analysis as it is used to initialize a deterministic

forecast. The WSM6 experiment without parameter

perturbations (i.e., NOPERT; Figs. 2g–i) results in

generally lower skill than the experiment with the

perturbations at most lead times for the 2.54 and

6.35mmh21 thresholds (10min.6cycle; Figs. 2g,h) and

at early lead times only for the 12.7mmh21 threshold

(Fig. 2i). The THOM experiment (Figs. 2g–i) also re-

sults in lower skill at early lead times, but greater skill

at later lead times for most thresholds and lead times

(Figs. 2g–i). The Thompson experiment is most skillful

during the nocturnal period of ;0300–0900 UTC

(Figs. 2g–i). This result is not changed by using WSM6,

instead of Thompson, as the forecast microphysics

scheme for all experiments (not shown). All of the

above experiments are performed with MYNN as the

PBL scheme during DA, based on its superior perfor-

mance in initial test cases.

The final set of experiments in this section is

designed to address the question of how the PBL pa-

rameterization ensemble should be configured during

DA on both the outer and inner domains (Table 2).

The ensemble forecast skill at early (i.e., ;6 h) lead

times is lowest for MULTIPBL and greatest for

MYNN and QNSE (Figs. 2j–l). To test the hypothesis

that the lower performance of the MULTIPBL en-

semble is due to including relatively low-skill PBL

schemes, an additional experiment with ACM2 as

the PBL scheme was also conducted (not shown).

ACM2 was selected because it is one of the poorest-

performing forecast PBL schemes at ;1200 UTC in

our experiments (Figs. 8d–f). The ACM2 experiment

deterministic forecasts were also more skillful than the
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MULTIPBL deterministic forecasts at these lead times

(not shown1). Therefore, although a multi-PBL scheme

configuration may be advantageous during the forecast

period, it is actually disadvantageous during the DA pe-

riod. During the early part of the nocturnal period (i.e.,

;0000–0600 UTC) the ensemble forecast skill is gener-

ally lowest for MYNN and greatest for QNSE and

MULTIPBL (Figs. 2j–l). Thus, QNSE is the only one of

the three DA configurations that provides analyses

leading to forecasts that perform relatively well for both

the shorter- and longer-term forecasts.

Many of the above differences are statistically sig-

nificant at the 90% level at some lead times but not

others. This is likely due to the limited sample size of

20 cases. Although 20 cases provided much more

useful information for designing the real-time en-

semble configuration than a single or a few case

studies, multiple seasons of data would likely be

needed to obtain highly significant results. In partic-

ular, the degraded performance of MULTIPBL at

early lead times in Figs. 2j–l is not significant at the

90% confidence level at most lead times, likely be-

cause of a large number of cases without active convec-

tion at this time of day. This result becomes more

uniformly significant at the 80% level (not shown). At

later times, the degraded performance of 10min.6cycle is

not as large, but is highly significant because of the larger

sample size resulting from greater convective activity at

this time of day.

2) SUBJECTIVE EVALUATION USING A

REPRESENTATIVE CASE STUDY

The forecasts initialized at 1300 UTC 6 June 2014 are

used to qualitatively understand some of the systematic

quantitative differences discussed above (Figs. 3 and 4).

This case is chosen because the differences in quanti-

tative skill in this case are similar to those in Fig. 2 (not

shown). Figures 3 and 4 show neighborhood probability

forecasts of hourly accumulated precipitation exceed-

ing 6.35mm in order to directly relate them to the ob-

jective metrics in Fig. 2. Our conclusions are not

substantially changed by considering details such as

convective mode and structure (not shown). In the

experiment without radar DA, the convection ongoing

at early lead times is absent in the forecast (Fig. 3a).

There is also spurious precipitation that develops in

northern Oklahoma by 0000 UTC without radar data

assimilation (Figs. 3b,c). The nocturnal MCS that de-

velops the following night in Oklahoma is also largely

absent from the NORADAR forecast at 0600 UTC

(Fig. 3d). Figures 3e–p show the impacts of the differ-

ent cycling intervals for this case. Although the differ-

ences are subtle among these experiments, during the

first forecast hour 15min.4cycle has lower probabilities

than 10min.6cycle and 5min.12cycle in central Oklahoma

while 5min.12cycle has a maximum in the southern

storm that is displaced slightly west of the other fore-

casts and observations (Figs. 3e,i,m). By 0000 UTC,

10min.6cycle has a maximum in southwestern Kansas

that is closer to the observed precipitation location

than do 5min.12cycle and 15min.4cycle (Figs. 3f,j,n).

During the nocturnal period at 0300 UTC, all three

forecasts have two precipitation maxima in northern

Oklahoma: one in or near the observed precipita-

tion and one to the east of the observed precipitation

(Figs. 3g,k,o). However, at this time 10min.6cycle

shows the western maximum to be more dominant

than the spurious eastern maximum (Fig. 3k), unlike

5min.12cycle (Fig. 3g). The 15min.4cycle experiment

shows even the western maximum too far east (Fig. 3o).

By 0600 UTC, 15min.4cycle has no overlap between

the forecast probability and observed precipitation

(Fig. 3p), 5min.12cycle has a prominent orientation

angle error (Fig. 3h), and 10min.6cycle has a prominent

displacement error (Fig. 3i). Therefore, like the sys-

tematic results, 10min.6cycle is the best compromise

between too frequent and too infrequent radar DA

cycling, at least for the forecasts during the morning

and early nocturnal periods (Figs. 3i–k). Comparison of

Figs. 3i–l with Figs. 4a–h shows a better-developed

MCS during the first forecast hour with the full hour of

radar DA, compared to only 30min (Fig. 3i vs Figs. 4a,e).

The advantage of the full hour of radar DA in this

case is also evident throughout the nocturnal period

(Figs. 3k,l vs Figs. 4c,d,g,h). There is very little differ-

ence between 10min.6cycle and NOPERT during the

first forecast hour, except for slightly higher probabil-

ities in 10min.6cycle where precipitation is also ob-

served in central Oklahoma (Fig. 3i vs Fig. 4i). At this

time, THOM is clearly inferior to 10min.6cycle and

NOPERT (Figs. 3i and 4i vs Fig. 4m). However, during

the early nocturnal period (i.e., 0300 UTC) in this case

the probability maximum for THOM is closer to the

observed MCS than both 10min.6cycle and NOPERT,

and THOM does not have a second spurious maximum

farther east (Fig. 4o vs Figs. 3k and 4k). However, in

this case there is a slight advantage of 10min.6cycle

over NOPERT during the nocturnal period since the

10min.6cycle forecasts have greater overlap with the

observation at 0300–0600 UTC, and less spurious pre-

cipitation at 0300 UTC, compared with NOPERT

(Figs. 3k,l vs Figs. 4k,l).

1 ACM2 is not added to the ensemble verification in Figs. 2j–l

because of limited computational resources.
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It is somewhat counterintuitive that the analyses

generated with Thompson microphysics during DA

result in less skillful forecasts at early lead times but

more skillful forecasts at later lead times, compared

with analyses generated with WSM6 microphysics

during DA (Figs. 2g–i). The forecasts from each case

were further evaluated subjectively to better un-

derstand this difference. The forecasts initialized at

1300 UTC 6 June 2014 are representative of the gen-

eral trend that is seen systematically in Figs. 2g–i.

While both forecasts failed to evolve the morning

convection exactly as observed at early lead times the

precipitation in central Oklahoma, which was not ob-

served, is less extensive in the 10min.6cycle forecast

than the THOM forecast (Figs. 5a,b vs Figs. 5e,f).

While both forecasts were also too far east with the

MCS that developed the following evening, the noc-

turnal MCS forecast by THOM at 0300 UTC is closer

to the observed MCS than the MCS forecast by

10min.6cycle (Fig. 5h vs Fig. 5d). It is not clear whether

the eastward bias that is common to both experiments

results from an initial condition error or a physics-related

FIG. 3. Neighborhood probability forecasts (color scale) initialized at 1300 UTC 6 Jun 2014 of hourly precipitation at the 6.35mmh21

threshold from the NORADAR experiment at lead times of (a) 1 h (1400 UTC), (b) 11 h (0000 UTC), (c) 14 h (0300 UTC), and (d) 17 h

(0600 UTC). Also shown are the 5min.12cycle forecasts at (e) 1400, (f) 0000, (g) 0300, and (h) 0600 UTC; the 10min.6cycle forecasts at

(i) 1400, (j) 0000, (k) 0300, and (l) 0600UTC; and the 15min.4cycle forecasts at (m) 1400, (n) 0000, (o) 0300, and (p) 0600UTC. Black lines

are the observed 6.35mmh21 precipitation contour.
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error, such as the PBL scheme that is common to both

forecasts.

The reason for the better nocturnal MCS forecast

when Thompson is the microphysics scheme for DA

can be seen by comparing the surface dewpoints in the

two forecasts (Fig. 6). The surface air mass in north-

western Oklahoma (Figs. 6d,i; blue circles), upstream

of the spurious convection in 10min.6cycle, has dew-

points around 588–628F at 2100 UTC in THOM while

10min.6cycle dewpoints are about 628–668F. The

10min.6cycle dewpoints are too moist, compared with

the observed dewpoints of ;618F in this area (not

shown). It is in this region of excess moisture where the

10min.6cycle forecast develops spurious convection

in advance of the observed MCS (Figs. 5c,d). The

low-level air that had been advected into northwest

Oklahoma and southwest Kansas by 1800–2100 UTC

originated from an area of ongoing convection at 1300

UTC (Figs. 5 and 6). The 1300 UTC analysis gener-

ated with Thompson microphysics had a shallow moist

layer with much drier air aloft than the analysis gener-

ated with WSM6. The drier air in THOM was then

mixed down to the surface as the boundary layer deep-

ened. In this case (Fig. 6) and several others (not shown),

Thompson microphysics during DA provided a more

accurate analysis of the impacts on the mesoscale

FIG. 4. As in Fig. 3, but for (a)–(d) the 10min.3cycle.1200downscale forecast, (e)–(h) the 10min.3cycle.1230downscale forecast, (i)–(l) the

NOPERT forecast, and (m)–(p) the THOM forecast.
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environment of the convection ongoing during the

DA period before 1300 UTC. This resulted in a better

forecast of the environment in which convection de-

veloped the following evening. The better perfor-

mance of 10min.6cycle over THOM at earlier lead

times, which corresponds to early morning forecasts,

was due to the overprediction of weak stratiform

precipitation in the Thompson analyses and the un-

derprediction of heavier convective precipitation in

the Thompson analyses. However, since this early

convection generally dissipates or moves out of the

domain before the following evening, it is mainly the

impact of that convection on the mesoscale environ-

ment that dominates the forecast of new convection

the following night.

The difference between THOM and 10min.6cycle

for radar DA is further illustrated by the impacts on

specific hydrometeor species, especially rain and snow

(Fig. 7). Figure 7 shows the ensemble mean back-

ground (solid) and analysis (dashed) profiles of rain

and snow hydrometeor mixing ratios, averaged over a

40 3 40 grid point region of central Oklahoma for the

6 June case. Consistent with the findings of previous

studies (e.g., Wheatley et al. 2014), Thompson pro-

duces more snow hydrometeors than WSM6 (e.g.,

Fig. 7b). After spinning up the hydrometeors during

the first few cycles (not shown), each experiment

reaches a stable amount of snow hydrometeors for its

microphysics scheme that is only slightly adjusted by

the radar DA (Figs. 7b,d,f). However, for rain hy-

drometeors in THOM, the radar DA reduces the

mixing ratios below about 800mb during each cycle;

then, the mixing ratio increases again in the next

background forecast (Figs. 7a,c,e). This is only seen

for 10min.6cycle at very low levels below about

975mb (Figs. 7a,c,e). Therefore, the THOM radar DA

cycles are a greater sink of rainwater, and thus envi-

ronmental moisture because the rain is then regen-

erated during each forecast cycle, than 10min.6cycle.

This is consistent with the weaker convective cores,

and drier low-level mesoscale environment, in the

THOM experiment.

b. Forecast physics configuration

The general question that is addressed in this section

is how to choose an ensemble of microphysics and

boundary layer parameterizations during the forecast

period for nocturnal convection and related features.

The impacts of the different physics configurations

outlined in Table 4 are evaluated in this section within

the specific contexts of predicting nocturnal MCSs,

atmospheric bores, nocturnal LLJs, and nocturnal CI.

FIG. 5. Hourly accumulated precipitation forecasts for the (a)–(d) 10min.6cycle and (e)–(h) THOMexperiments initialized at 1300UTC 6

Jun 2014, with the 12.7mmh21 observation contour overlaid in blue.
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FIG. 6. Surface dewpoint forecast for the (a)–(e) THOM and (f)–(j)

10min.6cycle forecasts initialized at 1300 UTC 6 Jun 2014. The location

mentioned in the text is circled in blue in (d) and (i), and analyzed reflectivity is

contoured at the 35-dBZ threshold in black in (a) and (f).
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The deterministic forecast experiments are initialized

with the same analyses as 10min.6cycle for consistency

with the results in section 3a. In other words, the de-

terministic forecasts are initialized from the analyses

generated with MYNN as the PBL scheme during DA.

However, the ensemble forecasts are generated with

the analyses from the QNSE experiment in Table 2

because of that experiment’s superior performance

FIG. 7. Ensemble mean background (solid) and analysis (dashed) profiles of (left) QRAIN and (right) QSNOW

(rain and snowhydrometeormixing ratios, respectively) averaged over a 403 40 grid point region of central OK for

the 6 Jun case at (a),(b) 1240, (c),(d) 1250, and (e),(f) 1300 UTC.
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(Figs. 2j,k,l) so that the results will be directly appli-

cable to the configuration of the real-time PECAN

ensemble (presented in Part II).

1) PRECIPITATION VERIFICATION AS A PROXY

FOR MCS PREDICTION

Quantitative precipitation forecasts are first evaluated

as a proxy for nocturnal MCS predictability. The ob-

jective precipitation forecast verification during the

overnight hours was found to be consistent with sub-

jective comparisons of the nocturnal MCS predictions

(not shown). The precipitation forecast skill of the

deterministic forecasts with different microphysics

schemes is shown in Figs. 8a–c for both the night 1 and

night 2 forecasts (i.e., out to 48-h lead time), consistent

with the forecast lead times required for the PECAN

field experiment. This differs from the more common

convection-allowing forecast evaluations of 1-day fore-

casts, which also tend to focus on afternoon rather than

nocturnal convection (e.g., Clark et al. 2012; Johnson

andWang 2012; Duda et al. 2014). In Fig. 8, significance

tests are conducted for differences from the CTL ex-

periment (see also Fig. 8 caption). The Thompson

scheme in the CTL experiment has a clear advantage

over the others during the early nocturnal period from

;0300 to 0600 UTC for both the night 1 and night 2

forecasts (Figs. 8a–c), especially at the higher threshold

(Fig. 8c). This result is consistent with the results in

Duda et al. (2014), using springtime forecasts from a

different year. During the night 2 forecasts, Thompson

only has an advantage for the higher thresholds

(Figs. 8b,c), where Thompson has no skill relative to the

NORADAR forecast, while the other microphysics

schemes perform even worse than the NORADAR

forecast. The precipitation forecast skill of the de-

terministic forecasts with different PBL schemes is

shown in Figs. 8d–f. Again there is a clear advantage

during much of the ;0300–0900 UTC nocturnal period;

this time for the MYNN PBL scheme in the CTL fore-

cast for both night 1 and night 2 (Figs. 8d–f). These re-

sults support the choice to pair Thompson microphysics

with the MYNN PBL scheme in the control configura-

tion for nocturnal MCS prediction. These differences

are generally highly significant during the overnight

hours (Figs. 8a–f).

Two different ensemble physics configurations are

evaluated in addition to a fixed-physics ensemble where

all members use the most skillful MP and PBL scheme

configuration as determined in the preceding paragraph

(FIXED, MULTI, and MULTI2 in Table 4). The dif-

ferences in precipitation forecast skill among these en-

sembles are generally small, although often statistically

significant (Figs. 8g–i). At certain times during both the

nocturnal (e.g., ;0600) and daytime (e.g., ;1800 UTC)

periods the fixed-physics ensemble is noticeably less

skillful than both multiphysics ensembles (Figs. 8g–i).

The differences between the two different multiphysics

ensembles are generally less than the differences be-

tween the fixed-physics and multiphysics ensembles

(Figs. 8g–i).

A forecaster using the ensemble precipitation fore-

casts to predict nocturnal MCSs would not only be

interested in the overall skill of the forecasts, but also

in whether a range of potential outcomes is reflected in

the ensemble spread. One way of quantifying the en-

semble spread is with the correspondence ratio (CR;

Stensrud and Wandishin 2000). In short, the CR is the

ratio of the ensemble intersection area to the union

area. The union area is the number of grid points

where any ensemble member forecasts a threshold to

be exceeded and the intersection area is the number of

grid points where a prespecified number of members

agree in the forecast of the threshold being exceeded.

Thus, a CR of 1.0 indicates a minimum of spread since

all members agree wherever precipitation is forecast

while a CR of 0.0 indicates a maximum of spread since

the members do not agree on where to forecast pre-

cipitation. The CR (Fig. 9) shows a more pronounced

difference between the fixed-physics and multiphysics

configurations than the Brier skill score (BSS; Figs. 8g–

i). During the nocturnal period, the fixed-physics en-

semble has greater ensemble agreement (i.e., less

spread) than the multiphysics ensembles for a variety

of thresholds and number of members used to de-

termine ensemble agreement (Fig. 9). Thus, the impact

of the ensemble physics configuration on forecast

spread is particularly important during the nocturnal

period of interest for PECAN. The differences be-

tween the two multiphysics ensembles are again gen-

erally smaller than the differences between the fixed

and multiphysics ensembles, with MULTI2 showing

slightly more spread than MULTI at the 2.54mmh21

threshold and MULTI showing slightly more spread

than MULTI2 at the 12.7mmh21 threshold (Fig. 9).

Although the CR does not reveal how much spread is

needed to fully capture the forecast uncertainty, sub-

jective analysis of individual cases can help to answer

this question.

Figure 10 provides a subjective example of the dif-

ferences in spread among MULTI, MULTI2, and

FIXED. The observations at 0600 UTC 27 June 2014

show an MCS along the western part of the Kansas–

Nebraska border and a cluster of storms in northwestern

Missouri (Fig. 10d). FIXED shows strong clustering of

the forecasts in west-central Nebraska and in south-

eastern Nebraska (Fig. 10a). MULTI and MULTI2
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show weaker clustering and greater spread in the loca-

tion of features in both of these areas (Figs. 10b,c). The

greater spread in MULTI and MULTI2 is more con-

sistent with the location errors of the subjective center of

the ensemble distributions on this case than the strong

clustering in FIXED. In other words, while all three

ensembles indicate approximately the same places as the

most likely locations of the two storm clusters, the

greater spread in MULTI and MULTI2 better reflects

the location error in the ensemble mean forecast. The

spread inMULTI is also subjectively larger than the spread

in MULTI2 (Figs. 10b,c), likely because of the greater

number of different physics schemes in the MULTI en-

semble than the MULTI2 ensemble (Table 3 vs Table 6).

FIG. 8. As in Fig. 2, but for the physics configuration experiments in Table 4. The same reference forecast is used for both figures in the

BSS calculation. Significant differences at the 90% confidence level in (a)–(f) for green vs blue, cyan vs blue, black vs blue, and red vs blue

are indicated, respectively, by plus sign, circle, ex, and diamond symbols along the bottom axes. Statistical significance in (g)–(i) is in-

dicated for black vs blue, black vs red, and red vs blue the by plus sign, circle, and ex symbols, respectively.
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FIG. 9. CR for (a) 2.54mmh21 four-member agreement, (b) 2.54mmh21 eight-member agreement,

(c) 6.35mmh21 four-member agreement, (d) 6.35mmh21 eight-member agreement, (e) 12.7mmh21 four-

member agreement, and (f) 12.7mmh21 eight-member agreement.
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Since the observed storms in northwest Missouri are

farther east than all three ensemble distributions

for this case (Fig. 10d), the MULTI ensemble fore-

cast spread may still be undersampling the forecast

uncertainty.

2) SUBJECTIVE VERIFICATION OF NOCTURNAL CI
PREDICTION

Given the difficulty of objectively identifying CI in

the observations and forecasts (e.g., Kain et al. 2013)

and the limited number of pristine CI events in the

dataset, the ensemble forecasts are subjectively

evaluated for the apparently elevated nocturnal CI

within environments undisturbed by ongoing con-

vection. Three events that are representative of this

subjective analysis are shown in Fig. 11. These events

are chosen to represent both night 1 and night 2

forecasts, since the PECAN forecasters were in-

terested in the forecasts for both of those nights. In

the first event, a line of convection was observed to

initiate between ;0600 and 0900 UTC (Fig. 11d),

following the expected pattern of elevated nocturnal

CI. The FIXED ensemble is the only configuration

that does not have any members forecasting this

nocturnal CI event (Figs. 11a–c). Between the two

multiphysics ensembles, MULTI (Fig. 11a) has more

members forecasting the CI event. In the second

event, a similar but less extensive and shorter-

duration line of elevated convection was observed

to initiate during the overnight hours (Fig. 11h). This

event is the only one of the three events in Fig. 11 to

occur during the second night forecast (i.e., lead time

;42 h), further reducing the expected predictability

of the event. In this event, only the MULTI ensemble

shows any indication of nocturnal CI. These first two

events are representative of other similar cases in that

the possibility of nocturnal elevated CI, a typically

low predictability event, is much better forecast by

the MULTI ensemble as a result of the greater num-

ber of physics configurations being more likely to

have some members reflect the conditions leading to

the CI event. Studying the driving mechanism for

nocturnal CI events is an active research topic in

PECAN and is left for future papers. The third event

is a more atypical nocturnal CI event in that it does

not follow the typical pattern for nocturnal CI of

elevated cells oriented parallel to the cold side

of a warm or stationary front and perpendicular to a

FIG. 10. Ensemble spaghetti plots of the 40-dBZmodel level 5 (;900 hPa) reflectivity contour from all members

overlaid on the same plot for the (a) FIXED, (b) MULTI, and (c) MULTI2 ensemble forecasts initialized at

1300 UTC 26 Jun 2014 and valid at 0600 UTC 27 Jun. (d) Also shown is the observed NEXRAD reflectivity mosaic

at 0600 UTC 27 Jun.
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strong LLJ (Fig. 11l). All three ensembles success-

fully predicted this event to occur (Figs. 11i–k).

However, while the observed convection shows some

embedded linear and multicellular clusters (Fig. 11l),

the FIXED ensemble shows very cellular convection

in all members (Fig. 11k). In this case the greater

‘‘spread’’ of the multiphysics ensembles is manifested

as greater diversity in the types of convective struc-

tures within the region of nocturnal CI in MULTI2

(Fig. 11j) and, especially, in MULTI (Fig. 11i).

Another case of nocturnal elevated CI, is selected

to demonstrate typical differences among the de-

terministic forecasts in Table 4 within the context of

nocturnal CI (Fig. 12). In this case, a line of elevated

convection was observed to initiate between ;0600

and 0700 UTC (Figs. 12g,d,«). The deterministic

forecasts with different MP schemes all show CI in

approximately the same location and at the same time

(between 0600 and 0700 UTC) as each other

(Figs. 12a–c and 12p–b). The main difference among

the forecasts with different MP schemes is the in-

tensity of the convection. The deterministic forecasts

with different PBL schemes show less variation in the

intensity of the convection but more variation in the

time of CI (Figs. 12a–o). The time of CI ranges from

before 0600 UTC in QNSE (Figs. 12e–f) and MYJ

(Figs. 12j–l) to after 0700 UTC in ACM2 (Figs. 12g–i).

There is also more variation in the orientation of

the convective line, ranging from a more east–west

orientation in CTL (Fig. 12c) to a more north–south

orientation in QNSE (Fig. 12f).

3) SOUNDING VERIFICATION AS PROXY FOR LLJ
PREDICTION

The ensemble forecasts are also verified against

routine 0000 and 1200 UTCNationalWeather Service

(NWS) soundings (e.g., Fig. 13). This verification is

useful not only as a complement to the precipitation

verification in section 3b(1), but also as a way to un-

derstand how well the different physics configurations

predict nocturnal LLJs and the nocturnal environ-

ments in which they form. The FIXED ensemble

shows generally larger RMSEs and generally smaller

spread than the multiphysics ensembles at low levels

for temperature, moisture, and wind at both the

0000 and 1200 UTC verification times (Fig. 13). All

ensembles are generally overdispersive for moisture

at low levels (Figs. 13c,d) and underdispersive for

temperature at low levels (Figs. 13a,b). The differ-

ences between MULTI and MULTI2 are again much

smaller than the differences between the fixed and

multiphysics ensembles.

The NWS soundings are also used to evaluate

the differences among the deterministic forecasts

with different PBL schemes (Fig. 14). None of the

PBL schemes consistently performs either best or

worst across different variables and verification times

(Fig. 14). For example, differences in temperature

RMSEs are most pronounced around 850–900 hPa,

where QNSE has the smallest error and ACM2 has

the largest error (Figs. 14a,b). However, QNSE has

the largest low-level error for water vapor at

1200 UTC (Fig. 14d) while ACM2 has one of the

smallest water vapor errors at low levels at 1200 UTC

(Fig. 14d) but one of the largest water vapor errors at

low levels at 0000 UTC (Fig. 14c). CTL (i.e., MYNN)

generally has the smallest errors at most levels for

wind (Figs. 14e,f).

Forecasts initialized on 26 June, and valid on 27 June,

are used to demonstrate the sensitivity of a nocturnal

LLJ forecast to the PBL scheme (Fig. 15). At 0000UTC

27 June at Dodge City, Kansas, the QNSE forecast

shows the strongest low-level wind speeds (Fig. 15a, red

line), although all of the forecasts have weaker wind

speeds than observed (Fig. 15a, black line). QNSE

maintains the strongest low-level wind speeds at

0300 UTC (Fig. 15b) while ACM2 has the strongest

low-level wind speeds at 0600–0900 UTC (Figs. 15c,d).

At the next observation time of 1200 UTC 27 June all

of the forecasts again show weaker wind speeds than

observed (Fig. 15e). Figure 15 demonstrates that the

temporal evolution, strength, and direction of the

TABLE 6. Forecast physics configuration used for the experiment

labeled MULTI2 in Table 4. Column labels are the same as in

Table 3.

Member MP scheme PBL scheme

CP scheme

(outer domain only)

001 Thompson MYNN Grell-3

002 Lin YSU Kain–Fritsch

003 WDM6 MYJ Kain–Fritsch

004 Thompson YSU Grell–Freitas

005 Lin MYJ Grell-3

006 WDM6 MYNN Kain–Fritsch

007 Thompson MYJ Kain–Fritsch

008 Lin MYNN Grell–Freitas

009 WDM6 YSU Grell-3

010 Thompson MYNN Kain–Fritsch

011 Lin YSU Kain–Fritsch

012 WDM6 MYJ Grell–Freitas

013 Thompson YSU Grell-3

014 Lin MYJ Kain–Fritsch

015 WDM6 MYNN Kain–Fritsch

016 Thompson MYJ Grell–Freitas

017 Lin MYNN Grell-3

018 WDM6 YSU Kain–Fritsch

019 Thompson MYNN Kain–Fritsch

020 Lin YSU Grell–Freitas
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FIG. 11. Ensemble spaghetti plots for forecast reflectivity at the 30-dBZ threshold for the (a),(e),(i) MULTI,

(b),(f),(j) MULTI2, and (c),(g),(k) FIXED ensembles, as well as (d),(h),(l) the corresponding observed reflectivity,

for the three cases of nocturnal CI discussed in the text.
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nocturnal LLJ can be quite sensitive to the PBL

scheme. Given the lack of upper-air observations be-

tween 0000 and 1200 UTC, a more detailed analysis is

saved for the verification in Part II, which utilizes the

PECAN field experiment observations, including 3-hourly

sounding data.

4. Summary and discussion

One of the goals of PECAN is to better understand

and improve the predictability of nocturnal convective

features, including nocturnal MCSs, nocturnal CI, the

nocturnal LLJ, and atmospheric bores on the nocturnal

stable layer. As part of this effort, a GSI-based ensemble

DA and forecast system is implemented with a specific

focus on nocturnal convection. In this first part of a two-

part study, extensive experiments were conducted to

understand the optimal DA cycling and forecast physics

configurations for such a focus. The results in this paper

are used to guide the real-time implementation of the

DA and forecast system during the PECAN field ex-

periment, as described in Part II.

Experiments are first conducted to understand the

optimal configuration of the GSI-based ensemble DA

component of the forecast system. It is shown that the

advantage of radar DA between 1200 and 1300 UTC in

the morning extends through the following night in

terms of precipitation forecast skill. It is also shown that

10-min cycling of the radar DA provides more skillful

short-term (0–6h) forecasts than 5- or 15-min cycling,

while 5- and 10-min cycling generally provide similarly

skillful longer-term (6–18 h) forecasts during the noc-

turnal period that are slightly more skillful than with

15-min cycling. We speculate that a possible reason for

the lower skill with the more frequent 5-min cycling is

that imbalances introduced during DA may not have

enough time to adjust to the model before the next as-

similation time (Wang et al. 2013). Possible reasons for

the lower skill with the less frequent 15-min cycling in-

clude the overall assimilation of less data and the greater

and more nonlinear perturbation growth in the longer

(15min) first-guess forecasts more severely violating the

EnKF assumptions of small perturbations and linear

growth. An advantage of 60min of radar DA over just

30min of radar DA is also found to extend into the

overnight period. TheWSM6 microphysics scheme with

parameter perturbations during DA provides more

skillful short-term forecasts than both the WSM6 and

Thompson microphysics schemes without parameter

perturbations. However, Thompson microphysics dur-

ing DA provides more skillful longer-term, overnight

forecasts because the impacts of convection ongoing

during themorningDAon low- tomidlevel moisture are

more accurately analyzed with Thompson microphysics.

Both the degraded performance of Thompson at the

early lead times and the improved analysis of the me-

soscale environment above the boundary layer during

FIG. 12. Reflectivity forecasts for the experiments in Table 4 for

observations and forecasts initialized at 1300 UTC 6 Jul 2014 and

valid at (left) 0600 UTC 7 Jul, (center) 0700 UTC 7 Jul, and (right)

0800 UTC 7 Jul.
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FIG. 13. Ensemble mean RMSE (solid), verified against NWS-observed soundings, and ensemble spread

(dashed; includes observation error) from the three experiments on ensemble physics configurations for

(a) temperature at 0000UTCday 1 (i.e., 11-h forecast), (b) temperature at 1200UTCday 1 (i.e., 23-h forecast),

(c) water vapor mixing ratio at 0000 UTC day 1, (d) water vapor mixing ratio at 1200 UTC day 1, (e) U- and

V-wind components at 0000 UTC day 1, and (f) U- and V-wind components at 1200 UTC day 1.
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FIG. 14. As in Fig. 13, but for deterministic forecasts with different PBL schemes.
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the 6 June 2014 case appear related to a systematic

tendency of the radar DA cycles to remove low-level

rainwater that is replaced at the expense of environ-

mental moisture during each background forecast cycle.

In situ aircraft observations of hydrometeor concentra-

tions collected during the 2015 PECANfield experiment

may allow for better understanding of how the DA

system should distribute reflectivity increments among

the different hydrometeors. Past studies comparing mi-

crophysics schemes for MCS and supercell prediction

have typically focused on cold pool temperature and late

afternoon storms with a well-developed convective

boundary layer (e.g., Wheatley et al. 2014; Dawson et al.

2015). However, in this study the differences in surface

temperature are less pronounced, and less important,

than the differences in above-surface moisture. Further

studies on the interactions between microphysics and

radar DA are still needed for different ambient envi-

ronments (e.g., convective versus stable PBL). Forecasts

are also sensitive to the PBL scheme configuration of the

DA ensemble. At ;0–6-h lead times, forecasts initial-

ized using a single-PBL scheme during DA are more

skillful than forecasts initialized with a multi-PBL con-

figuration during DA. This result holds regardless of the

relative skill of the single-PBL scheme. We speculate

that the unequal skill and different systematic biases of

different PBL schemes too severely violate the EnKF

assumption of random, Gaussian errors, and result in

systematic clustering of the ensemble (Johnson et al.

2011). This clustering may be more problematic for DA

ensembles than forecast ensembles. During the ;0000–

0900 UTC nocturnal period, forecasts initialized with a

QNSE PBL configuration during DA are slightly more

skillful than forecasts initialized with an MYNN or

multi-PBL configuration during DA.

While the above experiments are all conducted using

the same forecast physics, varying only the DA config-

uration, experiments are also conducted using the same

DA configuration and varying only the forecast physics

configuration. These experiments are evaluated within

the context of both deterministic and ensemble fore-

casts. Deterministic forecasts with different physics

schemes show that the greatest precipitation forecast

skill during the nocturnal period is obtained with

Thompson as the microphysics scheme and MYNN as

the PBL scheme. Subjective evaluation of nocturnal

elevatedCI events also reveals that while the intensity of

the initiating convection is more sensitive to the micro-

physics scheme than the PBL scheme, the time and

orientation of the initiating convection are more sensi-

tive to the PBL scheme than the microphysics scheme.

Strong sensitivities to PBL schemes are also shown for

the low-level winds and stability during the overnight

period, which are important for predicting nocturnal

LLJ and bore events. Further analysis of these sensi-

tivities is provided in Part II because of the more

FIG. 15. The 0–3.5-km hodographs at Dodge City from deterministic forecasts with different PBL schemes, initialized at 1300 UTC 26 Jun

2014 and valid at (a) 0000, (b) 0300, (c) 0600, (d) 0900, and (e) 1200UTC 27 Jun. Overlaid on panels (a) and (e) are the corresponding observed

hodographs (black line). Color scheme is as in Fig. 14, but here ACM2 is orange instead of black, and the observations are black.
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comprehensive overnight observations available during

the PECAN field experiment in 2015.

A fixed-physics ensemble configuration using the most

skillful physics schemes during the period of interest (i.e.,

MYNN and Thompson) is also compared with two dif-

ferent multiphysics configurations. The fixed-physics en-

semble shows greater error and lower spread than both

multiphysics ensembles for both precipitation and non-

precipitation forecasts. For nocturnal MCS cases, the

greater spread in the multiphysics ensembles subjectively

corresponds better to the forecast location errors. For

nocturnal CI cases, the greater spread in the multiphysics

ensembles increases the number of ensemble members

forecasting observed CI events and more accurately re-

flects the types of storm structures observed in the initi-

ating convection. The advantages of the greater spread in

the multiphysics ensemble are more pronounced in the

MULTI ensemble than the MULTI2 ensemble. There-

fore, improvements to the forecast ensemble configura-

tion can be obtained by thoughtfully choosing the physics

configurations (i.e., MULTI) rather than evenly distrib-

uting the three best PBL and microphysics schemes

across the ensemble members (i.e., MULTI2).

In Part II of this two-part study, the implementation of

the GSI-based ensemble DA and forecast system for

real-time nocturnal convection prediction during the

2015 PECAN experiment will be described and evalu-

ated. A more quantitative analysis of LLJ and CI events

is also saved for Part II because of the greater number of

events during the 2015 PECAN field experiment.
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