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[1] Satellite-passive microwave remote sensing has been extensively used to estimate snow
water equivalent (SWE) in northern regions. Although passive microwave sensors operate
independent of solar illumination and the lower frequencies are independent of atmospheric
conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to
the surface heterogeneity within individual pixels. In this article, we investigate the
coupling of a thermodynamic multilayered snow model with a passive microwave emission
model. Results show that the snow model itself provides poor SWE simulations when
compared to field measurements from two major field campaigns. Coupling the snow and
microwave emission models with successive iterations to correct the influence of snow
grain size and density significantly improves SWE simulations. This method was further
validated using an additional independent data set, which also showed significant
improvement using the two-step iteration method compared to standalone simulations with
the snow model.
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1. Introduction
[2] Seasonal snow cover plays an important role in the

surface energy balance [e.g., Male and Granger, 1981;
Arons and Colbeck, 1995; Gustafsson et al., 2001] through
its high albedo, low thermal conductivity, and diffusivity
[e.g., Li and Zhou, 2001; Albert, 2002; Lemke et al., 2007].
Furthermore, snow is a key hydrological variable, acting as
an important freshwater reservoir [e.g., Barnett et al.,
2005], necessary for the health of ecosystems and energy
production (e.g., hydroelectricity). Variability in snow melt
and snow melt timing has major implications for perma-
frost regimes [Romanovsky et al., 2010] and associated
geochemical cycling.

[3] Large uncertainties remain with regard to the effect
of snow on climatological cooling and heating patterns
[Fletcher et al., 2009]. Furthermore, the lack of proper
snow depth and snow water equivalent (SWE) information

within global circulation models lead to uncertainties in
climate predictions [Essery, 1998; Brown et al., 2003;
Hardiman et al., 2008; Dutra et al., 2010]. The uncertain-
ties are larger in northern latitudes where the observed
warming is strongest [i.e., Kaufman et al., 2009] due to a
lack of in situ snow and meteorological observations used
to drive the models. A realistic representation of snow
(e.g., SWE) is therefore imperative to make reliable projec-
tions about the response of the northern environment to a
warming climate. This was addressed in numerous studies
using various remote sensing methods to monitor snow
cover extent using visible-near infrared remote sensing
[e.g., Hall et al., 1995; Maurer et al., 2003; Salomonson
and Appel, 2004; Frei and Lee, 2010]. However, those
methods do not allow the retrieval of SWE, a crucial
parameter related to cryospheric energy and water budgets.
The use of spaceborne passive microwave measurements
has proven to be a useful tool in determining SWE over land
[e.g., Chang et al., 1982; Foster et al., 1997; Pulliainen and
Hallikainen, 2001; Derksen et al., 2005, 2010] and sea ice
[e.g., Markus and Cavalieri, 2000; Langlois et al., 2007,
2010a], but the satellite sensor coarse spatial resolution
(�625 km2) combined with high spatial variability of snow
and vegetation properties [e.g., Foster et al., 2005; Langlois
et al., 2011] introduces random and systematic uncertainties
that can produce high error values for retrieval methods that
rely solely on passive microwave measurements.

[4] Recently, multilayered thermodynamic snow models
such as SNOWPACK [Bartelt and Lehning, 2002] have dem-
onstrated potential in SWE predictions [e.g., Langlois et al.,
2009]. The coupling of such models with climatological
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reanalysis data such as the North American Regional Reanal-
ysis (NARR) showed reasonable SWE predictions in north-
eastern Canada, and the use of reanalysis data to drive snow
models can address the spatial limitations of driving the
model with meteorological observations, given the sparse
spatial coverage of stations across Canada (about 25 stations
per 100,000 km2; Metcalfe and Goodison [1993]). Modeled
snow information coupled with passive microwave radiative
transfer models such as the microwave emission model of
layered snowpacks (MEMLS) [Wiesmann and Mätzler,
1999] could further improve our understanding of retrieval
accuracy and hence regional SWE variability.

[5] Recent work using passive microwave data has shown
potential in retrieving SWE [Andreadis and Lettenmaier,
2006; Pulliainen, 2006; Pardé et al., 2007; Durand and
Margulis, 2007; Touré et al., 2011; Takala et al., 2011].
However, most iteration procedures using passive micro-
wave data are conducted solely on SWE, while large uncer-
tainties still remain with regard to snow grain size
parameterization. Grain size is by far the most significant
variable affecting radiative transfer in the microwave models
and yet is ignored or simply treated in recent studies. Those
large uncertainties could lead to bias in SWE retrievals such
as systematic overestimation or underestimation, by com-
pensating for errors due to poor snow grain parameterization
through SWE. Thus, it becomes necessary to assess the re-
trieval of snow grain size information in current models,
which is hampered by a lack of field measurements arising
from sampling constraints. Some of the literature suggests
that ‘‘grain size’’ is poorly defined and measured with
repeatability problems [e.g., Domine et al., 2006]. Since the
morphology is extremely variable and can change in a matter
of hours [e.g., Colbeck, 1983; Arons and Colbeck, 1995;
Domine et al., 2008; Langlois et al., 2008], validation of
such models with accurate field measurements is yet to be
done. Of particular relevance, most SWE algorithms make
use of passive microwave radiative transfer principles, where
large uncertainties are related to the poor definition of snow
grain size profiles [e.g., Grenfell and Warren, 1999; Mätzler
and Wiesmann, 1999; Roy et al., 2004; Foster et al., 2005].
In fact, it was shown using various radiative transfer models
such as MEMLS [Durand et al., 2008; Langlois et al.,
2010a], Helsinki University of Technology [Butt and Kelly,
2008; Kontu and Pulliainen, 2010; Derksen et al., 2012a],
and Dense Media Radiative Transfer (DMRT) [Tedesco and
Kim, 2006; Grody, 2008; Brucker et al., 2010] that simu-
lated Tb are very sensitive to snow grain size, and yet this
variable is poorly characterized. Promising results from vari-
ous methods show that near-infrared reflectance can be
linked to specific surface area of snow grains [Matzl and
Schneebeli, 2006; Domine et al., 2006; Picard et al., 2010;
Langlois et al., 2010b]. Results from those methods, along
with the coupling of a snow and microwave emission model,
would allow an improved assessment of the snow grain in-
formation from snow model, with related uncertainties, and
a more accurate retrieval of snow variables such as SWE.

[6] While satellite microwave brightness temperatures ex-
hibit strong sensitivity to the scattering properties of terres-
trial snow, SWE retrieval solutions based solely on empirical
relationships between microwave brightness temperature and
SWE still perform poorly. Data iteration approaches, how-
ever, that can include a physical snowpack model coupled

with a radiative transfer scheme are a possible solution
[Durand et al., 2008]. With this goal in mind, the present
study evaluates the feasibility of driving a physical snowpack
model (SNOWPACK) with the NARR, the outputs of which
will be coupled with the MEMLS. The model SNOWPACK
is appropriate, since it produces detailed snowpack informa-
tion far beyond bulk properties like density, depth, and
SWE. Radiometric models require stratigraphy and grain
size information that are produced by this model. Hence, our
main objective is to reduce the uncertainties in SWE simu-
lated by snow models by incorporating passive microwave
observations within an iterative scheme (i.e., iteration until
error is minimized), which is completely independent from
field measurements. Specifically, we want to (a) couple the
thermodynamic multilayer snow model (SNOWPACK) to
MEMLS, (b) quantify and correct the uncertainty related to
poor snow grain information initially predicted by SNOW-
PACK, and (c) to correct modeled SWE from SNOW-
PACK-MEMLS and measured in situ/airborne brightness
temperature data.

2. Data and Methods
2.1. International Polar Year and Cold Regions
Hydrology High-Resolution Observatory Field
Campaigns

[7] Data for this study were collected during two intensive
Canadian field campaigns, namely the Canadian Interna-
tional Polar Year (IPY) project ‘‘Variability and Change in
the Canadian Cryosphere,’’ which took place in northern
Québec in February of 2008, and the Canadian Cold Regions
Hydrology High-resolution Observatory (CoReH2O) Snow
and Ice Experiment throughout the winter 2009–2010 in
Churchill (CH), Manitoba.

[8] The IPY intensive field campaign took place in Feb-
ruary 2008 and included four high-resolution sampling sites
located at Sept-̂les (SI—boreal : 50.3N–66.3W), Scheffer-
ville (SC—taiga: 54.8N–66.7W), Kuujjuaq (KU—taiga
and tundra: 58.1N–68.6W), and Puvirnituq (POV—open
tundra: 59.8N–76.4W), and five flight lines for airborne
measurements (Figure 1). At the high-resolution sampling
sites, snow and vegetation properties were measured every
kilometer within a grid of 8 km � 16 km. Airborne passive
microwave measurements along the flight lines were
acquired from a Twin Otter equipped with radiometers at
19 and 37 GHz (both horizontal and vertical polarizations).
A helicopter crew measured snow and vegetation properties
every 40 km between SI and Kangirsuk (KG—open tun-
dra). This �2000 km transect spanned the transition in veg-
etation from dense boreal forest to open tundra (Figure 1).
More details on the measurement campaign can be found
in Langlois et al. [2010a, 2011].

[9] The CoReH2O campaign took place between No-
vember 2009 and May 2010 in CH, Manitoba [Derksen
et al., 2012b] (Figure 1), during which spatially intensive
and temporally extensive observation periods were con-
ducted. The data used in this article were collected during
four intensive observation periods (IOPs) of 2–3 weeks in
January (IOP 1), February (IOP 2), March (IOP 3), and
April/May (IOP 4) 2010. Throughout these periods, sites
were revisited to capture the temporal evolution of snow
physical properties, and their impact on passive microwave
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brightness temperatures measured with sled-based radio-
meters over various surfaces (clearing in a forested stand,
dry/wet fen, and lake ice).

2.2. Snow Properties

[10] Snowpits were dug at each site such that direct solar
illumination of the snow wall was avoided. Layered density
profiles were obtained by extracting snow samples at 3 cm
intervals from the surface to the snow/soil interface using a
192 cm3 density cutter and weighed using a Pesola light se-
ries scale (60.5 g). Bulk SWE and density were measured
from a snow core at each site. Density was also determined
from the product of measured layer density and thickness
through each snowpit. Temperature profiles were measured
at 3 cm intervals using a Traceable 2000 digital tempera-
ture probe (60.1�C). The number of sampled sites is given
in Table 1.

[11] Snow grain size, a critical parameter strongly affect-
ing microwave snow emission [e.g., Mätzler, 1987], was
measured (in CH only) using the shortwave InfraRed Inte-
grating Sphere (IRIS) system, similar to the one developed
by Gallet et al. [2009], which uses an integrating sphere
(LabsphereVR , 10cm diameter) mounted with two ports on
the equator of the sphere at 0� and 90� and one port at the
top. The first port located on the equator of the sphere is for
the illumination source from a 1.3 mm laser with a 1 cm
beam expander. The second port on the equator of the sphere
is located in front of the laser and placed in front of the tar-
get (snow sample) and the third one at 90� is for an InGaAs
photodiode detector. A diaphragm is put in front of the laser
beam to measure the dark current and possible parasitic light
coming into the sphere. Subtracting the dark current and par-
asitic light from the measured signal of the sample without
the diaphragm allows the clean measurement of the signal

reflected by the snow sample. The IRIS system is calibrated
to albedo for each snowpit using reference Spectralon targets
(0.06, 0.25, 0.59, 0.79, and 0.99 at 1300 nm), taking into
account any possible shift in the laser illumination between
every snowpit measurement. For more details on the IRIS
system, please refer to Montpetit et al. [2011] or Gallet et al.
[2010].

2.3. Moderate Resolution Imaging Spectroradiometer
Vegetation Product and Passive Microwave
Measurements

[12] Only vegetation-free (forest fraction, F ¼ 0) airborne
brightness temperatures were used in this study. To identify
which sampling sites had available Tb where F ¼ 0, we
used satellite-derived land cover type and forest fraction
maps. The land cover type was determined from the Land
Cover Map of Canada 2005, produced by the Canadian
Center for Remote Sensing (Natural Resources Canada,
Ottawa, Canada) [Latifovic et al., 2004]. The data set
encompasses land cover at 250 m spatial resolution, includ-
ing water fraction. As for the vegetation fraction, values
were extracted from the Moderate Resolution Imaging
Spectroradiometer (MODIS) vegetation continuous fields
available from the Global Land Cover Facility [Hansen
et al., 2002]. The vegetation continuous field collection

Figure 1. Location of the IPY and CoReH2O field campaign flight lines and sampling sites. The back-
ground map is derived from the MODIS land cover product with aggregated classes for clarity.

Table 1. Sampling Sites for the IPY and CoReH2O Campaigns
Where Tb, Snow, and Vegetation Properties Data Are Available

Data Set Dominant Land Cover
Number of

Sampling Sites

IPY Dense boreal forest, taiga,
and open tundra

36

CoReH2O Taiga; open wetland 16
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contains proportional estimates for vegetative cover types
gathered into three general classes: woody vegetation (for-
est), herbaceous vegetation, and bare ground.

[13] For the airborne passive microwave measurements,
the radiometers were mounted on the National Research
Council Twin Otter aircraft, which is described in detail by
Walker et al. [2002]. The airborne radiometers were precali-
brated and postcalibrated each flight using warm (ambient
temperature microwave absorber) and cold (liquid nitrogen)
targets as described by Solheim [1993] and Asmus and
Grant [1999]. Uncertainty in the measurement of the cali-
bration target temperature was estimated at 62 K. The 19
and 37 GHz radiometers were calibrated simultaneously, so
the same target temperature uncertainties for a given cali-
bration apply to both frequencies. Estimates of intercalibra-
tion receiver drift were made by examining the preflight and
postflight calibration target brightness temperatures. Radi-
ometer stability depended on frequency, but overall uncer-
tainty was estimated at 62 K at 19 GHz and <1 K at
37 GHz. The aircraft flew over the high-resolution grids at
an altitude of 914 m, while the sites sampled by helicopter
access were flown at an altitude of 305 m. The ground field
of view at 53� incidence angle was approximately 290 m �
490 m and 120 m � 200 m for the two altitudes, respec-
tively. One should note that the sites used in this article
(Table 1) showed no evidence of melt and contained no ice
lenses. The presence of ice lenses complicates MEMLS
simulations [Rees et al., 2010], and thus sites where ice was
present were removed from the data set. The surface-based
measurements conducted in CH used the same set of radio-
meters mounted on a sled and pulled by a snowmobile. The
radiometers were also precalibrated and postcalibrated using
warm and cold targets everyday for the duration of the cam-
paign [Derksen et al., 2012b].

2.4. Models

2.4.1. SNOWPACK Simulations Driven by NARR
[14] Snow thermodynamic models require meteorological

information as input, which are sparse in northern regions.
Regional reanalysis data such as the NARR available
(1979–present) from the Environmental Modeling Center,
National Centers for Environmental Prediction, represent a
good alternative and were used to drive SNOWPACK. The
horizontal resolution is 0.3� (approximately 32 km) and the
temporal resolution is eight times daily (every 3 h). To sim-
ulate snow cover evolution, the model requires, at each time
step (set every 3 h), mean values of air (2-m) and surface
temperatures (�C), relative humidity (%), wind speed
(m�s�1), incoming/reflected shortwave and incoming long-
wave radiation (W�m�2), and cumulative precipitation over
the 3 h period (kg�m�2 or mm). A local validation of NARR
can be found in Langlois et al. [2009], which found that ba-
sic meteorological parameters (temperature, humidity, radi-
ation) are fairly well simulated in southern Québec and that
promising results are found in northern regions such as KU
and SC; however, further investigation is required with
regard to precipitation. Thermophysical processes of inter-
est in SWE studies such as phase change, water vapor trans-
port (i.e., metamorphism), and loss (runoff, evaporation,
and sublimation) are included within SNOWPACK. The
details on the internal models will not be given here; they

can be found elsewhere [Lehning et al., 2002; Bartelt and
Lehning, 2002].

[15] Model settings were specified, given the input data
availability mentioned above. Two main types of output
data can be visualized through user-friendly software,
namely scalar and vector data [Spreitzhofer et al., 2004].
The scalar data are related to individual layers of the snow-
pack such as the simulated vertical profiles of snow density,
temperature, grain size, and shape, whereas vector data are
attributed to snow cover evolution, such as depth and SWE.
The amount of layers varies, given the number of precipita-
tion events and the predicted snow depth. The transition
between solid and liquid precipitation occurs at þ1.2�C.
2.4.2. Microwave Emission Model of Layered
Snowpacks

[16] The MEMLS can be used in the frequency range
between 5 and 100 GHz [Mätzler and Wiesmann, 1999;
Wiesmann and Mätzler, 1999]. The model is based on radia-
tive transfer theory, which allows the scattering coefficient
to be predicted from physical snow parameters and the
absorption coefficient from dielectric properties of ice. Snow
cover is considered as a series of horizontal layers (L) each
characterized by thickness, reflectivity (rL), emissivity (eL),
transmissivity (tL), and temperature (TL). The model auto-
matically computes these parameters using snow informa-
tion as input. To obtain accurate characterizations of rL, eL,
and tL, a six-flux three-dimensional approach is used within
each layer. The horizontal fluxes represent radiation that is
trapped in the snow cover and cannot exit at incidence
angles (�) larger than the critical angle �c. The vertical fluxes
represent the radiation that escapes the snow cover at � < �c.
Further details on the radiation transfer theory used in
MEMLS can be found in Mätzler and Wiesmann [1999] and
Wiesmann and Mätzler [1999]. The primary input profile
data are density (�s), snow temperature (Ts), liquid water
content (Ws), correlation length (lc), vertical extent (zL),
physical ground temperature (Tg), and snow-ground interface
reflectivity (r0), which were derived through the NARR-
SNOWPACK coupling and field observations. From these
primary parameters, the dielectric properties (for dry and
wet snow) as well as the absorption (�a) and scattering (�s)
coefficients can be derived. The soil parameters in MEMLS
were set using the soil reflectivity model of Wegmüller and
Mätzler [1999].
2.4.3. Correction of Simulated Snow Grains

[17] The output of the SNOWPACK simulations driven
by NARR were used as input to MEMLS. We kept the same
number of layers as predicted by SNOWPACK (which were
not constrained and so were different for each site, given the
variability in the number of precipitation events and the pre-
dicted snow thickness), but the snow grain optical diameter
values (from SNOWPACK, dopt) were replaced by correla-
tion length values (requested in MEMLS, lc) such that

lc ¼
2

3
� 1� �snow

�ice

� �
� dopt; (1)

where �snow and �ice are, respectively, snow and ice density
in kg�m�3 [Mätzler, 1992a]. Using the NARR forced snow
information from SNOWPACK as input to MEMLS, a
two-step iteration process for SWE retrieval was developed
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such that simulated snow grain size was corrected using
measured and simulated Tb (first iteration) prior to retriev-
ing SWE (second iteration), also using measured and simu-
lated Tb (Figure 2).

[18] By doing so, we avoid compensation through SWE
for poor snow grain parameterization. We compared simu-
lated and measured Tb and applied a correction factor (mul-
tiplying factor ’, as depicted in Figure 2) on simulated
correlation length (lc) values until a minimum root-mean-
square error (RMSE) was reached. It was demonstrated by
Lundy [2000] that SNOWPACK is able to predict the
trends in density with some degree of accuracy (R2: 0.83,
mean-square error: 66 kg�m�3), but uncertainties are
related to incorrect calculation of grain size and bond. Pre-
dicting the rate of grain growth during equilibrium and
kinetic-growth metamorphism is a complex task, and the
physics used by SNOWPACK have not been extensively
validated due to the complexity of measuring snow grains
properly (lack of reference data). Another possible problem
lies in the assignment of the initial grain size of new snow,
which is set constant (i.e., standard value). Since the model
only allows grain growth, no grain sizes less than this ini-
tial value are ever predicted (which leads to systematic
overestimation of grain size), leading to low Tb simulations
(i.e., through loss due to excessive scattering) and very

large RMSE. Snow grain simulations from SNOWPACK
[Huang et al., 2012] or other multilayered snow thermody-
namic models such as CROCUS were investigated in other
studies [Morin et al., 2012; Brucker et al., 2010]. They out-
line the problem of different definitions of ‘‘grain size’’ and
treatment of its growth, leading to the need for adjustment
prior to be coupled with a snow emission model. Thus,
before focusing on the objective of this study (i.e., retrieve
SWE), it appears necessary to show whether the snow model
overestimates or underestimates snow grain size when com-
pared to available in situ measurements, using which this
bias can be corrected with passive microwave measurements.

3. Results and Discussion
3.1. Snow Properties

[19] We selected sampling sites at which vegetation-free
airborne brightness temperatures (Tb-SNOW) were available.
At each site, SWE was measured and compared to NARR-
SNOWPACK runs. Results are highlighted in Table 2 for
both IPY and CoReH2O campaigns. The differences
between measured and modeled SWE values are highly vari-
able from one site to another, and the relationship between
modeled and measured SWE is depicted in Figure 3.

Figure 2. Two-step iteration method using measured and simulated brightness temperatures for
predicted snow grain correction and SWE retrieval.
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[20] The initial SWE predictions from NARR-SNOW-
PACK (no passive microwave measurements considered)
are quite poor with a slope of 0.23, a y-axis intercept (offset)
of 108.9 mm of SWE, an RMSE of 79.4 mm, and a mean
bias of 26.5 mm. Overall, SNOWPACK largely underesti-
mates SWE, and improving on this result using an iterative
scheme to retrieve SWE from measured and modeled pas-
sive microwave brightness temperatures is the main objec-
tive of this article. It would be difficult to identify the
forcing process behind the large modeled underestimation
compared to observations. The performance of SNOW-
PACK in predicting SWE can vary from one site to another
and is different from year to year [Langlois et al., 2009].
One of the potential explanations is that local precipitation
gauge measurements are highly uncertain in remote north-
ern locations, and systematic biases can be significant [Yang
et al., 1999]. Northern areas are usually open, and wind dis-
turbance can be significant, leading to lower catch efficien-
cies by the gauges (i.e., lower measured precipitation),
which, in turn, leads to systematically smaller precipitation
values in NARR and hence SWE values in SNOWPACK.
This is in agreement with Langlois et al. [2009] that found

more accurate SWE simulations in southern Québec at a
research station with proper maintenance and protected
from wind disturbance. Because of its recent release, the
strengths and weaknesses of NARR are largely undocu-
mented [Mesinger et al., 2006]. Although NARR provides
much improved representation of precipitation when com-
pared to other reanalysis products [Bukovsky and Karoly,
2007], Mesinger et al. [2006] identified some of the known
weaknesses, including precipitation inaccuracies over Can-
ada. Although it is hard to quantify the exact uncertainties
in high latitude precipitation data, the work by Langlois
et al. [2009] has shown reasonable NARR precipitation esti-
mates over seasonal time scales in some areas. Furthermore,
Figure 3 clearly shows important variability in measured
SWE within one NARR pixel (i.e., one simulated SWE
value by SNOWPACK). This variability is explained by dif-
ferent environments in which sampling occurred (fen, for-
est, open tundra). Hence, changing precipitations would
only move the cluster up or down as shown in Figure 3,
when clear improvement is needed on the slope. The SWE
simulations need to be improved individually at each site
(i.e., at the model level) rather than on precipitations that

Table 2. Measured and Modeled SWE (NARR-SNOWPACK) for the IPY and CoReH2O Data Sets

Data Set n Sites

SWE (mm)

Measured SNOWPACK

Min. Max. Avg. Min. Max. Avg.

IPY 36 43.6 450.8 189.2 125.4 256.9 173
CoReH2O 16 56.6 334.2 154.2 81.5 146.7 112.7

Figure 3. Comparison between initial modeled SWE values from NARR-SNOWPACK (without
consideration of passive microwave measurements) and field-measured values.
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would logically not improve the above results. Finally, the
modeled density values from SNOWPACK are generally
underestimated, where the underestimation increases with
increasing thickness. This leads to larger underestimation in
SWE for deep snow, as discussed in Figure 6. The new
snow density is a function of air and surface temperatures
(range �12�C to þ2�C), wind speed, and relative humidity.
The snow density estimations are based on statistical rela-
tionships from the Alps, and their applicability to other
regions presented in this article needs further evaluation
[Lehning et al., 2002].

3.2. Simulated Snow Grain Size Correction

[21] The initial MEMLS Tb with SNOWPACK-derived
grain size (no correction) varied between 80 and 150 K,
which are unrealistically low values for these conditions.
The SNOWPACK lc values were initially predicted with an
average of 0.82 mm, with values up to 1.9 mm. However, it
was shown by Wiesmann et al. [1998] that typical snow
has lc values ranging between 0.06 mm (new snow) and
0.25 mm (depth hoar), which are much lower than those
simulated by SNOWPACK. Hence, the resulting scattering
from overestimated lc values is significant when MEMLS
is coupled directly to SNOWPACK.

[22] To address this issue, we coupled snowpit measure-
ments (temperature, density, depth) with simulated (NARR-
SNOWPACK) correlation length values and used the data
as input to MEMLS to find an optimal scaling coefficient
(’), which provides the lowest RMSE values between simu-
lated and measured Tb. Initial RMSE values (i.e., ’ ¼ 1, no
correction on grain size) ranged between 136 and 170 K at
19 and 37 GHz (V and H pol.), as shown in Table 3. The
minimum RMSE between simulated (using snowpit infor-
mation and SNOWPACK lc predicted values) and measured
Tb was obtained with a ’ ¼ 0.1 at all frequencies and polar-
izations, which produced RMSE values of 7.8, 8.1, 26, and
26.8 K at 19V, 19H, 37V, and 37H, respectively (Table 3).
The corrected lc values (SNOWPACK lc reduced by �90%)
are closer to what was determined by Wiesmann et al.
[1998]. Furthermore, the corrected lc values are in agreement
with IRIS measurements conducted in CH (Table 4). The
high sensitivity of the IRIS system to grain size under con-
trolled illumination provides improved retrievals of snow
grain size information [e.g., Domine et al., 2006; Montpetit
et al., 2011]. The reason why IRIS was not used to deter-
mine the ’ is that the overarching goal is to be completely
independent from field measurements (presented in the first
iteration process; Figure 2). Nonetheless, lc values from
Table 4 are well below the initial values simulated by
SNOWPACK (’ ¼ 1) but agree quite well with the corrected
values using ’ ¼ 0.1 obtained through the Tb iteration. This

demonstrates just how important such a correction is, prior to
any further iteration.

[23] Once the snow grain size information is corrected,
the obtained RMSE in the SNOWPACK-MEMLS Tb

includes errors related to other snow properties, but primarily
to the density because the dielectric constant is largely con-
trolled by density in dry snow conditions [e.g., Tiuri et al.,
1984; Hallikainen et al., 1986; Mätzler, 1987; Huining
et al., 1999]. Hence, some differences in SNOWPACK mod-
eled density were found in the initial runs when compared
against field measurements (density generally underesti-
mated by SNOWPACK), which can explain some of the dif-
ferences between modeled and measured SWE (Figure 3).
Hence, these differences were addressed by a second model-
ing iteration to retrieve SWE (see the flowchart in Figure 2).
Assimilating SWE values without prior correction of unreal-
istic grain size representation would produce heavily biased
simulations, so the ’ correction factor was included in the
SWE iteration. The use of simultaneous (two free variables:
grain size and SWE) iteration method as proposed by Pardé
et al. [2007] leads to larger errors than those proposed here.
The successive iteration presented in this article (first snow
grain size, then SWE) was already addressed in previous
studies using spaceborne data [e.g., Pulliainen, 2006], but
the results highlighted the difficulty of using such an iteration
scheme in mixed pixels (i.e., given the low spatial resolution
of passive microwave satellite data, many spatial features
contribute to the signal). This constraint is well addressed in
this article by using high spatial resolution airborne data with
relatively homogeneous pixels.

3.3. SWE Retrievals Using Modeled and Airborne Tb

Iteration

3.3.1. SWE Iteration Range
[24] Previous studies have shown that Tb values at 37 GHz

typically decrease, as the scattering volume (i.e., SWE)
increases, which is the basis behind most SWE algorithms
using the difference between 19 and 37 GHz, �Tb (a larger
�Tb due to decreasing brightness temperatures at 37 GHz
with increasing snow depth) [e.g., Chang et al., 1982;
Mätzler, 1987]. However, with large values of SWE, this
scattering behavior is no longer evident because the 37 GHz

Table 3. Initial RMSE Values Between Measured and Modeled Brightness Temperatures and Associated Values After ’ Correction
(Scaling Factor) on lc Values

Source ’

RMSE (K)

19V 19H 37V 37H

Initial With ’ Initial With ’ Initial With ’ Initial With ’

Snowpit-SNOWPACK 0.1 169.7 7.8 154.9 8.1 146 26 136.2 26.8

Table 4. Correlation Length Derived From IRIS Measurements
in CH Compared to Scaled SNOWPACK lc Values

Method

Correlation Length, lc (mm)

Min. Max. Average

IRIS (197 measurements) 0.017 0.306 0.161
SNOWPACK lc–’ 0.020 0.175 0.118
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brightness temperature increases with higher SWE due to
emission from the snowpack itself that masks the large scat-
tering from large depth hoar grains [e.g., Rosenfeld and
Grody, 2000; Dong et al., 2005] (Figure 4). This reversal
from the ‘‘classical’’ �Tb pattern can cause ambiguity in
SWE retrievals. Hence, to improve the accuracy of the SWE
retrieval iteration, we limited consideration to cases where
the effect mentioned above was not observed. By looking at
the brightness temperature, we found that the reversal slope of
the Tb versus SWE relationship occurs at measured SWE val-
ues larger than 148 mm (up to a measured maximum of 290
mm). This corresponds to snow depths of 65–105 cm at an av-
erage density of 250 kg�m�3. The 148 mm threshold was
determined using the minimal Tb values of a second-degree
polynomial fit on averaged ranges of SWE with 25 mm incre-
ment (which did not show statistical significance).

[25] Obviously, the slope reversal depends upon snow
physical properties (i.e., grain size; stratigraphic properties)

and dielectric properties that are highly variable spatially
and temporally. For instance, Qiu et al. [2011] demonstrated
that this reversal can be highly dependent on snow grain
size where the reversal occurs at relatively deeper snow
with small snow grain size values. However, many differen-
ces exist between various studies. Most differences arise
from the different polarizations (V versus H, with lower
penetration depth for H-polarized Tb causing an earlier re-
versal, as seen in Figure 4). Also, given the environment
(boreal, taiga, tundra, sea ice, etc.), large differences in Tb

can be measured arising from highly variable dielectric
properties, which are governed by density, temperature, and
wetness. For instance, Markus et al. [2006] simulated a
slope reversal using �Tb19H-37H at about 90 cm of snow
depth (SWE of 245 mm for density of 250 kg�m�3),
whereas the limit is set at 50 cm (SWE of 140 mm for den-
sity of 250 kg�m�3) in Kelly et al. [2003]. Using Special
Sensor Microwave/Imager (SSM/I) data, Rosenfeld and

Figure 4. Measured brightness temperature (ground and airborne) as a function of SWE at 19 GHz in
the vertical polarization, (a) 19V, (b) 37V, (c) 19H, and (d) 37H. The slope reversal in brightness temper-
ature versus SWE is marked by the bold vertical line.
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Grody [2000] observed the reversal at 37V at depths of
40–50 cm. However, one must be careful comparing these
findings, since most of evaluations do not take into account
vegetation contributions to the signal [e.g., Kruopis et al.,
1999; Pampaloni, 2004; Pardé et al., 2005; Lemmetyinen
et al., 2009; Langlois et al., 2010b, 2011], nor atmospheric
effects [e.g., Kerr and Njoki, 1990; Mätzler, 1992b]. Both
effects, which can be neglected in our study since we are
using ground and airborne radiometer measurements over
vegetation-free areas, can have a significant impact on Tb,
leading to a biased slope reversal threshold. In fact, Derksen
et al. [2010] showed that the reversal occurred at �130 mm
using airborne data, whereas lower SWE threshold was
observed using satellite measurements. In light of this, we cor-
rected SWE using measured and modeled brightness tempera-
tures at all frequencies and polarizations, and best results were
obtained combining 19V and 37V. From this result, we con-
ducted the second iteration over the 0–290 mm SWE range
(290 mm being the limit observed for 19V in Figure 4a).
3.3.2. � Correction Factor for SWE Retrieval

[26] As highlighted in Figure 2, we modified the SNOW-
PACK-modeled SWE values (using a � factor : when
�SWESNOWPACK ¼ SWEmeasured) using an iterative scheme
(minimizing RMSE between observed and modeled Tb by
changing SWE values in the input SNOWPACK data)
using the snow grain corrected (’) MEMLS output data
from the first iteration process (Figure 2). Two different
approaches were tested:

[27] 1. A fixed correction factor, �, was applied to the
SNOWPACK-modeled SWE (‘‘� fixed’’ in Table 5). The
� is obtained when the RMSE between measured (radiome-
ter) and simulated (MEMLS) Tb is minimized for all sites
combined (i.e., same correction on SWE for each site).

[28] 2. Adjustable � values were computed individually
at each site to minimize the difference between Tb-rad. and
Tb-MEMLS.

[29] From the first approach, the lowest RMSE value on
Tb obtained from the iteration was with � ¼ 1.35 (i.e., mod-
eled SWE values multiplied by 1.35; Figure 5). Although
this correction method improves the slope (from 0.23 in
Figure 2 to 0.53 in Figure 5), the RMSE (from 79 to 55 mm),
and R2 (from 0.27 to 0.45), the offset increases from 109 to
121 mm, highlighting the need for further improvement.

[30] It appears that the difference between measured and
modeled SWE varies with the magnitude of the in situ SWE
measurements, which largely explains the poor results in
Figure 5. The correlation observed between the measured
and modeled SWE differences with the in situ SWE meas-
urements (Figure 6) shows that measured values below
148 mm (corresponding to 148 mm modeled) are lower
than predicted values from SNOWPACK. Hence, a more
appropriate strategy would be to obtain a � correction factor
individually for each site providing the lowest RMSE value

between modeled and measured Tb (i.e., SWE value where
Tb-MEMLS � Tb-MEASURED). To establish the reliable range
variation of the � correction factor, we computed the opti-
mal � values that would provide the perfect match obtained
with SWEmeasured/SWESNOWPACK. Those values ranged
between 0.4 and 1.9, where values below 1 decrease modeled
SWE. We then coupled SNOWPACK and MEMLS using
the whole � range (0.4–1.9, step of 0.1) and used the � value
as a free parameter that provided the best simulation (i.e.,
where MEMLS Tb was closest to radiometer measurements).

[31] Since predicted SWE values below 148 mm (value
derived from regression in Figure 6) are overestimated by
SNOWPACK (Figure 6), their � correction factor should
theoretically be <1, whereas modeled values over 148 mm
should have a � > 1. Hence, for sites where � values
obtained through the iteration did not obey that rule, we
simply applied a fixed negative/positive � value (� ¼ 0.7
for sites that obtained a � > 1 for SWE < 150 mm,
and � ¼ 1.45 for sites that obtained a � < 1 for SWE >
148 mm). Such cases can occur under various circumstan-
ces of which further analysis is beyond the scope of this ar-
ticle. The forcing values of 0.7 and 1.45 provided the best
results, and the obtained corrected modeled SWE values
are improved further when compared to a fixed � ¼ 1.35
(slope, y-axis intercept, and R2) as shown in Figure 7 and
Table 5 (‘‘� adjustable’’ in Table 5).

[32] The relationship between predicted values (with ’
and �) shows an improved slope, R2, and y-axis offset and
an RMSE of 65.4 mm (Table 5). Thus, the method sug-
gested here improves SWE predictions compared to stand-
alone simulations with a physical snow model driven by
regional reanalysis. A similar approach was developed by
Foster et al. [2011]; however; their approach requires in
situ information (not always representative), whereas our
methodology is completely independent from surface
observations.

3.4. Validation

[33] The method developed above was tested against an
independent data set, also acquired during the 2008 IPY
campaign near the community of POV (59.8 N–76.45W;
see Figure 1). Coincident airborne brightness temperatures
and in situ SWE measurements were collected along a tran-
sect, spanning two NARR pixels (hence, two NARR-
SNOWPACK SWE values). Nearly 5000 snow depths were
measured in 5 days, then converted to SWE using average
density determined from snow core measurements and were
also measured along the snow depth transects (see Derksen
et al. [2010] for a complete description). The airborne radi-
ometer footprint was about 100 m, within which measured
SWE values were averaged (between 10 and 85 SWE meas-
urements in each footprint), leading to a total of 109 points
used in the validation.

[34] Obviously, one can expect a poor relationship
between NARR-SNOWPACK modeled versus measured
SWE (Figure 8a), given that only two modeled SWE values
are available and compared against 109 in situ measure-
ments, which were strongly affected by local-scale variabili-
ty. This is also the reason why no validation was conducted
using Advanced Microwave Scanning Radiometer–EOS
data. However, for each of the 109 footprints, � values were
found using the methodology presented in this article. We

Table 5. Summary of Initial and Corrected SWE Simulation
Statistics Compared to Field Measurements

SWE Simulations Slope y-Axis Offset (mm) R2 RMSE (mm)

Initial 0.226 108.85 0.269 79.4
� fixed 0.532 121.13 0.447 54.9
� adjustable 0.891 23.474 0.404 65.4
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Figure 5. Comparison between modeled SWE values from NARR-SNOWPACK (’ scaling applied to
grain size) using a fixed � value of 1.35 (multiplying factor) and measured values.

Figure 6. Difference between measured and modeled SWE as a function of measured SWE.
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retrieved corrected modeled SWE and compared them
against field measurements (Figure 8b). Results show that
our method clearly improves SWE simulations from
SNOWPACK, even with the very high spatial variability
measured on the ground. The average standard deviation of
measured SWE within the two NARR pixels is 57 mm
(min. 14 mm, max. 148 mm).

[35] However, potential sources of error can arise from
field measurements of SWE and the inherent spatial vari-
ability. Although the latter cannot be corrected but only
quantified, it remains a potential source of error. As dis-
played in Figure 8 for the validation, this spatial variability
varied between 14% and 99% within the radiometer foot-
prints (approximately 100 m � 100 m). Shook and Gray
[1996] measured the standard deviation of snow depth at
sampling distances ranging between 1 m and 1 km and
showed that the standard deviation within distances of
about 30 m is representative of larger scales [Clark et al.,
2011]. However, this specific 30 m spatial variability was
not systematically measured on the field and has to be
measured in tundra environments. This is crucial to SWE
retrievals using coarse spatial resolution passive microwave
satellite data and can account for observed biases and
explain some of the errors observed in Figures 7 and 8,
given the scale differences between snowpit measurements
(local) and simulations (NARR-SNOWPACK at �32 km).

4. Conclusions
[36] We coupled a snow thermodynamic model (SNOW-

PACK) driven by regional reanalysis data (NARR) with a
layered snow emission model (MEMLS) to improve simu-
lations of SWE, completely independent from any surface

observations (using the � values from section 3.3.2 consid-
ered to be representative). To evaluate the snow model,
simulations were compared to in situ measurements from
two different field campaigns. We first showed that the ini-
tial SWE simulations (without the use of any passive
microwave measurements) contained large errors with a
regression slope of 0.23 and a y-axis offset of 109 mm. The
initial R2 and RMSE were measured 0.27 and 79 mm,
respectively.

[37] To improve this result, we coupled the snow model
output to a layered microwave snow emission model. First,
the poor grain characterization by the snow model was cor-
rected using an iterative scheme where the simulated snow
grain was modified (scaling factor, ’) until a minimum dif-
ference in brightness temperatures (�Tb-MIN) was found
between measured (radiometer) and modeled (MEMLS)
data. The most appropriate scaling factor was found to be
0.1 for all sites, which was then applied to the snow model
output. The SNOWPACK output data (with corrected snow
grain size using ’) was again coupled to MEMLS for a sec-
ond iteration to retrieve SWE (i.e., modifying SWE until
�Tb-MIN was found). A scaling factor for SWE (�) was
found for all sites collectively (minimum RMSE) at 1.35.
Further improvement occurred when using two � values for
underestimated and overestimated SWE values, which pro-
duced significant improvement on the slope, y-axis inter-
cept, R2, and RMSE between modeled SWE (with the two
iteratively determined scaling factors) and measured SWE.

[38] It is important to understand that the rather large
uncertainties in snow model predictions of SWE and grain
size (in our case: SNOWPACK) can be attributed to (1) the
model itself and how it treats physical processes such as met-
amorphism and compaction and (2) the input meteorological

Figure 7. Comparison between modeled SWE values from NARR-SNOWPACK (’ scaling factor
applied to grain size) using variable � values (multiplying factor) for each site using a 148 mm threshold
(second iteration process, see Figure 2).
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data. It is thus hard to compare and identify key components
of the models that are problematic. The overall objective of
this article was not to identify and correct weaknesses in
SNOWPACK but rather to investigate if Tb can be used to
correct initial biases in the snow model whether they come
from the model of the input data and without any other
source of information on the snowpack. A comparison
between similar snow models was conducted in the frame-
work of Snow Model Intercomparison Project (SnowMIP)
and by Langlois et al. (2009). In this latter analysis, results
showed similar biases in three models, namely, SNOW-
PACK, CROCUS, and SNTHERM. The use of another
model performing better in SWE of snow grain simulations
would simply change the level of correction needed (’, �),
but the overall improvement would not necessarily change.
Improving the physical treatment of SNOWPACK is out of
the scope of this study.

[39] Validation using an independent snow survey data
set over tundra with strong local-scale variability showed
promising results, with a RMSE of 49 mm, and we showed
that our method can be applied over a wide range of SWE
values (45–260 mm). Furthermore, most studies presented in
section 1 are using satellite-passive microwave data, which

include Tb contributions from various surface characteristics
such as roughness, spatial variation in snow thickness and
thermophysical properties, and snow grain size. Hence, the
exact nature of each contribution is hard to quantify at the
satellite scale and remains poorly studied. The airborne-
derived brightness temperatures used in this article are gen-
erally more sensitive to plot-scale characteristics, increasing
the challenge of SWE retrieval. On the other hand, this
increased sensitivity to snow properties allowed the correc-
tion for poor grain simulations by the snow model (’),
which represents a step forward for iterative schemes (for
future spaceborne retrievals). We showed that coupling a
snow thermodynamic model with a microwave snow emission
model without accounting for poor grain parameterization
uncertainty leads to very large errors, with RMSE >100 K in
brightness temperatures. A simple two-step iterative procedure
(first iteration on snow grains and second on SWE) driven by
meteorological reanalysis and without any in situ snow infor-
mation allows similar SWE retrieval accuracy when compared
to an assimilation scheme that requires in situ snow informa-
tion [Takala et al., 2011]. The Takala et al. [2011] study iden-
tified RMSE values ranging between 23 and 73 mm over
Eurasia (depending on the season) and between 21 and
70 mm over Canada (depending on land cover).

[40] In this study, we covered a wide range of measure-
ments from very low values that can be expected in the fall
to high values expected at the end of winter. Furthermore,
we covered an extensive area (>2000 km) encompassing
several environments (boreal, taiga, tundra) with specific
physical processes governing snow accumulation and trans-
port. This said, with proper assessment of the various con-
tributions to Tb (i.e., topography, vegetation, atmosphere),
we believe the data set to be representative of subarctic
regions and that the method and threshold can be regionally
applied. Prior to doing so, the next intuitive step would be
to extend the validation of the method using a multiscale
(in situ, airborne, spaceborne) approach. The differences in
errors observed at the various scales using the same field
SWE reference measurements averaged at the different
scales will explain the potential source of errors at the sat-
ellite scale. The proposed simplified approach could also
be applied regionally with a snow model or within the land
surface scheme of a regional climate model to potentially
improve snow monitoring. Furthermore, the physical proc-
esses driving the initial SNOWPACK model biases in SWE
such as precipitation parameterization, treatment of albedo
and density (starting values and temporal evolution), subli-
mation/erosion, and their seasonal evolution should be
addressed in a dedicated study.
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Figure 8. Comparison between modeled and measured
SWE (a) before and (b) after the iterations with measured
brightness temperatures. Measurements are from transects
near the POV (Figure 1). In (a), data span two NARR
pixels (therefore, two NARR SWE values). Horizontal
lines correspond to the standard deviation of the in situ
SWE measurements.

W12524 LANGLOIS ET AL.: SWE RETRIEVAL USING SNOW AND MICROWAVE MODELS W12524

12 of 14



References
Albert, M. R. (2002), Effects of snow and firn ventilation on sublimation

rates, Ann. Glaciol., 35, 510–514.
Andreadis, K., and D. Lettenmaier (2006), Trends in 20th century drought

over the continental United States, Geophys. Res. Lett., 33, L10403,
doi:10.1029/2006GL025711.

Arons, E. M., and S. C. Colbeck (1995), Geometry of heat and mass transfer
in dry snow: A review of theory and experiment, Rev. Geophys., 33,
463–493.

Asmus, K., and C. Grant (1999), Surface based radiometer (SBR) data
acquisition system, Int. J. Remote Sens., 20, 3125–3129.

Barnett, T. P., J. C. Adam, and D. P. Lettenmaier (2005), Potential impacts
of a warming climate on water availability in snow-dominated regions,
Nature, 438, 303–309, doi:10.1038/nature04141.

Bartelt, P. B., and M. Lehning (2002), A physical SNOWPACK model for
avalanche warning services. Part I : Numerical model, Cold Reg. Sci.
Technol., 35(3), 123–145.

Brown, R. D., B. Brasnett, and D. Robinson (2003), Gridded North Ameri-
can monthly snow depth and snow water equivalent for GCM evaluation,
Atmos. Ocean, 41, 1–14.

Brucker, L., A. Royer, G. Picard, A. Langlois, and M. Fily (2010), Hourly
simulations of seasonal snow microwave brightness temperature using
coupled snow evolution-emission models in Québec, Canada, Remote
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