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developed in-situ using passive microwave surface based radiometer data is
applied to the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E). Snow
water equivalent is predicted from two pixels located in Canadian Arctic Shelf Exchange Study (CASES)
overwintering study area in Franklin Bay, N.W.T., Canada. Results show that the satellite SWE predictions are
statistically valid with measured in-situ snow thickness data in both smooth and rough ice environments
where predicted values range from 15 to 25 mm. Stronger correlation between measured and predicted data
is found over smooth ice with R2 value of 0.75 and 0.73 for both pixels respectively. Furthermore, a
qualitative study of sea ice roughness using both passive and active microwave satellite data shows that the
two pixels are rougher than the surrounding areas, but the SWE predictions do not seem to be affected
significantly.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Snow cover plays a primary role determining the thermodynamic
state of the sea ice by controlling both radiative and mass transfers
across the ocean-sea ice-atmosphere interface (e.g., Eiken, 2003). The
surface energy balance (SEB) along with sea ice freeze-up and decay
are strongly influenced by snow thickness and its thermophysical
properties such as density, temperature, salinity and grain size (e.g.,
Langlois and Barber, 2007b). Given the recent dramatic ice depletion
observed in theArctic over the past three decades (Francis, Hunter, Key,
Wang, 2005; Stroeve et al., 2005), global accurate snowmeasurements
are required to assess the impact of the current and future changes in
the Arctic environment.

Passive microwave satellite remote sensing is known as the best
tool for regional snow thickness studies (Chang, Foster, Hall, 1987;
Foster et al., 2005; Cordisco, Prigent, Aires, 2006) and recent results
over sea ice are promising (Cavalieri and Comiso, 2004; Markus,
Powell, Wang, 2006; Langlois and Barber, 2007a). Most of the satellite
studies make use of a combination of 19 and 37 GHz channels to
retrieve snowdepth,whereas results from in-situmeasurements using
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surface based radiometers (SBR) provide better predictions using
single frequency/polarization algorithms (Barber, Iacozza, andWalker,
2003; Langlois, Barber, Hwang, 2007b).

One of the main challenges in global SWE retrieval studies over sea
ice relates to spatial heterogeneity (e.g., Sturm et al., 2006). For instance,
brightness temperatures from the Advanced Microwave Scanning
Radiometer for Earth Observing System (AMSR-E) include emission
contributions from different surface features (smooth ice, rough ice,
open water) found in a pixel of 12.5×12.5 km (e.g., Mäkynen and
Hallikainen, 2005) that can potentially alter SWE predictions thus, the
effect of ice roughness on existing algorithms needs to be addressed.

With increasing ice roughness, the scattering increases and the
polarization effect is expected to decrease (e.g., Mätzler, 1987; Eppler,
1992). Hence, the discrimination between smooth ice and ice ridges is
possible due to the strong polarization effect of a layered snowpack
(e.g., Garrity, 1992). Previous results from Kurvonen and Hallikainen
(1997) showed good detection of deformed ice and old level ice using a
combination of high (94 GHz) and low (24 or 34 GHz) frequencies
airborne brightness temperature data. Furthermore, Mäkynen and
Hallikainen (2005) investigated the effect of ice deformation on the
passive microwaves polarization ratio (PR) and gradient ratio (GR) for
different types of snow covers. Their results showed that the
polarization ratio decreases with increasing ice roughness for both
dry and moist snow but they had no success in discriminating all ice
types. The combination of passivemicrowave brightness temperatures
along with synthetic aperture radar (SAR) backscatter information
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Fig. 1. AMSR-E pixel location within Franklin Bay, N.W.T.

Table 2
Basic SWE statistical data calculated from smooth ice snow thickness data

ID Day Latitude Longitude Transects SWE AMSR-E SWE

Min Max Mean SD p-Min p-Max

1 21 70.033 −126.342 11.3 18.7 12.9 11.0 16.1 16.3
2 24 70.043 −126.258 11.5 27.6 15.6 13.5 15.3 15.8
3 28 70.04 −126.26 11.7 25.9 14.5 13.0 18.0 18.5
4 32 70.041 −126.255 11.8 27.4 15.6 13.8 15.9 16.2
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could improve sea ice roughness information and very few studies
have looked into this issue.

Therefore, the objectives of this paper are to a) apply the SWE
algorithm developed from in-situ data by Langlois and Barber (2007a)
to AMSR-E satellite data, b) to validate the predictions with in-situ
measured snow thickness data, and c) to evaluate the effect of surface
roughness on the SWE predictions using a combination of passive and
active microwave data.

2. Data and methods

2.1. Study location

The study period extended between day 343 (December 7th,
2003) and 122 (April 30th, 2004) during the Canadian Arctic Shelf
Exchange Study (CASES), in Franklin Bay, Northwest Territories,
Canada. The Canadian Coast Guard icebreaker C.C.G.S. Amundsenwas
frozen into a pan of smooth ice where all the physical sampling
occurred (Langlois, Mundy, Barber, 2007a). We used brightness
temperatures from 6 adjacent pixels (12.5 km resolution) from
AMSR-Ewithin the bay (Fig.1). The central coordinates of these pixels
are displayed in Table 1.

2.2. Snow thickness

A series of thickness transects were conducted in different ice
roughness conditions, and have been used for validation of the SWE
predictions. Snow thickness lines were sampled at 0° (E–Wdirection),
45°, 90° (N–S direction) and 135° at a sampling interval of 1 m
following a method developed by Iacozza and Barber (2001). The
Table 1
Coordinates of the AMSR-E pixels

Pixel 1 70.0403 N −125.9421 W
Pixel 2 69.9296 N −125.9934 W
Pixel 3 69.8190 N −126.0442 W
Pixel 4 70.0223 N −125.6185 W
Pixel 5 69.9118 N −125.7241 W
Pixel 6 69.8013 N −125.7241 W
sampled zone for SWE transects was 50×50 m, with sampling lines
varying between 50 and 71 m from the directions mentioned above.
The total number of samples varied between 483 and 500 for smooth
transects as it varied between 477 and 505 for rough transects. We
calculated SWE for the snow thickness measurements by incorporat-
ing density profiles measured at the ship's sampling site (Langlois
et al., 2007a) over the same period and thickness range. Since the
ship's was located in a smooth area, most of smooth SWE transects
occurred near the ship between 0.19 km and 2.05 km distance
(average of 1.32 km on Table 2). Rough ice SWE transects were located
at a distance varying between 1.06 km and 2.63 km (average of
1.95 km on Table 3).

2.3. AMSR-E brightness temperatures

Brightness temperatures, Tb, were extracted from AMSR-E at both
18.7 and 36.5 GHz. The sensor was launched on the National
Aeronautics and Space Administration (NASA) Aqua satellite (polar/
sun-synchronous orbit) in May of 2002. The sensor collects data at six
frequencies (6.9, 10.7, 18.7, 36.5, and 89 GHz in both horizontal and
5 40 70.048 −126.255 11.7 34.1 16.5 13.6 17.4 17.9
6 48 70.051 −126.313 11.2 28.4 14.2 13.0 16.4 16.9
7 57 70.052 −126.3 12.6 26.6 15.4 12.8 17.0 17.9
8 65 70.052 −126.302 11.0 38.0 14.9 13.5 15.6 16.0
9 71 70.042 −126.302 11.7 34.1 15.7 14.0 15.2 15.5
10 76 70.051 −126.271 12.6 37.6 16 13.9 17.4 17.5
11 80 70.056 −126.288 12.1 48.6 18.7 16.8 16.7 16.7
12 83 70.056 −126.281 12.3 39.2 16.7 14.9 16.8 17.3
13 96 70.058 −126.29 14.4 46.6 23.7 17.7 20.8 21.4
14 99 70.039 −126.254 13.0 42.7 20.5 16.4 20.9 21.6
15 101 70.045 −126.256 13.8 58.6 23.6 17.4 21.4 21.8
16 119 70.044 −126.305 10.8 42.1 21.6 17.2 21.2 21.9



Table 3
Basic SWE statistical data calculated from rough ice snow thickness data

ID Day Latitude Longitude Transects SWE AMSR-E SWE

Min Max Mean SD p-Min p-Max

1 36 70.038 −126.26 11.4 54.9 28.1 19.3 18.7 19.3
2 54 70.048 −126.255 12.0 39.3 15.3 13.3 15.6 16.2
3 66 70.045 −126.235 11.7 59.1 22.2 19.9 14.5 14.6
4 74 70.047 −126.232 11.0 71.5 23.1 19.9 15.8 15.9
5 78 70.045 −126.251 12.2 80.3 39.0 23.0 17.2 17.6
6 97 70.036 −126.31 13.4 79.6 29.9 20.7 20.3 20.6
7 100 NA NA 10.7 98.1 28.3 22.0 21.4 21.9
8 105 70.05 −126.25 11.4 75.7 27.3 20.3 20.3 21.2
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vertical polarizations) and spatial resolution varies between 5.4 km to
56 km for 89 and 6.9 GHz respectively. The total precision varies
between 0.66 to 0.68 K at 100 and 250 K respectively.

2.3.1. Atmospheric corrections
We used the daily Tb average over the ascending and descending

passes since there were low diurnal variations throughout the study
period. Since the SWE algorithms developed in Langlois and Barber
(2007a) were based on SBR measurements (excluding atmospheric
influences), atmospheric correctionswere required (Tedesco andWang,
2006). We corrected the AMSR-E brightness temperatures with regards
to atmospheric contribution to Tb following Mätzler (1992). Atmo-
spheric optical thickness values were obtained from Mätzler (1992) for
Arctic regions and they fall within what was measured by Hwang,
Langlois, Barber, Papakyriakou (in press) over the same region. To
estimate the contribution of atmospheric temperature to the satellite,
the transmissivity (ϒatm) of the atmosphere was calculated such that:

Y atm ¼ e−τ0 secθ; ð1Þ

where τ0 is the normal optical thickness and θ the incidence angle
(e.g., Mätzler, 1987; Grenfell et al., 1998). Therefore, considering in-
situ brightness temperature (Tb) measurements, the corresponding
satellite brightness temperature (Tb-SAT) corresponds to:

Tb−SAT ¼ Tb � Y atmð Þ þ 1Qeð Þ � Y atm � TatmAð Þ þ 1−ϒatmð Þ � Tatmz; ð2Þ

where (1−ϒatm) ·Tatm is the sky brightness temperature (in both
upward and downward directions). Since the emissitivity of the snow
(e) is very high (usually N0.7 for 19 and 37 GHz, given frequency and
polarization used), we neglected the downward Tatm portion that is
being reflected to the satellite through the atmosphere. Thus, the
corrected brightness temperature from satellite measurements can be
derived from such that:

Tb ¼ Tb−SATQ 1−ϒatmð ÞTatmz
Y atm

: ð3Þ

Again, this correction needs to be applied to the satellite Tb since
the SWE algorithms were developed using surface based radiometer
measurements (Wang and Tedesco, 2007). However, the Tb contribu-
tions from clouds during the winter period were rather small since
clear conditions were observed most of the time.

2.3.2. Sea ice roughness
In order to understand the effect of spatial features on SWE

predictions, we investigated sea ice roughness using both passive and
active microwave data. First, the polarization (PR) and gradient (GR)
ratios from passive microwave measurements were calculated in
order to explore the possibility of qualifying the ‘state’ of ice
roughness from AMSR-E. Active microwave data were also used in
combination with passive microwave data for investigating the
potential impacts of roughness on the SWE predictions.
In passive microwaves, sea ice roughness can be qualified using the
polarization and gradient ratios. The brightness temperatures polar-
ization ratio (PR) is given such as:

PR ¼ TbV−TbH
TbV þ TbH

; for 18:7GHz ð4Þ

where TbV and TbH are the brightness temperatures in the vertical
(v-pol) and horizontal (h-pol) polarizations respectively. One of themain
advantages in using brightness temperature polarization ratios is that
they are independent of ice temperature (Cavalieri, Gloersen, and
Campbell, 1984; Mäkynen and Hallikainen, 2005). The brightness
temperature gradient ratio (GR) uses two different frequencies such that:

GR ¼ TbVf1−TbVf2

TbVf1 þ TbVf2
; where f1Nf2: ð5Þ

Previous work by Mäkynen and Hallikainen (2005) had success
distinguishing rough ice fromnew iceusingboth ratios. For thepurpose of
this study, we used 18.7 and 36.5 GHz for the GR in the vertical
polarization since the largest impact of ice roughness on brightness
temperatureshavehasbeenmeasuredat these frequencies overdry snow.

Using active microwaves, a total of 36 ScanSAR (RADARSAT) Wide-
B low-resolution images over the study site were analyzed between
December 24th 2003 and April 30th 2004. No earlier dates were
chosen because it was obvious (high backscattering values followed by
low values) in the imagery that the ice had not yet consolidated and
ice dynamics and open water were influencing backscatter more than
surface roughness. Furthermore, images taken on days 358 and 3
showed areas of open water that influenced relative backscatter
measurements (open water in Fig. 2a and smooth ice on Fig. 2b).

For each RADARSAT-1 pass, 15-by-15 and 29-by-29 pixel windows
(i.e., small white boxes in Fig. 2) were centered over each of p_Min
(pixel-4, with minimum averaged Tb) and p_Max (pixel-3, with
maximum averaged Tb) and mean, calibrated microwave backscatter
coefficient (σ°) values were extracted. A larger, 90 by 80 pixels,
window was then centered over the region encompassing p_Min and
p_Max fromwhich a pool of σ° values were extracted (see large white
box in Fig. 2). From this, statistical z-scores, or normal deviates, at both
15 by 15 and 29 by 29 pixel scales were calculated for p_Min and
p_Max relative to the larger surrounding area for each RADARSAT-1
pass. This method did not explicitly address ambiguities associated
with incidence angle variations throughout the time series; rather it
provided an indication of the relative degree of roughness-induced σ°
between the two sites, as well as relative to the larger, surrounding
area. A site demonstrating a consistently higher z-score throughout
the time series— irrespective of incidence angle—would be regarded
as being rougher at C-band frequency, given that thermodynamically-
induced changes in σ° are limited in cold conditions.

2.4. SWE algorithm

As mentioned earlier, we employed the SWE algorithms developed
in Langlois and Barber (2007a) using in-situ SBRpassivemicrowave data
coupled with ancillary seasonal snow thermophysical properties. Their
algorithmmakes use of a multiple regression approach to retrieve SWE
values with two independent variables (SWE and Tair) and one
dependent variable (brightness temperatures, Tb). They also showed
thatwe showed that the spectral ratio between19 and 37GHz cannot be
applied in-situ due to very small differences observed between the two
frequencies throughout the experiment. Previous research (Barber et al.,
2003) used the same approach with success using the Tsi temperature,
but the best results with our dataset were obtained through Tair and Tsi
due to their control on temperature gradient andmetamorphismwhich
affect Tb significantly. However, using Tair always provided slightly better
results and is also easier to retrieve from long-term datasets



Fig. 2. ScanSAR images taken on a) day 358 and b) day 24. The top two images are at 6 km resolution, and the bottom two at 11.6 km resolution (p_Min at top right, and p_Max at
bottom left).
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(meteorological data, remote sensing, climate models), and easier to
deal with given the spatial variation.

This algorithm adjusts for evolving snow thickness using a
combination of two multiple regression-based algorithms valid over
the range −30bT°b−5 °C and 0bSWEb55 mm given as:

SWE ¼ TbQ19V−0:24Tair−219:54
2:29

; ð6Þ

for 0bSWEb33 mm, −30.3bT°b−5 °C and 246bTbb288 K and

SWE ¼ Tb−37V þ 0:01TairQ309:69
−0:9

; ð7Þ

for 33bSWEb55 mm, −30.3bT°b−5 ° C and 256bTbb280 K.

In the above equations, air temperatures are required to predict
SWE and in-situ air temperatures were available through the CASES
period (Langlois et al., 2007a, 2007b). For satellite remote sensing
applications, we compared in-situ meteorological tower measure-
ments with MODIS ice surface temperatures and the modeled North
American Regional Reanalysis (NARR) 2-m air temperature data in
order to decide which of the two products would be the most
appropriate for Eqs. (6) and (7).

2.4.1. In-situ meteorological tower
The in-situ values of Tair were taken from a meteorological tower

that was maintained on the ship throughout the CASES overwintering
mission. The ship was equipped with an AXYS Automated Voluntary
Observation Ship (AVOS) system on the roof of the wheelhouse away
from all disturbances caused by the proximity of the ship. The AVOS
system is an interactive environmental reporting system that
transmitted hourly weather conditions. Temperatures (air and sea
surface), pressure, wind speed, wind direction, and current GPS
location were updated every 10 min and averaged daily.

2.4.2. MODIS
MODIS/Aqua Daily L3 Global 4 km EASE-Grid ice surface ‘skin’

temperatures (IST) were retrieved for the AMSR-E pixels. We averaged
the temperatures values of 3×3 pixels encompassed within each
AMSR-E pixel. The MODIS data algorithm uses a Normalized
Difference Snow Index (NDSI) modified for sea ice to distinguish sea
ice from open ocean based on reflective and thermal characteristics
(Hall, Riggs, Salomonson, 2007). The ice surface temperature data are
expressed in Kelvin using calibration data. The algorithm assumes that
sea ice is snow covered and that snow dominates the reflectance
characteristics. Furthermore, a cloud mask algorithm distinguishes
clouds from ice in the output product (Hall, Solberg, Riggs, 2004).
Accuracy of IST is estimated to be 0.3 to 2.1 K over the 245-270 K range
for all ice types (Key, Collins, Fowler, Stone, 1997). MODIS Airborne
Simulator (MAS) data and campaign field data are currently used to
establish bounds for MODIS IST accuracy. We also retrieved the
average temperatures over a 3200 km2 area within Franklin Bay
(average over 10×20 pixels at 4 km resolution).

2.4.3. North American Regional Reanalysis (NARR)
Finally, we extracted 2-m air temperatures from the North

American Regional Reanalysis (NARR) from the National Centers for
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Environmental Prediction (NCEP) Environmental Modeling Center
(EMC). We used daily average values from 9 pixels (3×3 at 32 km
resolution) located within Franklin Bay and Amundsen Gulf encom-
passing AMSR-E andMODIS pixels. The horizontal resolution is 0.3° on
the Eta AWIP grid and the temporal resolution is 8 times daily (every
3 h) and averaged over a 24-hour period.

3. Results and discussion

3.1. Air temperatures

The in-situ air temperatures from themeteorological tower followed
a typical seasonal evolution patternwith a cooling period (days 343–59)
and a warming period (days 60–122). Values between days 343 and 59
decreased slightly, then reached a minimum daily average value of
−36.24 °C (Fig. 3a). The largest variations were measured on days 357, 5
and 29 where temperatures peaked to −13.1, −1.23 and −17 °C
respectively. Smaller variations were observed during the warming
period with the exception of one significant increase between days 85
and 101 in the order of approximately +1 °C day−1. Daily MODIS ice
surface temperatureswereonlyavailable forday14onward (Fig. 3a). The
minimum temperatures were reached on day 67 at −36.15 °C and
increased afterwards until the end of the sampling period on day 122.
Maximum temperatures were measured on day 101 at −10.28 °C, and
Fig. 3. Temporal evolution of a) meteorological tower, MODIS and NARR air temperatures an
tower (considered as reference).
thewarming rate between day 67 and day 122was approximately 0.5 °C
day−1. DailyNARR2-mair temperaturedata are depicted inFig. 3a. These
datawere available for the entire study period fromday 343 and 122. Air
temperature values decreased between day 343 and 41 where the
seasonal minimumwas reached for the region at −33.4 °C.

Overall, the temperatures from the meteorological tower agreed
quitewell withMODIS ice surface temperatures (assumed to be equal to
air temperature) with a R2 of 0.82 and an average error of +0.29 °C
(Fig. 3b). There are no particular temporal trends in the error where the
largest overestimation occurred on day 41 (+9.38 °C) and the largest
underestimation was on day 29 (−7.07 °C). NARR data also correlated
well with themeteorological towermeasurementswith a R2 of 0.61. The
error from the NARRdata underestimated air temperatures until day 18,
whereas it overestimated slightly the values for the remaining period.
The maximum error measured was +10.6 °C on day 89 and a minimum
of −13.7 °C on day 14. However, since MODIS data contains gaps in the
time series due to cloud cover, we suggest using NARR air temperature
data in Eqs. (6) and (7) since the temporal coverage is better.

3.2. AMSR-E brightness temperatures

The atmospherically corrected brightness temperatures difference
between the ascending and descending passes was negligible (no
diurnal effects). Therefore, we used the daily average Tb measurements
d b) the differences between MODIS and NARR data with respect to the meteorological



Fig. 4. Temporal evolution of atmospherically corrected AMSR-E brightness temperatures in both vertical and horizontal polarizations.

Fig. 5. Temporal evolution of predicted SWE using air temperature data from the NARR
re-analysis and AMSR-E brightness temperatures.
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for the SWE algorithm application. The brightness temperature values
did not vary much throughout the bay from pixel to pixel (spatial
variability). The atmospherically corrected brightness temperatures for
both 18.7 and 36.5 GHz in h-pol and v-pol are depicted on Fig. 4 for
p_Min and p_Max (pixels 3 and 4 from Fig. 1). The brightness
temperatures at 36.5 GHz varied slightly more than 18.7 GHz with
small differences between the pixels (Fig. 4). Overall, a strong increase
wasmeasured early during the sampling period at 18.7 GHz in the h-pol
whereas a general decrease was observed until day 67 where the
minimal seasonal values were reached at both 18.7 and 36.5 GHz.

3.3. SWE predictions

Predicted snow water equivalent data using air temperatures from
theNARR re-analysis and AMSR-E brightness temperatures are depicted
in Fig. 5. Overall, the SWE values oscillated between 15 and 25 mm.
Three major depositional events occurred around days 5, 42 and 91
(circled in Fig. 5). We assume that AMSR-E responded to those
depositional (precipitations) events and other peaks in predicted SWE
values could be due to blowing snow that redistributes snow thickness
without necessarily needing precipitations. For instance, the peaks in
SWEpredicted on days 19, 29, 52 and 82 corresponded to daily averaged
wind speed over 10 m s−1. However, it is hard to conclude whether
blowing snow is significant over a satellite footprint, particularly when
two adjacent footprints give essentially the same result (e.g. Fig. 7). The
total snowmass averaged over a large homogeneous area is not changed
much by blowing it around, but densitywould increase. The effect could
also be related to the alterationof thevertical temperature gradients and
the horizontal temperature contrast of the surface produced by strong
wind. Even though no statistical analysis was conducted due to a lack of
in-situ SWE measurements, an extended look at wind data and
predicted SWE values showed that the predictions could potentially
be affected by blowing snow. Results showed that all wind eventswhere
daily average wind speed exceeded 10 m s−1 were associated with an
increase in predicted SWE. In a total of 10 events, all showed an increase
in SWE, however the amplitude of the increase were was quite variable
(from approximately 0.5 mm to 4 mm). The amplitude of the daily
variations decreased between day 343 and day 70 and predicted values
generally increased between days 78 and the end of the sampling
period, although no relationships were established between those
variations and blowing snow events. Maximum seasonal values were
recorded at the end of the sampling period at 23.3 and 23mm for p_Min
and p_Max respectively. Again, the overall difference between the two
pixels was very small with an average of 0.3 mm and a maximum of
1.2 mm.
The algorithm is not sensitive to large variations in air temperature
since the SWE variations are much smaller than air temperatures
variations. Specifically, an increase of 5 °C in Eq. (6) corresponds to an
offset of 0.52 mmwhereas a much smaller value is measured in Eq. (7)
at 0.08 mm. Therefore, the thicker the snow gets, the less sensitive the
algorithm is to air temperature variations. Furthermore, brightness
temperatures from AMSR-E remained between 244 and 271 K, within
the range of validity for the algorithm. However, the SWE values did
not increase over the 33 mm threshold identified in Langlois and
Barber (2007a) since predictions from p_Min and p_Max remained
between 14 and 23 mm (no switch from Eq. (6) to Eq. (7)). The details
of this result will be discussed later.

Hence, we compared the SWE predictions from Eq. (6) for both
p_Min and p_Max with in-situ snow water equivalent (SWE) transects
collected over smooth and rough icewithin the AMSR-E pixels (Tables 2
and 3). In what follows, we provide a comparison between measured
and predicted SWE values for both smooth and rough ice environments.

3.3.1. Smooth ice snow water equivalent data
Basic statistical data (minimum, maximum, mean and standard

deviation) for all smooth SWE transects are depicted in Table 2. We
found that the SWE predictions are statistically significant with the
measured smooth ice SWE values within +/−1 standard deviation of the
measured in-situ values from Table 2 (Fig. 6). A strong correlation was
found between predicted and measured data with R2 values of 0.75 and
0.73 in p_Min and p_Max respectively. The measured SWE standard
deviation increased throughout the study as shown in Table 2 and Fig. 6,
which can be explained by higher spatial variations in snow thickness as



Fig. 6. Temporal evolution of SWE predictions for modeled p_Min and p_Max (black and gray lines), and measured at the smooth SWE transects sites (dots).
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snow thickens (Iacozza and Barber, 2001). Measured SWE over smooth
ice increased from an average of 15 mm (prior to day 65) to 19.1 mm
(after day 65) whereas the predicted SWE increased from 16.8 mm to
18.6 mm combining both p_Min and p_Max (Table 2). The differences
between predicted andmodeled valueswere on average 1.5 and 1.7mm
for both p_Min and p_Max respectively.

3.3.2. Rough ice snow water equivalent data
Basic statistical data (minimum, maximum, mean and standard

deviation) for all rough ice SWEtransects are depicted inTable 3.Wealso
found the SWE predictions to be statistically significant within +/−1
Fig. 7. Temporal evolution of SWE predictions for modeled p_Min and
standarddeviation of themeasuredSWEvalues over rough ice, although
predictions are not as strong as measured over smooth ice. The
measured roughness elevation varied between 15 and 140 cm on
average including snow thickness, which generally increased as the
season progressed.

The temporal evolution of the measured SWE over rough ice did
not follow any particular trend, although higher values were recorded
towards the end of the sampling period (Table 3 and Fig. 7). The
algorithm generally underestimated SWE by −8.7 and −8.2 mm for
p_Min and p_Max respectively (Fig. 7). The largest difference was
measured on day 78, where the average measured SWE value was
p_Max, and measured at the rough snow thickness transects sites.
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39 mm (difference of approximately 22 mm with the predicted
values), by far the highest value recorded throughout the study period.
If we exclude this SWE transect from the average, the underestimation
decreased to −6.8 and −6.3 mm for p_Min and p_Max respectively.

We mentioned earlier that the algorithm did not switch from thin
to thick snow. Hence, one may think that the thick snow algorithm
should be applied in rougher ice since thicker snow is found given
Table 3 due to snow catchments by the ice ridges (e.g., Granberg,
1998). Hence, we applied the thick snow algorithm from Eq. (7) to see
if better predictions would be found in Fig. 7 in rougher ice. Results
showed that predictions were too high with SWE values of
approximately 60 mm for both p_Min and p_Max. This can be
explained by the differences measured between the SBR brightness
temperatures (over which the algorithm was developed) and the
brightness temperatures from AMSR-E. The comparison of both sets of
Tb values showed that the brightness temperatures measured by the
SBR were higher during the winter resulting in lower SWE predictions
using Eq. (6). On average, the SBR Tb at 36.5 GHz Eq. (7) were was 35 K
higher than measured with AMSR-E. The difference was smaller at
18.7 GHz, which is used in the thin snow algorithm Eq. (6) explaining
the better results found using this algorithm. Furthermore, it was
demonstrated in various studies that thick snow thermodynamic
processes such as volume scattering and brine volume migration
governedmicrowave emission at the SBR scale over smooth ice during
the winter period (Langlois and Barber, 2007a). Those processes are
not dominant in a rough ice environment which might explain the
Fig. 8. Temporal evolution of a) polarization ratio at 18.7 GHz and b) the gradient ratio betw
ratio and gradient ratio.
better predictions obtained over smooth ice. Unfortunately, we did not
carry out an experiment with the SBR over rough ice, and this should
be a priority in future work.

Also, it was showed in Mäkynen and Hallikainen (2005) that Tb
decreases with increasing ice deformation at 18.7 and 36.5 GHz in the
vertical polarization (used in Eqs. (6) and (7)) over a partial (mix of bare
ice and snow) dry snowcover typically found in rough ice. This situation
was found in the study area (i.e. AMSR-E scale), although not in the SBR
field of view. Hence, decrease in Tb due to ice roughness was not
measured by the SBR over smooth ice (totally covered by snow), which
was also observed byMäkynen and Hallikainen (2005). A decrease in Tb
measured by AMSR-E through ice roughness will increase SWE
predictions using Eq. (7). More specifically, an increase in the order of
35 K (measured average difference at 36.5 GHz between days 343 and
57), would decrease SWE values by approximately 40 mm. Therefore, a
correction should be applied to AMSR-E brightness temperatures if one
wants to apply the thick snow algorithm over Eq. (7) a rough ice
environments.

Limited SWE datawere available in rough ice, and limited roughness
amplitudes (all rough transects conducted in average roughness heights
between111 and 157 cm)were sampled.However, to test this roughness
hypothesis,we simplycorrected theAMSR-Ebrightness temperatures so
that they match SBR measurements during the C2 and C3 periods. By
doing so, we found the SWEpredictions from Eq. (7) to vary between 31
and 42 mm, +/−2.5 mm for both p_Min and p_Max respectively. This
represents a much better result given Fig. 7, when compared to the 60–
een 18.7 and 36.5 GHz for both p_Min and p_Max. In c) a scatter plot of the polarization
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80mmpredictionswithout correcting the initial Tb for Eq. (7). However,
more data over a wider range of snow thickness and ice roughness
would be required to develop statistically viable corrections to Eq. (7) for
rough ice applications.

This simplemodification on brightness temperatures confirms that
a certain degree of correction is required when using the thick snow
algorithm over rough ice. Although atmospheric corrections were
conducted, it appears that the scale difference between the SBR and
AMSR-E can be a significant factor due to the different dynamic and
thermodynamic processes (highlighted in Langlois and Barber, 2007b)
affecting both scales at different amplitudes. Since no SBR measure-
ments occurred over rough ice, we could not develop nor modify the
existing algorithm even though it appears that a certain degree of
correctionwould greatly enhance prediction results. Furthermore, the
fraction and amplitude of ice roughness within one AMSR-E pixel
should be analyzed, but a lot of uncertainties remain on how to do so
from a satellite perspective. In what follows, we provide insight as to
where future roughness analysis should go in order to first qualify and
quantify ice roughness using a combination of passive and active
microwave satellite information for SWE prediction applications.

3.4. Roughness analysis

As shown in the previous section, ice roughness can alter SWE
predictions where the algorithm underestimates SWE values in rough
ice, although still significant within +/−1 standard deviation from the
measured data (Fig. 7). Hence, the state of roughness in both p_Min
and p_Max needs to be addressed from a satellite perspective. The
effect of roughness on the SWE predictions will be discussed later.
Fig. 9. Mean backscatter values for p_Min and p_
3.4.1. Impact of roughness on passive microwaves
As previously discussed, the polarization ratio (PR) was calculated at

18.7 GHz for both pixels using Eq. (4). A sharp decrease in PR was
measured from 0.91 on day 343 to 0.294 on day 352 for p_Max (Fig. 8a)
whereas it decreased from 0.812 to 0.315 at p_Min. Values increased
slightly afterwardsuntil days 67–68 anddecreased again until the endof
the sampling period. The gradient ratio (GR) at 18.7 and 36.5 GHz values
decreased slightly throughout the study period (Fig. 8b). Values were at
maximum early on day 354 for p_Min (−0.0106) and 357 for p_Max
(−0.0115). The minimumwas reached on days 67 and 85 for p_Min and
p_Max respectively (−0.0325 and −0.0288). A plot of GR against PR is
given in Fig. 8c. Two statistically distinct clusters arise (A and B)where A
are PR and GR values from day 351 to 122 and B values prior to day 351
(343–351).

It was found in Mäkynen and Hallikainen (2005) that as surface
roughness increases, dry snowbrightness temperatures decreases in the
vertical polarization, whereas values in the horizontal polarization did
not change as significantly (i.e., decrease in PR with increasing ice
roughness). From their conclusions, Fig. 8 could suggest that a transition
from new ice to rough icewas observedwithin our AMSR-E pixels early
in the season, but it could also be due to an open water to new ice
transitionwhichwould also decrease the PR values (Fig. 8a). Openwater
is reflective inmicrowave bands andhas a very strongpolarization effect
(TbV≫TbH) compared to first-year sea ice (Fig. 8a).

In order to find evidence of open water between days 343 and 3
where a large decrease in PRwasmeasured,we looked at ice charts from
the Canadian Ice Service (CIS). On January 1st, all of Franklin Bay was
considered as fast ice, however, no information was available prior to
that. Hence, we extracted sea ice concentration (SIC) values from the
Max at a) 6 km and b) 11.6 km of resolution.
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AMSR-E algorithm (Markus and Cavalieri, 2000) to examine any
evidence of open water detected over the same period. Sea ice
concentration results extracted from p_Min and p_Max did not provide
any evidence of open water since ice concentration varied from 98 to
100% between days 343 and 3, in agreement with the CIS ice charts.
Furthermore,we extracted SIC from12 pixelswithin Franklin Bay for the
same period, and results were similar throughout the bay suggesting
that the ice was consolidated at AMSR-E scales on day 343. However,
given the results presented in Fig. 8, openwater wasmost likely present
in the early stages of the sampling period, although its fraction was
probably sufficiently small so that both CIS charts and AMSR-E SIC
algorithm considered the region as fast ice. For further insight regarding
p_Min and p_Max spatial features temporal evolution (ice roughness,
open water etc.), we looked at active microwave satellite data which
might help understand the results presented above.

3.4.2. Impact of roughness on active microwaves
Mean backscatter values were analyzed at 6 and 11.6 km resolutions,

centered on the AMSR-E p_Min and p_Maxpixels to evaluate the scaling
effect on σ° in both p_Min and p_Max (Fig. 2) and provide further
information on sea ice roughness. Throughout the study period, mean
σ° values at 6 km resolution within p_Min were consistently higher
than p_Max. Backscatter values did not follow any particular trend
throughout the study period oscillating between −15 and −20 dB. The
maximumwas recordedonday 66whereσ° reached −14.7 and −15.5 dB
and minimum on day 106 at −19.9 and −20.3 dB for both p_Min and
p_Max respectively (Fig. 9a). This appears to be irrespective of incidence
angle, as it is fairly consistent from about day 10 to day 107. Overall, σ°
prior to day 48 did not vary greatly whereas the maximum variations
were measured between days 66 and 75. Results at 11.6 km showed the
same temporal behavior with maximum (−14.5 and −15.1 dB) and
minimum (−19.5 and −20.2 dB) σ° measured on day 66 and 106 for
Fig. 10. Standardized backscatter values for both p_Min and p_Max rela
p_Min and p_Max respectively (Fig. 9b). The differences between both
scales are minimal with slightly higher σ° values measured at 11.6 km.
On average, values were higher of 0.33 and 0.38 dB in p_Max and p_Min
respectively. The largest differences between the two scales were
measured on day 358 (Fig. 9).

Furthermore, z-scores from Fig.10 show that both p_Min and p_Max
were rougher (higher backscatter values) relative to the surrounding
areas (i.e., the larger pixel window from Fig. 8) and that p_Min is
consistently rougher at both 6 km on Fig. 10a and 11.6 km on Fig. 10b.
Fromday 10 today 106, p_Maxbackscatterwasonaverage 0.15 standard
deviations above the mean of the larger pixel window whereas p_Min
reached 0.43 standard deviations above the mean of the larger pixel
window (Fig.10). That value increased to 0.2 and 0.49 at 11.6 km for both
p_Max and p_Min respectively.While p_Min and p_Max both represent
smoothfirst-year sea ice (FYI), in a relative sense they both exhibit above
average roughness for the FYI in this region.

Mäkynen and Hallikainen (2004) reported an increase in σ° with
increasing ice roughness. The increase was in the order of 10 dB in
both co- and cross polarizations at 23° and 45° of incidence angle from
new ice to highly deformed ice. Once the ice was in place, we did
measure an increase in σ° between days 12 and 65, however the
increasewas in the order of approximately +5 dB. It is well known that
SAR σ° measurements are very sensitive to small small-scale rough-
ness (i.e., on the order of 1/10 the incident radar wavelength, λ), but it
is also sensitive to changes in the orientation of small-scale scatterers
induced by larger scale roughness features (e.g., Manninen, 1992;
Livingstone, 1994; Yackel, Barber, Papakyriakou, 2001; Yackel and
Barber, 2007). Using σ° to strictly quantify ‘roughness’ becomes a
problem given that roughness can be thought of as a relative term that
is associated with the distribution of scatterers at multiple scales (e.g.,
mm-scale ice roughness superimposed upon larger cm-scale ice
blocks). Additional fluctuations in σ° during winter could be caused by
tive to the surrounding area at a) 6 km and b) 11.6 km resolutions.
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either changes in snow and ice thermodynamic processes and related
thermophysical properties, or changes in small small-scale surface
roughness (e.g., Barber and Thomas, 1998; Barber and Nghiem, 1999;
Nghiem and Bertoia, 2001).

From the SAR analysis, we were unable to quantify roughness in
terms of amplitude. We found that the two pixels analyzed are likely
rougher thanwhat is found elsewhere in the bay. Since the brightness
temperatures were very stable throughout Franklin Bay, we speculate
that the amplitude of roughness variations from one pixel to another
did not significantly affect brightness temperatures (i.e. SWE predic-
tions). However, we found that the algorithm underestimated SWE in
areas of rough ice (Fig. 7), but no quantification of the fraction of
roughness within one AMSR-E pixel could be determined.

Results also showed that absolute and relative σ° were consistently
different between p_Min and p_Max. Backscatter results between days
358 and 3 do not show evidence of open to new ice transition, although
open water was present elsewhere in the area (bright areas Fig. 2a). At
11.6 km, we noticed that the analyzedwindow is fairly close to this zone
of open water (North East of p_Min and South West of p_Max) which
might explain its effect on AMSR-E 12.5 km pixel (Fig. 8). Hence, open
water was most likely present within the AMSR-E pixels, although its
fraction was not large enough to have a significant impact on the SIC
algorithm and the CIS ice charts.

4. Conclusions

4.1. Scaling effects on SWE predictions

Looking at our SWE predictions temporal evolution, we examined
how sensitive the SWE predictions were to variations in PR during the
open water to new ice transition around day 350. No apparent
relationship between the PR decrease and SWE prediction was found,
and more work is required due to the limited data available. It is well
known that open water strongly influences Tb values and existing
spaceborne SWE algorithms already consider the fraction of open
water within one pixel (Markus et al., 2006). Furthermore, the scaling
effect was obvious when comparing the SBR Tb with the Tb measured
from AMSR-E in this paper. Using Eq. (6), a lower brightness tem-
perature means a lower predicted SWE value, which could explain the
difficulty of the algorithm to increase SWE in a rough ice environment.
We showed that the use of the thick snow algorithm provides much
better results, although a level of correction was required. This
suggests that a ‘corrected’ thick snow algorithm should be applied
even though calculated SWE values did not reach the threshold
identified in Langlois and Barber, 2007a at 33 mm (or a different
threshold should be found for AMSR-E). However, the data presented
are not sufficient to provide an exact correction to be applied on the
AMSR-E Tb. It might be advisable to explore the possibility of using
18.7 GHz as well for thick SWE retrievals (in Eq. (7)) since we showed
that the difference between SBR and AMSR-E Tb is smaller at this
frequency. However, more field data are required to develop, compare
and test such an algorithm.

4.2. Ice roughness vs passive and active microwaves

From the passive and active microwave data analysis conducted in
this paper, it is hard to conclude on which of the two pixels is the
roughest. Within a satellite footprint, spatial heterogeneity is quite
important as it is not likely to contain 100% snowcover throughout the
pixel, but rather a mix of a snow, bare ice, ice ridges and openwater. In
such case, previous research showed that rough pixels will 1) decrease
the brightness temperatures in the vertical polarization, 2) decrease
the polarization ratio and 3) increase σ° values. From the results
presented in this paper, it appears that p_Min would be the roughest
pixel since the brightness temperatures are lower and backscattering
measurements higher once the ice was consolidated.
4.3. Future work

Weshowed that thepredictions over smooth icewere verygood, and
results over rough ice (using a certain level of correction) are promising.
The question remains: How do we quantify roughness within one
AMSR-E pixel? That question is still unanswered in a precise manner as
the fractions of smooth vs rough ice within p_Min and p_Max are still
unknown, but we see the coupling between passive and active
microwave essential in answering this question. We are confident in
the large large-scale applicationof thealgorithmas is for smooth ice, and
current work over rough ice is being conducted in our lab.

Precisely, a target for a level of tolerance as to what fraction and
amplitude of roughness is appropriate for the SWE from Eqs. (6) and (7)
should also be identified and extended large-scale in-situ validation is
required. Hence, it appears that the SWE predictions will not be
significantly affected by a certain level of ice roughness (up to 140 cm as
measured in the SWE transects) given that the pixels were ‘rougher’
than average (Fig.10a and b), but the spatial fraction of roughnesswithin
the AMSR-E pixel still needs to be addressed. Also, it was showed that a
degree of sensitivity to blowing snow exists (with wind N10 m s−1) due
to changes in the spatial distribution of snow thickness. However, more
work is required to increase the amount of in-situ data after blowing
snow events in order to understand the role of roughness in such
conditionswith regards to spatial redistribution of snow thickness. SWE
transects should be conducted in various wind conditions over smooth
and rough ice toquantify the impacton thepredictions fordifferent rates
of wind speed associated with the different transport mechanisms.

Hence, results presented in this paper provide guidance to further
research that should be conducted on the subject. Some of the
limitations discussed above should be addressed in future research.
Themain limitation of this paper is the absence of video data to support
the roughness analysis. Even though we conducted video flights in the
region during the study, the lines are still a small representation of the
AMSR-E pixel, therefore would not add any other significant informa-
tion. Therefore, a coupling between airborne passive microwave and
video recording at all in-situ/airborne/satellite scales will be required to
understand the trueeffectof roughnessonbrightness temperatures. The
next intuitive step is then to look relating different winter scenes (PMW
and SAR) through a spatial analysis of roughness and polarization ratio
using the airborne data as suggested above. Obviously, in-situ measure-
ments of snow and sea ice thermophysical properties should be
conducted coincidently given the usual financial and logistical con-
straints of Arctic research. Even though recent SWE studies are
promising, lingering uncertainties remained with regards to spatial
variability. We need to be able to quantitatively determine the effect of
different fractions of various spatial features on Tb in order to accurately
understand the potential effects on SWE predictions. Given the
importance of snow in the Arctic's system, those issues should be
prioritized in future research, and eventually feed in GCMs, that still
have strong assumptions with regards to snow.
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