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Microwave Radiometric Technique to Retrieve
Vapor, Liquid and Ice, Part I—Development of a

Neural Network-Based Inversion Method
Li Li, J. Vivekanandan, C. H. Chan, and Leung Tsang,Fellow, IEEE

Abstract—With the advent of the microwave radiometer, pas-
sive remote sensing of clouds and precipitation has become an
indispensable tool in a variety of meteorological and oceano-
graphical applications. There is wide interest in the quantitative
retrieval of water vapor, cloud liquid, and ice using brightness
temperature observations in scientific studies such as earth’s
radiation budget and microphysical processes of winter and
summer clouds. Emission and scattering characteristics of hy-
drometeors depend on the frequency of observation. Thus, a
multifrequency radiometer has the capability of profiling cloud
microphysics. Sensitivities of vapor, liquid, and ice with respect
to 20.6, 31.65 and 90 GHz brightness temperatures are studied.
For the model studies, the atmosphere is characterized by vapor
density and temperature profiles and layers of liquid and ice
components. A parameterized radiative transfer model is used to
quantify radiation emanating from the atmosphere. It is shown
that downwelling scattering of radiation by an ice layer results in
enhancement at 90 GHz brightness temperature. Once absorptive
components such as vapor and liquid are estimated accurately,
then it is shown that the ice water path can be retrieved using
ground-based three-channel radiometer observations. In this pa-
per we developed two- and three-channel neural network-based
inversion models. Success of a neural network-based approach
is demonstrated using a simulated time series of vapor, liquid,
and ice. Performance of the standard explicit inversion model
is compared with an iterative inversion model. In Part II of
this paper, actual radiometer, and radar field measurements are
utilized to show practical applicability of the inverse models.

I. INTRODUCTION

GROUND-BASED dual-channel radiometers have been
used successfully for more than 20 years to monitor

vapor and cloud water [1]–[4]. Radiometric measurements of
total precipitable water vapor column are about the same as, or
better than, those of radiosondes [3]. Retrievals from ground-
based radiometers are also used as a validation for satellite sen-
sors. Unlike radiosondes, radiometers provide measurements
unattendedly and continuously. Westwater [1] and Staelin [5]
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investigated the microwave spectrum of the atmosphere and its
sensitivities to atmospheric components such as vapor, liquid,
air temperature, and gaseous absorption which provided the
basis for most of the radiometric retrieval methods. In their
investigations, statistical techniques were more or less utilized
to deal with the variability of vapor and liquid components
of atmospheric media both in time and space. Based on
this, simple physical and linear/nonlinear statistical algorithms
were developed for ground-based radiometers to quantitatively
retrieve water vapor and liquid cloud information under non-
precipitation conditions [6]. Simple physical methods which
oversimplify the real problems are less accurate than statistical
ones, but statistical methods offer no insights to the physical
processes. Most of the existing algorithms break down if Mie
scattering due to ice and water drops is present because the
earlier models are based on absorption. For example, retrieval
accuracies are marginal for cloud liquid much in excess of 3
mm [3], [7], [8].

Despite the successes of statistical models, physical models
are highly desirable. Retrieval techniques based on physical
models are considered nonunique in nature. However, with the
advent of remote sensing techniques, auxiliary measurements,
including measurements other than brightness temperatures,
can be incorporated to improve the confidence in remote
sensing methods and to reduce ambiguities in the estimation
of atmospheric components. Examples of auxiliary measure-
ments are polarimetric and multifrequency radiometer data,
radar data, and radio acoustic sounding system (RASS) data
[9]–[11]. A comprehensive physical forward model which
includes spatial distribution of atmospheric variables is crucial
for quantitative investigation of sensitivities of each of the
microphysical quantities such as vapor, cloud water, and ice.
Thus, the forward model plays a key role in understanding
microphysics and retrieval of the same.

The parameterization approach is useful for physical models
of ill-posed problems as in the case of microwave radiometry
[12]. It describes the state of the atmosphere using a limited
number of unknowns and lessens the ambiguities in inversion;
it also provides a methodology for extracting information from
radiometer measurements. To date, the majority of algorithms
is based on more or less oversimplified forward (radiative
transfer) models, which represent the relationship between
brightness temperatures and microphysical quantities. Such
an algorithm retrieves microphysical quantities using a set
of algebraic expressions. In this paper, we first developed
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a parametric radiative transfer model as a general forward
model, which is tested against rigorous numerical models.
The parametric model is used to carry out a sensitivity study
between brightness temperatures and atmospheric components.
Based on the sensitivity study, several different inverse models
are implemented using artificial neural networks (ANN). The
parametric model deals with vertical distribution of absorption
and scattering phenomenon of atmospheric components [12],
[13].

The paper is organized as follows. Section II outlines
the theoretical description of a parametric forward radiative
transfer model. Temperature and vapor density profiles and
the corresponding radiative properties of atmospheric gases
are parameterized. A millimeter-wave propagation model [18]
is used to obtain radiative properties of gases. Subsequently, a
complete radiative transfer model is developed by combining
emission due to atmospheric gases and cloud liquid water and
also scattering due to the ice layer. The parametric radiative
transfer model results are compared with the rigorous radiative
transfer computations [21] and actual brightness temperature
measurements in Section III. Also sensitivities of 20.6, 31.65,
and 90 GHz brightness temperature to vapor, cloud water,
and ice are discussed. Based on the sensitivity studies, a
procedure to construct a neural network-based inverse model
to retrieve vapor, liquid and ice is outlined in Section IV.
Both explicit inversion and iterative inversion neural networks
are considered. Section V shows the performances of explicit
inversion and iterative inversion neural network models. It
is shown that an iterative inversion model is better than
the explicit inversion model. Finally, the paper ends with
discussion and conclusions in Section VI.

II. M ODEL DEVELOPMENT

The main objective of passive microwave remote sensing
of the atmosphere is to extract atmospheric quantities using
appropriate retrieval techniques. In principle, the development
of a retrieval technique consists of several phases. In this
research, we used the following procedure. The first phase is to
parameterize atmospheric components. Parameterization leads
to simplification of cumbersome vertical profile descriptions of
temperature and vapor density. The second phase is to study
the response of brightness temperature to changes in micro-
physical quantities. This is known as the forward radiative
transfer problem. Finally, an appropriate retrieval (or inverse)
model is developed based on simulation results.

The atmosphere is characterized by high degrees of vari-
ability in time and space. A large number of unknowns are
generally needed to describe the states of an atmosphere. With
a limited number of measurements, a complete characterization
of atmosphere is an ill-posed problem and no unique solution
can be obtained. This is the main reason why statistical
methods are widely used in radiometry models. On the other
hand, it is neither necessary, nor possible, to take enough
measurements and determine the state of the atmosphere in
much detail. Instead, the questions that should always be asked
first are: What is the best way to parameterize the problem
at hand, and what kind of information is retrievable from a

given set of measurements? One of the practical solutions
to these questions is a parametric radiative transfer model,
which can offer a realistic description and detailed sensitivity
studies of the remote sensing problem. The major advantage
of the parameterized radiative transfer model is that a detailed
description of temperature and vapor density is specified
by a finite number of distinctive parameters. As we know,
a statistical retrieval algorithm is based on average states
of atmospheric profile, and is of little help in the presence
of precipitation. On the other hand, a physical model does
not depend on geophysical location, but could have larger
inherent biases if model results are not compared with actual
measurement. The procedure for the construction of a neural
network based inverse model consists of the following steps:

1) develop a parameterized forward-model;
2) conduct sensitivity studies using the parameterized

model to identify the primary atmospheric components
which are the most sensitive;

3) generate three-channel brightness temperatures over the
range of the atmospheric components;

4) construct neural network based inverse models using the
combinations of brightness temperature.

III. M ODEL ATMOSPHERE

Supercooled liquid water (SLW) is known to cause aircraft
icing, which continues to be one of the primary causes of
aviation accidents, especially in winter weather situations [14].
A parametric radiative transfer model developed here focuses
on the detection and estimation of supercooled water, vapor,
and ice in winter clouds. The size of the SLW droplet ranges
from tens to hundreds of micrometers. Temperatures for SLW
can be as low as 20 Growth and formation of snow or
other ice particles in a cloud quickly depletes supercooled
cloud droplets. Thus the liquid water content (LWC) is very
small in the presence of ice crystals [14]. In-situ measurements
by research aircraft show that the LWC usually increases
slowly with height to a maximum value, then decreases
quickly near cloud top [10]. This kind of liquid water profile
information has been assimilated into liquid water and water
vapor profiling using combined remote sensors. However, in
this paper, we use uniform profiles for both liquid and ice
clouds for the following two reasons. First, our main focus is
on the improvements of liquid and ice column retrieval, not the
liquid water profiling. Second, without auxiliary measurements
from other remote sensors like radar and RASS it is difficult
to obtain vertical profiles. Also, the effects of a detailed liquid
water profile are less significant in the brightness temperature
computations, which can be seen from sensitivity studies in a
later section of this paper.

The drop size distribution of supercooled water drops is
described by exponential or Gamma function. However, scat-
tering due to liquid drops with sizes less than 0.1 mm is too
small. Absorption or emission of water drops is proportional
to mass per unit volume. In contrast to supercooled liquid
water droplets, ice crystals have much larger sizes. Their
shapes, bulk density, and size distributions have profound
impacts on passive remote sensing. Since most of the ground-



226 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 2, MARCH 1997

based radiometers do not measure polarimetric radiation from
atmosphere, ice particle shapes are approximated as equivalent
spheres. Their size distribution is assumed as modified Gamma
size distributions [15]

(1)

where is the radius of particles, and are empirical
constants, is the number of particles per unit volume
per unit radius. The value of parametersand are set to
two and one, respectively.

The parameters ‘’ and ‘ ’ are related to mode radius
bulk density and ice water content (IWC) as

(2)

and

(3)

Radiosondes measure vertical profiles of relative humidity
(or vapor density), pressure, temperature and dew point

in the lower atmosphere. Fig. 1 shows an example of a
radiosonde measurement taken on 2 March 1991 at Platteville,
Colorado. Derived quantities such as mixing ratio and
vapor density are also shown. The air temperature decreased
smoothly with height except that there was a temperature
inversion near the ground. The temperature profile can be
approximated by a linear relationship

(4)

where and are effective near-ground temperature and
lapse rate, respectively. It should be noted thatand are
effective variables and are not necessarily equal to the actual
near surface temperature and mean lapse rate, respectively
[12]. For the forward problem, and can be directly
calculated from radiosonde observations [16]

(5)

and

(6)

where is the thickness of the lower atmosphere. The
parameters and are the mean and first moment of the
temperature profile

(7)

(8)

In the case of a water vapor density profile, the vapor scale
height and integrated water vapor column are used to
characterize the profile. Often water vapor density profiles are
approximated by exponential function [17]

(9)

Fig. 1. Pressure, temperature, dew point, relative humidity, vapor density,
and mixing ratio profiles measured by radiosonde at 15:00 GMT, 2 March
1991.

where is integrated water vapor content

(10)

and

(11)

Although water vapor profiles measured by radiosondes
rarely resemble exponential functions, vapor profiles can be
approximated by (9) in the radiative transfer models of ground-
based radiometers. The parametersand which uniquely
define (9), represent the information that can be extracted or
retrieved from radiometer measurements. Some of the attempts
to construct a water vapor profile using the integrated water
vapor measurements by radiometers are not successful because
the resulting profiles tend to be very smooth and lack detail [9].

Fig. 2 shows an example profile of an atmosphere. The
water vapor density profile is defined by integrated water vapor
content and its scale height (11). The linear temperature profile
is defined by (4). Assuming two cloud layers, the first layer is
an all-liquid homogeneous cloud, and its profile is specified by
cloud base height cloud thickness and LWC. The
second is an ice cloud and is placed above the liquid cloud
layer; its profile is defined in a similar way as a liquid cloud
except that the ice particle mean size and bulk density
are also specified. The LWC and IWC in the two cloud layers
are varied within their respective range of physical variations.
The pressure profile, not plotted in Fig. 2, is derived from
surface pressure and the temperature profile is constructed
by vertical integration of hydrostatic equation [17]. To avoid
unreasonable atmosphere structure, the following constraints
are imposed: a) relative humidity must be less than or equal
to 100% b) liquid cloud temperature be between20 to 5
C; c) ice cloud temperature must be below 0 and d) the

ice cloud base is above the liquid cloud top, consequently,
co-existence of supercooled liquid water and ice particles is
not allowed.
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Fig. 2. An example of a parameterized atmosphere structure which is used
as an input for the parametric radiative transfer model.

The above defined atmospheric profile is used to simulate
brightness temperature data sets. In other words, radiosonde
data are not needed for the simulation. Thus the construction
of a retrieval algorithm is much more economical and faster,
especially in a climatological area where radiosonde data are
sparse. For example, each retrieval model developed in this
paper was constructed in less than one week. It should be
noted that meteorological parameters defined above form a
complete set of input to our radiative transfer model. No
other intermediate optical parameters are used; therefore, any
intermediate retrieval algorithm is unnecessary.

IV. FORWARD MODEL

The radiative transfer process describes a nonlinear interac-
tion between microwave emission, absorption, and scattering
of atmospheric particles. In the atmosphere, microwave ab-
sorption and scattering are mainly due to molecular oxygen,
water vapor, liquid water, and ice particles. Each of these
components has different optical properties and absorption
spectra. Water vapor absorption arises from a weak reso-
nant line at 22.235 GHz, and a relatively strong continuum
absorption term. For oxygen, there are two strong resonant
lines around 60 and 118 GHz. Away from these two oxygen
absorption lines, dry air absorption is very weak. We use
Liebe’s unified millimeter-wave propagation model (MPM)
[18] to calculate the gaseous absorption. The MPM computes
the microwave extinction coefficient of dry air and water vapor
as a function of temperature, pressure, and humidity. In our
model atmosphere, the water vapor profile is specified by vapor
density as a function of height. To apply the MPM model,
vapor density is converted into a relative humidity profile
(RH) using an empirical formula [18]

(12)

where is the physical temperature, andthe partial water
vapor pressure is given by the gas law

(13)

is the gas constant for water vapor and is equal to 461
[17].

The MPM model computes emission properties of water
vapor and oxygen at the frequencies of interest. These emis-
sion properties are combined with absorption and scattering
characteristics of cloud droplets and ice in the subsequent
radiative transfer model. It is important to quantify accurately
the gaseous absorption component because the scattered down-
welling radiation by an ice layer is modeled within a fraction
of a Kelvin. In liquid cloud, absorption dominates over scat-
tering. The Rayleigh approximation is applied to compute
the absorption coefficients of cloud droplet ensembles. The
Rayleigh absorption limit is valid for effective size

where is the refractive index of liquid water, the
free space wave number, andthe radius of water droplets.
In the Rayleigh limit, the absorption coefficient is linearly
proportional to liquid water content and is independent of
drop size distribution [19]. Although the effective size
of large liquid cloud droplets could exceed 0.2 or 0.3 at
higher frequencies, the Rayleigh approximation is valid up
to frequencies near 100 GHz due to the smallness of cloud
droplets. The absorption of liquid water droplets increases with
the decrease of physical temperature. Therefore, a liquid cloud
with lower temperature looks brighter to the radiometers [12].

In an ice cloud, extinction is dominated by scattering and ab-
sorption is negligible. Ice particles are characterized by albedo
close to unity with very little emission. The mean size of ice
particles is on the order of sub-millimeters; ice crystals are
usually nonspherical. Since we are interested in zenith-looking

observations, ice particle shapes are modeled by equivalent
spheres and their scattering properties are calculated using the
Mie scattering theory. A modified Gamma size distribution is
used to average scattering properties of ice particle ensembles.
Refractive indices of liquid water droplets and ice particles
at the needed frequencies are obtained by interpolating the
tabulated values in [20]. The invariant embedding method is
applied to find the solution to the radiative transfer equation
[19]. In the invariant embedding method, an arbitrary vertical
structure is divided into a number of homogeneous layers.
In each layer, the radiative transfer equation is rewritten
in the form of interaction principle by making use of the
finite-difference and Gaussian quadrature integral formula.
To integrate properties of all infinitesimal layers, the linear
nature of the interaction principle is used repeatedly. The
formulation of radiative transfer in the form of the reflection
and transmission matrices and emission source vectors of the
whole medium also includes the boundary conditions of the
transfer equations. In this way, the outgoing radiation and the
radiation field inside the medium can be obtained from the
interaction principle. We use land surface with an emissivity
of 0.95, and let the ground temperature be equal to an effective
near-surface temperature. At the top boundary, the cosmic
radiation of 2.7 K is incident from above.

The theoretical description of absorption spectra of atmo-
spheric constituents is incomplete. For example, the physical
basis of absorption of water vapor continuum is not yet
completely understood. Also, in the case of the liquid water
absorption, we found that Liebe’s MPM model differs from the
Rayleigh approximation by about 1–6 %. These discrepancies
introduce biases into the radiative transfer model results.
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Hence, a good calibration is essential to eliminate the inherent
bias. One way to calibrate a physical model is to compare
it with some well calibrated statistical algorithms, such as
NOAA’s ground-based dual-channel radiometer retrieval re-
sults. The calibration procedure is described in Part II of this
paper.

V. PARAMETER MODEL TESTING AND SENSITIVITY STUDIES

To validate the performance of a parametric radiative trans-
fer model, its results are compared against the rigorous ra-
diative transfer method and radiometer measurements. The
first test is based on radiosonde data plotted on Fig. 1. From
sounding data, it is found that the integrated water vapor and
vapor scale height are 0.85 cm and 1.82 km, respectively. The
effective near ground temperature is 273.86K and lapse rate
is 5.986 K/km. For the purpose of model testing, cloud liquid
and ice amount are assumed to be zero in this case. The results
using rigorous radiative transfer model are 11.54, 10.67, and
28.95 K at 20.6, 31.65, and 90 GHz, respectively. These
values are very close to the parameterized model simulation
results, which are 11.36, 10.6, and 28.98K.

In the second test, the observations made by the NOAA
radiometer are used. NOAA ground-based dual-channel ra-
diometers measure downwelling radiation in the zenith di-
rection at 20.6 and 31.65 GHz. One of the facilities has an
additional 90 GHz channel. The 20.6 GHz channel, which
is offset from the weak water vapor resonant line at 22.235
GHz, senses mainly the integrated vapor and is less sensitive
to the pressure and detailed structure of water vapor profiles.
The 31.65 GHz is primarily sensitive to liquid water and
the 90 GHz channel is in both absorption and scattering
regime. On 2 March 1991, the NOAA radiometer measured
0.81 cm integrated water vapor and 0.018 mm liquid water.
Cloud base height at 0.67 km was detected by a ceilometer;
and the cloud top was estimated to be 0.85 km by the
adiabatic approximation [10]. The corresponding measured
brightness temperatures at the three channels are 16.04, 13.9,
and 32.47 K. Using NOAA radiometer’s retrieved vapor
and liquid values, the corresponding parameterized model
predicted brightness temperatures are 13.50, 11.8, and 32.24
K. The parameterized physical model results differ slightly
from the actual observations and these differences are subse-
quently used to calibrate the neural network inversion models
as explained in Part II of this paper.

Parameterized radiative transfer model not only simplified
the process of solving radiative transfer equations but also
preserved the main features of temperature and humidity
profiles. The parameterized radiative model is initialized by 13
atmospheric components as listed in Table I. With a limited
number of measurements from radiometers, it is difficult to
invert this parametric model. Simulations might help to gain
some insights into the dominant atmospheric components. But
equally or more important is the sensitivities of brightness
temperature at a given channel to a particular atmospheric
components namely [16]. The basic idea of
the sensitivity study is to cut the space along each dimension
around a base state, and observe the behavior of the func-

tion along those cuts. A base state is primarily determined
by mean-state of the above mentioned thirteen atmospheric
components. In general, results of sensitivity studies are base
state dependent. To describe an implicit function, three pieces
of information are needed and they are its value, derivative,
and dynamic range. Nonlinearity in the retrieval approach
is identified by variation in sensitivities. The sensitivities
are constant for linear retrieval algorithms. Nonlinearity in
the model inversion is implemented with the aid of neural
networks; the retrieval is problematic only if the sensitivities
approach zero. For the development of an inverse model, it
is also more important to identify insignificant parameters
that are usually kept unchanged. Some of the insignificant
parameters are treated as noise in both physical and statistical
retrieval algorithms and they are not used in the model
inversion procedure.

The sensitivity study was conducted at three frequency
channels: 20.6, 32.65, and 90 GHz. A base state is chosen
according to Denver winter time climate; namely

C K/km cm km
kPa LWP g/m km km

g/m km km g/cm
and cm. The parametric model is examined in the
neighborhood of this base state, which is referred as Base
State 1.

Fig. 3 shows sensitivities of brightness temperature at each
channel with respect to the integrated water vapor
In the range of interests, all three channels exhibit almost linear
characteristics. Sensitivities are almost constant over the range
of and they are 9.0, 4.2, and 16.0 K/cm at 20.6, 31.65, and
90 GHz channels, respectively. As expected, the 20.6 GHz
channel is much less sensitive to integrated water vapor than
90 GHz channel, although 20.6 GHz is close to the water vapor
resonance line at 22.235 GHz but it is more sensitive than the
31.65 GHz channel. Nevertheless, every channel shows certain
sensitivity to integrated water vapor. As depicted in Fig. 4, the
microwave brightness temperatures are much more sensitive to
cloud liquid water than to vapor. Sensitivities at 20.6 and 31.65
GHz channels are almost constant. The 90 GHz response is in a
nonlinear regime and its channel sensitivity drops quickly with
the increase of the liquid water path. It is interesting to note
that the 90 GHz channel will eventually saturate and looses
its sensitivity to liquid water [6] in the absence of ice layer.
At lower frequency such as the 31.65 GHz channel is still
sensitive at these high LWP. Fig. 5 illustrates the brightness
temperature sensitivity to the ice water path. The relationship
is approximately linear over the range of interests. Ice cloud is
optically thinner by at least a factor of two than liquid cloud
around 90 GHz [23]. It is interesting to note that all three
channels exhibit a sensitivity to ice path. An increase in ice
water content by 1 g/mover 1 km path elevates the brightness
temperature by about 5 K at 20.6 GHz, 14 K at 31.65 GHz,
and 64.5 K at 90 GHz.

Brightness temperature is also very sensitive to bulk density
and mean size of the ice particles as shown in Fig. 6(a) and
(b). The sensitivity at 90 GHz increases rapidly with the
increase of bulk density up to 0.7 g/cmand then it decreases
until bulk density reaches its maximum value 0.92 g/cm
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TABLE I
MODEL SENSITIVITY

Fig. 3. Ground-based three-channel radiometer brightness temperature sen-
sitivities to integrated water vapor(@TB=@V ) (V ); as function ofV:

However, the 90 GHz values are more sensitive to LWP
than to IWP. The sensitivity signatures in Fig. 6(a) and (b)
indicate strong nonlinearity and can be explained as follows.
The key to understanding these sensitivity signatures is that the
IWP is constant in all our sensitivity calculations, except in
cases where we studied sensitivity to IWP itself. Downwelling
brightness temperatures increase with the optical depth of the
ice layer. Increase in mode radius or number concentration
will increase the optical depth. However, for a given IWP and
bulk density, an increase in mode radius will result in decrease

Fig. 4. Ground-based three-channel radiometer brightness temperature sen-
sitivities to liquid water content (LWP)(@TB=@ LWP), as function of LWP.

of number concentration. As a result, the optical depth is a
trade off between ice particle size and number concentration.
As shown in Fig. 6(b), sensitivity at 20 and 31 GHz
channels increases first then decreases, but these sensitivities
are always positive in the range of interests. This indicates
that and increase with in that range. For the
90 GHz channel, the sensitivity decreases monotonically from
positive to negative. Hence, will increase initially and
then decreases as increases.
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Fig. 5. Ground-based three-channel radiometer brightness temperature sen-
sitivities to ice water content (IWP)(@TB=@ IWP), as function of IWP.

(a)

(b)

Fig. 6. Ground-based three-channel radiometer brightness temperature sen-
sitivities to ice microphysics. (a) sensitivity with respect to bulk density
�(@TB=@�) as function of�; (b) sensitivity with respect to mode radius
(@TB=@rc) as function ofrc:

The impact of vapor scale height on brightness tem-
perature sensitivity is shown in Fig. 7. Changes in affects
both mean water vapor column temperature and vapor partial
pressure which will in turn change the vapor mean radiation
temperature, strength of vapor continuum absorption, and
width of the absorption line at 22.2 GHz. As a net effect, the
sensitivity decreases with and becomes slightly negative
for greater than 1.5 Km. The 90 GHz channel shows the
greatest sensitive to and 31.65 GHz is the least sensitive

Fig. 7. Ground-based three-channel radiometer brightness temperature sen-
sitivities to vapor scale heightHv(@TB=@Hv) as function ofHv :

channel. But the sensitivity to is relatively smaller than
that due to LWP or IWP. Brightness temperature sensitivities
to the rest of the model parameters, namely, and

are also studied. It is found that these parameters are less
sensitive compared to that of LWP, IWP, and

The sensitivity of brightness temperature is quantitatively
summarized in Table I. Thirteen model parameters are clas-
sified into three classes according to their sensitivities to
brightness temperature, namely high, medium, and low. This
kind of information or classification is very helpful when
we construct physical retrieval models. In principle, sensitive
parameters should be included in the retrieval algorithm;
otherwise, they could introduce a large bias or pose strong
limitations on the retrieval method. The procedure to in-
corporate all sensitive parameters into the inverse model
is determined primarily by available measurements. If the
number of measurements is larger than that of most sensitive
physical parameters, it might be possible to include some of the
slightly sensitive parameters and fix the rest of the variables at
their meteorological mean values. For the insensitive variables,
mean values should be used and their inclusion in the retrieval
model will only complicate the algorithm.

The popular NOAA’s linear statistical retrieval algorithm is
based on long term radiosonde observation. A typical dual-
channel algorithm for Denver area is given by [24] and [3]

(14)

(15)

The coefficients in the above equations change with climato-
logical locations. It is interesting to compare the brightness
temperature sensitivity derived from NOAA’s inverse model
and sensitivities computed using the parameterized radiative
transfer model. Because the scattering due to ice cloud is
ignored in NOAA’s model, the sensitivity of physical model
is calculated again around following Base State 2

K K/km cm km
kPa km km The ice water path is

kept at zero, i.e. g/m The sensitivities from
both models are compared in Figs. 8 and 9. The results show
that the linear relationship between brightness temperature
and integrated water vapor is a very good approximation.
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Fig. 8. Model sensitivity to water vapor path(@TB=@V ): Sensitivities
between NOAA’s linear statistical inverse model and the parametric radiative
transfer model are compared for the ground-based dual-channel radiometer.

Fig. 9. Model sensitivity to liquid water path(@TB=@ LWP). Sensitivities
between NOAA’s linear statistical inverse model and the parametric radiative
transfer model are compared for the ground-based dual-channel radiometer.

The sensitivity differences between our model and NOAA’s
linear statistical model is roughly estimated as shown in Table
II(a). Base State 1 contains both ice and liquid clouds. In
this case the parameterized model sensitivity deviates clearly
from NOAA’s results. In principle, NOAA’s model should
be accurate around the Base State 2 because their model is
developed for ice free conditions.

In the absence of ice, the maximum difference between
NOAA’s value and our physical model is 15%. The difference
is small, especially when one considers the accuracy of the
linear statistical model. Hogget al. [3] compared the statistical
model results and their corresponding radiosonde measure-
ments taken at Denver in six months. They found that the rms
difference between them is 1.7 mm for integrated water vapor.
Wei et al. [25] did similar investigation on radiometer data
collected at Shearwater, Nova Scotia, Canada. They assessed
similar rms deviations for integrated water vapor and liquid
water to be 0.867 mm and 0.159 mm, respectively, which
are about 8.7% and 37% of the overall average vapor and
liquid. The radiosonde itself is not a very accurate standard
to compare with. Its performance is poor for relative humidity
below 20% and above 90%, and reasonable otherwise [26].

We have analyzed sensitivities of the three-channel radiome-
ter for a number of atmospheric parameters. Based on these

TABLE II
(a) SENSITIVITY COMPARISON UNIT: K/cm (b) THREE

CHANNEL RADIOMETER SENSITIVITIES UNIT: K/cm

(a)

(b)

studies, the most sensitive variables are identified and they
are LWP, IWP and Since the primary objective is to
retrieve LWP and IWP, sensitivities of these parameters
for three channels are tabulated in Table II(b). The 20 GHz
channel is affected by both vapor and liquid. Hence, NOAA’s
dual-channel (20, 31 GHz) technique outperforms any single
channel (20 GHz) method by retrieving vapor and liquid
simultaneously. If we are interested in water vapor and liquid
water retrievals in the absence of ice then, inclusion of the 90
GHz channel might not improve cloud liquid estimation. In the
presence of IWP, the 30 GHz is modulated by scattering
ice layer. As expected the 90 GHz channel is sensitive to
all of the three components, namely, LWP and IWP. The
three-channel radiometer might be able to retrieve LWP with
improved accuracy by taking into account ice layer scattering.
Estimation of ice critically depends on precise estimations of

and LWP. Hence, both emission and scattering frequencies
are necessary to retrieve ice information.

VI. NEURAL NETWORK MODELING

Recently, there has been increasing interest in using an
artificial neural network to retrieve geophysical information
from the passive microwave remote sensing measurements
[27], [28]. Neural networks can handle nonlinearity in the
remote sensing problems. It is also relatively easier for neu-
ral networks to incorporate auxiliary measurements and/or
information into the retrieval algorithms. Here, we apply
neural network techniques to the multiparametric retrieval
from multifrequency observations. We briefly discuss
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Fig. 10. The basic structure of a multilayer perceptron. The input layer
feeds the input vector, multiplied by the associated connection weights, to
the neurons of the next layer, where the multiplied input values are summed,
added to an offset, and passed through a sigmoid function, the output of which
serves as the input to the next layer of neurons.

one of the common neural network models, namely, the
feedforward multilayer perceptron (MLP), then describe a
procedure to construct data driven forward and inverse remote
sensing models using MLP’s.

A. Feedforward Multilayer Perceptrons

Fig. 10 illustrates the basic structure of a feed-forward MLP.
The network can be described as a parameterized mapping
from an input vector to an output vector

(16)

where is the vector of weights, and is the number
of layers in the network. Passing a vector forward to the
output layer consists of taking the inner product of the vector
with the incoming weight vectors, and feeding the inner
product into the nonlinear function of neurons. In the classical
paradigm, training is the procedure of changing the weights to
reduce the discrepancy between a target vector and the actual
output vector The discrepancy, which is also called cost
function can take any form of a differentiable function.
This offers us many ways to impose constraints and prior
knowledge. Most often, this discrepancy is defined as sum
squared error at the output units of the network, denoted by

(17)

where is the desired target vector and is the actual
output vector. Backpropagation is an algorithm for computing
the gradient of the cost function to minimize the cost. This
is achieved by using the chain rule to differentiate the cost
function with respect to the weight vector then
updating the weights iteratively [29]

(18)

and are learning rate and
momentum parameter respectively. Once trained, an MLP can
approximate an arbitrary input-output relationship [30].

B. Construction of a Forward and Inverse Model Using MLP

The general approach to solving inverse problems using
MLP’s is a two-phase procedure. In the first phase, a set
of data generated from the parameterized radiative transfer
model is used to train a data-driven neural network model
that maps from parameter space to measurement space

In other words, a causal relationship defined by
the radiative transfer model is copied by the
neural network to obtain a forward model as
an approximation. It takes a meticulous effort to train the
MLP; but once trained, a forward model can process the
data speedily and accurately. More importantly, a forward
model contains gradient information of measurements with
respect to parameters. In the second phase, an inverse model is
constructed based on this gradient information which provides
us a way of searching for solutions in parameter space for a
given measurement. This information may not be crucial when
the inverse relationship is also causal.

In general, neural networks have little difficulty to learn
forward problems since those mappings are unique. There are
two important issues for a data driven forward neural network
model (or forward model). One is how accurately the training
and testing data set represent the situation being studied. This
is a problem of sampling techniques. When the number of
input units is too large, a favorite technique could be to create
a grid of input variables and select points randomly in the
grid. Otherwise, uniform sampling can be used. To evaluate a
forward model, one can apply cross validation, training with
one data set and testing with a different set, or test the model
against independent synthetic data [28]. The second issue is
how well the neural network can generalize or interpolate
the training data. Since neural networks can approximate
any function, their flexibility works against generalizations
when the training data is noisy. For the problems studied
in this paper, noise free training data is generated using
our physical radiative transfer model. It is also found that a
cross validation or a test against independent synthetic data is
generally unnecessary.

One simple way to invert a neural network forward model
is to train an inverse model by reversing the roles of the
inputs and outputs. This method, known as explicit inversion,
is widely used in remote sensing and in many other areas. Un-
fortunately, the radiative transfer model (or forward model) is
characterized by many-to-one mapping. Although the mapping
is uniquely determined by environment variables, inversion
of such a forward model suffers one-to-many mapping. Ex-
plicit inverse method resolves such a mapping problem by
averaging across the multiple targets. Specifically, if the cost
function takes the form of sum-of-squared error, and one
set of brightness temperature measurements corresponds to a
number of environment states, the explicit inverse model will
find an environment state which has minimum total Euclidean
distance to all the corresponding environment states [28].
Furthermore, involved in the forward model are not only
many-to-one functions, but also the geometry of the parameter
space. As shown in Fig. 11, the inverse image of the forward
model (nonlinear transformation) is not necessarily convex.
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Fig. 11. The nonconvex problem. Forward model accurately maps each
parameter to the resulting measurement set, while explicit inverses may face
one-to-many mapping. The solid arrow line represents the direction in which
the mapping is learned by explicit inversion. The two points lying inside
the inverse image in parameter space are averaged by the learning procedure,
yielding the vector represented by the small circle. This point is not a solution,
because the inverse image is not convex.

The average point in a nonconvex set could be outside the
set [31]. As a result, an average of many possible inversions
may not be even an inversion. If one uses an explicit inverse
model and retrieves certain atmospheric state for a given
brightness temperature measurement, then feeds this retrieval
into the forward model, the simulated brightness temperature
could be different from the actual measurements. Therefore,
the explicit inversion model is not usually consistent with
the forward model. Iterative inversion algorithm to inverse
a neural network is an interesting approach. The idea is to
repeatedly present outputs to the forward model and search
for a solution in the input space of the model while freezing
the weights of the model. The algorithm is performed by
computing the gradient of the cost functional with respect to
the activation of the input units, and applying the iterative
gradient decent algorithm to minimize the cost function[28]

(19)

In other words, instead of updating weights of networks, the
iterative inversion approach updates inputs of forward models.

The iterative inversion and explicit inversion are funda-
mentally different. First, the iterative inversion approach finds
a particular solution in the input (parameter) space, rather
than an average over many possible solutions. The particular
solution is one of the possible solutions, but the average
solution obtained from explicit inversion may not be even
be a solution. Second, the iterative approach starts with an
initial guess. By choosing a initial guess properly, one can
bias the trajectory movement to find the desired solution. In
this way the iterative inversion is able to incorporate additional
constraints or auxiliary information.

VII. RETRIEVAL USING NEURAL NETWORKS

In the earlier section, we described a methodology to con-
struct neural network models for remote sensing applications.

The primary motivation is to make use of the inversion
technique to retrieve LWP and IWP using three-channel
radiometer observations. One of the critical issues in mi-
crowave remote sensing of atmosphere is to verify indepen-
dently the quantities which have been retrieved. In spite of
in-situ aircraft observations and radiosonde measurements, the
independent quantification of atmospheric parameters such as
LWP and IWP are incomplete. The incompleteness of in-situ
observations limits the detail verification of neural network
performance. In Part II of the paper, we compared the inde-
pendent microwave radar and radiosonde observations with the
neural network based radiometer retrievals. In this section, the
performance of neural network models are evaluated by using
a synthetic or simulated data set. This test is critical because
the synthetic data are free of any system bias and noise. It
should also be noted that synthetic data are limited by the
assumptions in scattering and absorption models.

Based on sensitivity study results, we choose four model
variables to build the parameter space: integrated water vapor

LWP, IWP, and surface pressure The neural net-
work outputs are three radiometer measurements: brightness
temperatures at 20.6, 31.65 and 90 GHz, and surface
pressure The rest of the model parameters are fixed at
their mean state. Details are listed in Table III. It is to be
noted that surface pressure is used as an auxiliary measurement
and is included in both inputs and outputs of the network
to assist the training. The training data set consists of 1920
data points generated with parametric radiative transfer model
by sampling input space uniformly in the range of interest.
As described earlier, both a forward and an explicit inverse
model are trained. Each model has four input and output units,
one hidden layer with 25 neurons. After 5000 batch training,
the average output errors are 0.000 867 and 0.062 538 for the
forward and explicit inversion models, respectively.

The next step is to evaluate the performances of explicit
inversion and iterative inversion neural networks. For this
purpose, a time series of vapor, liquid, ice and surface pressure
are specified as in Fig. 12. Actual range of these quantities
are specified in Table III and they are normalized between
zero and unity for performance evaluation. The time series
of vapor, liquid, ice, and pressure are completely independent
of the training data set. These profiles are selected such that
they represent a changing atmospheric condition and also ice
and ice-free conditions. Using the radiative transfer model,
the corresponding three-channel brightness temperatures are
generated. These simulated s are used in both explicit and
iterative inversion models to retrieve the physical parameters
shown in Fig. 12. The results of the explicit inversion model is
given in Fig. 13. The retrieval accuracies forand LWP are
good. However, the retrieved IWP exhibits wild fluctuation.
Between 0–10 h, the retrieved IWP values are greater than the
original value by 0.03 mm. This might be a residual bias in the
inversion model. The retrieval results using iterative inversion
is displayed in Fig. 14. The inferred values are almost identical
to the original ones. There is no significant bias inLWP
or IWP values. Surface pressure is tracked very well. These
results are far-superior to explicit inversion model values. Also
we have constructed both two- and three-channel inversion
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TABLE III
SCHEME 1

Fig. 12. Model atmospheric time series of normalized pressure, vapor,
liquid, and ice components. This data set was used to simulate ground-based
radiometer brightness temperatures using the parametric radiative transfer
model.

models. The application of the neural network technique for
a number of actual radiometer measurements are discussed in
Part II of this paper.

VIII. C ONCLUSIONS

We have developed a neural network-based inversion model
to retrieve the columns of vapor, liquid, and ice. The tech-

Fig. 13. Retrieved time series of normalized pressure, vapor, liquid, and ice
components from simulated ground-based radiometer brightness temperatures
using explicit inversion neural network modeling.

Fig. 14. Retrieved time series of normalized pressure, vapor, liquid, and ice
components from simulated ground-based radiometer brightness temperatures
using iterative inversion neural network modeling.

nique primarily uses ground-based two channel (20.6 and
31.65 GHz) and three-channel (20.6, 31.65 and 90 GHz)
brightness temperatures. In the process of developing the
inversion model, we performed detailed sensitivity studies of
brightness temperatures with respect to more than thirteen
different atmospheric quantities. Based on the sensitive stud-
ies, we demonstrated that 90 GHz values are sensitive
to IWP. Once the emission components such as vapor and
liquid are accurately estimated, then enhancement in the 90
GHz value are related to scattering due to ice layer.
Precise quantification of vapor and liquid necessitated accurate
parameterization of vertical profiles of temperature and vapor
and also corresponding radiative properties of atmospheric
gases. The MPM model is used to compute radiative properties
of atmospheric gases. The resultant parameterized radiative
transfer model includes emission and scattering to liquid and
ice layer. Scattering due to ice is computed using Mie theory.
The development of a parametric radiative transfer model with
the detailed description of all of the atmospheric quantities is
the key in the inverse model construction.

In practice, only a limited number of multifrequency bright-
ness temperatures are available. Accordingly, we must narrow
down the retrievable quantities and keep the rest of the
parameters in a mean state. The above described methodology
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is feasible in a neural network approach. We constructed both
explicit inversion and iterative inversion models. The explicit
inversion model resolves the common syndrome of one-to-
many mapping in the inversion process by averaging across
the multiple solutions. On the other hand, the iterative inver-
sion method freezes the weights of the neural networks and
searches through the solution space by computing the gradient
of the cost function with respect to the activation of input
units and updates inputs of forward model. Also, this approach
starts with an initial solution. Thus the iterative inversion
finds a particular solution rather than an average over many
possible solutions. The performance of both explicit inversion
and iterative inversion are evaluated using a synthetic data
set. This data set represented the dynamic nature of changing
atmospheric conditions. The results demonstrated that the
iterative inversion neural network model almost retrieved
original input quantities. There is little bias or fluctuation in
the results. The results are better than the standard explicit
inversion model quantities. We have also constructed both two
and three-channel inversion models. The applications of these
techniques for a number of actual radiometer measurements
are discussed in Part II of this paper. More importantly, the
retrieved IWP is compared with radar estimates of the same.
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