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Abstract—The potential of ground-based multispectral mi-
crowave radiometers in retrieving rainfall parameters is investi-
gated by coupling physically oriented models and retrieval methods
with a large set of experimental data. Measured data come from
rain events that occurred in the USA at Boulder, Colorado, and
at the Atmospheric Radiation Measurement (ARM) Program’s
Southern Great Plains (SGP) site in Lamont, OK. Rain cloud
models are specified to characterize both nonraining clouds,
stratiform and convective rainfall. Brightness temperature nu-
merical simulations are performed for a set of frequencies from
20 to 60 GHz at zenith angle, representing the channels currently
deployed on a commercially available ground-based radiometric
system. Results are illustrated in terms of comparisons between
measurements and model data in order to show that the observed
radiometric signatures can be attributed to rainfall scattering
and absorption. A new statistical inversion algorithm, trained by
synthetic data and based on principal component analysis is also
developed to classify the meteorological background, to identify the
rain regime, and to retrieve rain rate from passive radiometric ob-
servations. Rain rate estimate comparisons with simultaneous rain
gauge data and rain effect mitigation methods are also discussed.

Index Terms—Atmospheric retrieval, ground-based remote
sensing, microwave radiometry, radiative transfer, rainfall.

I. INTRODUCTION

GROUND-BASED microwave radiometry has been mainly
investigated for estimating temperature, water vapor and

cloud liquid profiles in the absence of precipitation [1], [2].
The increasing use of multifrequency radiometers in ground-
based meteorological and receiving stations has raised the ques-
tion of their potential for retrieving rainfall parameters [3]–[8].
This feature is even more appealing if the ground-based mi-
crowave radiometer can be equipped by automatic scanning in
order to cover a large atmospheric volume in a manner similar
to radar systems. Indeed, synergetic use of radiometric rain re-
trieval methods with weather radar systems is another important
application, especially with constrained path-attenuation miti-
gation techniques [8].
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Ground-based microwave radiometry as compared to radar
has the advantage of lower procurement and maintenance costs,
with the disadvantage that the rain product is not range-re-
solved. On the other hand, rainfall retrieval by satellite-based
microwave radiometry is limited by its relatively coarse spatial
resolution as well as beam filling effects and a relatively low
sensitivity over land, but has the advantage of global coverage
[9]. Finally, rain gauges make a point measurement of rainfall
at ground level. Indeed, the extreme variability of precipitation
in time and space lends difficulty to its accurate retrieval since
all known methods have their strengths and weaknesses for me-
teorological and hydro-geological applications. In a synergetic
approach ground-based microwave radiometry is a potentially
useful complementary tool [6]–[8].

The exploitation of ground-based microwave radiometry
raises both modeling and experimental issues. From a modeling
point of view, the approach to rainfall signature characterization
requires a thorough insight into the electromagnetic interaction
between the microwave radiation and the scattering medium
since the radiometric response depends on the various radiative
sources along the observation path [5], [7]. With respect to an
empirical inversion technique trained by measured observables
and parameters [4], [6], the accuracy of a physically based
retrieval approach relies on modeling capability to take into
account multiple scattering and atmospheric inhomogeneity
due to hydrometeors in different phases [7], [8], [10]. From
an experimental point of view, one of the main problems of
ground-based radiometric retrieval of rainfall is contamination
generated by liquid water on the receiving antenna. In order
to solve this problem, hardware solutions [11], [12] or robust
inversion techniques [5], [8] can be foreseen.

An appealing objective of current research is to extract rainfall
signatures and parameters in a quantitative way from multi-
spectral ground-based microwave radiometric measurements.
Previous work used observations from a three-channel mi-
crowave radiometer [5], [8]. As explained in Section II, in this
work we use observations from 12-channel radiometers that
are currently operational in various sites around the world [13].
Rain events that occurred at Boulder, Colorado, and near La-
mont, OK, at the Atmospheric Radiation Measurement (ARM)
Program Southern Great Plains (SGP) site have been analyzed
on a temporal period including nearly one year of continuous
measurements. Observations from a rain gauge at the same
location were coordinated with the radiometric measurements.

In order to exploit the information content of the 12-channel
radiometric system, we have adopted a retrieval approach based
on a physical radiative model able to characterize both strat-
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Fig. 1. Example of the operational MWRP output. Plots refer to data collected during 19 July 2003, in Boulder, CO. A rain shower happened roughly at 0400
UTC. Contour plots show time-height cross sections of atmospheric temperature (top), relative humidity (middle), and liquid water (bottom). Surface temperature,
relative humidity, and pressure are shown on the left. Infrared cloud temperature, rain detection, integrated content of vapor and liquid are shown on the bottom.

iform and convective precipitation, including spherical liquid,
melt, and ice hydrometeors [5], [8]. The model is further de-
scribed in Section III. By varying and properly tuning the for-
ward model parameters at the measurement sites in a physically
based manner, a synthetic cloud radiative database has been de-
rived in terms of the downwelling simulated brightness temper-
atures ( ’s), the associated mean radiative temperature and the
total path-attenuation. In addition, a new nonlinear statistical in-
version procedure has been developed that is based on succes-
sive steps where rainfall is: 1) detected; 2) classified with respect
to its regime; and 3) estimated in terms of columnar water and
rain rate. Results are illustrated by means of comparisons be-
tween multispectral measurements and model data in order to
show that the observed radiometric signatures can be attributed
to rainfall scattering and absorption. Finally in Section IV, rain
rate radiometric estimates are compared with available simul-
taneous rain gauge data, showing the potential of the technique
to retrieve rainfall parameters, followed by a discussion about
the limitations of this intercomparison and on possible effects
of antenna water-film mitigation techniques.

II. EXPERIMENTAL DATA

As already mentioned, in order to interpret and test rainfall
model simulations and rain rate estimates, a fairly large set of
measurements, acquired by MicroWave Radiometer Profilers
(MWRPs) manufactured by Radiometrics Corp., has been used.

The MWRP radiometer observes the radiation intensity at 12
frequencies in a region of the microwave spectrum that is dom-
inated by atmospheric emissions from water vapor, cloud liquid
water, and molecular oxygen. The 12 observation frequencies
(i.e., 22.035, 22.235, 23.835, 26.235, 30.00, 51.250, 52.280,
53.850, 54.940, 56.660, 57.290, 58.800 GHz) were chosen by an
eigenvalue analysis to optimize retrieval accuracy. Using neural
network inversion algorithms the MWRP provides temperature
and humidity soundings up to 10-km height and low resolution
cloud liquid soundings [13]. The radiometric profiler includes a
vertical infrared sensor and surface temperature, humidity, pres-
sure sensors. A rain detector, based on resistive changes of a
printed circuit in presence of rain, is also included to identify
the presence of liquid water on the radiometer antenna.

As an example, Fig. 1 shows the operational real-time output
printed on the screen by the proprietary MWRP data acqui-
sition and processing software (VizMet). Contour plots show
time-height cross sections of atmospheric temperature, relative
humidity and liquid water retrievals. Time series of tempera-
ture, relative humidity, and pressure at the instrument level are
shown on the left. Time series of infrared cloud temperature,
rain detection, integrated content of vapor and liquid are shown
at the bottom. An estimate of the cloud base height is also plotted
in the upper contour panel. Thus, the operational output allows
the user to monitor in real-time ten fields of meteorological in-
terest simultaneously. Data were collected during 19 July 2003,
in Boulder, Colorado, USA, including the occurrence of a rain
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Fig. 2. Time series of T observed by the MWRP 12 channels during the same event as in Fig. 1. For each channel, the corresponding frequency (in gigahertz)
is shown on top of each subplot. It is evident how rainfall greatly effects the low-frequency channels (22.2 to 53.8 GHz), while has a relatively small impact on
strongly absorbed frequencies (56.6 to 58.8 GHz).

shower which started at roughly 0400 UTC, as revealed by the
rain detector, and lasted for about 20 min.

Rainfall has a distinct signature on radiometric measurements
which appears in a different way if considering either a window
or an absorption channel. Fig. 2 shows the time series of MWRP
radiometric observations at its 12 frequency channels during
the same period as in Fig. 1. A signature of more than 200 K
is shown by the window channels. Rain occurrence causes the
large increase of measured ’s in the low-frequency chan-
nels and saturation/depression in the oxygen absorbed band.
This behavior is due to the predominance of either emission or
scattering in the signature from ground with respect to the
clear-air value, as we will point out in the next section.

For a preliminary statistical validation, about one year of
MWRP radiometric observations at the ARM SGP site, from
June 2001 to June 2002, have been analyzed in this work. A
tipping-bucket rain gauge, part of the ARM Surface Meteoro-
logical Observation System (SMOS) has been also available.
The rain gauge was located at about 500 m from the MWRP,
providing data with a temporal resolution of half an hour and
a precision of 0.254 mm with an uncertainty of 0.254 mm.
It should be noted that 500 m may be a significant fraction
of the correlation distance of convective rainfall (about few
kilometers). Unfortunately, no other rain gauges closer to the
radiometer and with a faster response were available.

Fig. 3 characterizes the set of observations in terms of TB
histograms at different frequencies. It is evident from the dual-

mode distribution of low-frequency ’s that rain cases repre-
sent just a small fraction of the entire dataset. According to the
rain gauge, for the entire dataset the total fraction of time when
rain was observed is 174 h. Channels with strong absorption,
like the ones near the oxygen complex centered at 60 GHz, show
a small range of variability, since they are close to saturation.
On the other hand, channels with weak absorption, such as in
the 20–30-GHz range, show a much larger range of variability,
since the signals go from 10–20 K to saturation. A detailed anal-
ysis of the rainfall microwave signature will be carried out when
comparing measured and simulated data in the next section.

III. RADIOMETRIC SIGNATURE OF RAINFALL

A general theoretical framework for modeling of brightness
temperatures generated by clouds and hydrometeors and mea-
sured by a microwave radiometer is given by radiative transfer
integro-differential equation (RTE) [8], [14]. In the following
sections, we briefly summarize characteristics of forward
models employed in this work, together with a comparison with
measured ’s.

A. Rain Radiative Models

A vertically stratified atmosphere with its lowest level at
(surface) and highest level at (generally around 30 km)

is here considered. For convenience we can define a vertical
coordinate in terms of optical thickness at frequency such
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Fig. 3. Spectral signature in terms of the histograms of T measured by MWRP at different frequencies. The whole dataset, spanning over about one year (June
2001–June 2002), has been used in this plot. In the top panel, which shows low-frequency channel Tbs, is evident that raining cases are just a small subsample of
the whole dataset.

that at and at with
the extinction coefficient at frequency . It is also convenient to
introduce the zenith-angle cosine with the zenith
angle.

It is instructive to derive an analytical form of RTE in case of
a uniform scattering slab with known optical thickness , tem-
perature , albedo , and phase function . For a plane-par-
allel geometry, the unpolarized azimuthally symmetric down-
welling brightness temperature , observed from ground
at a frequency , can be formally expressed by (e.g., [7] and [8])

(1)

where is the cosmic background temperature (about 2.73 K
for microwaves) and the physical temperature. The second
term of (1) represents thermal emission, while the third term is
sometimes referred to as a multiple scattering source. The at-
mosphere is generally assumed to consist of adjacent homo-
geneous layers in which volumetric albedo , extinction coef-
ficient and phase function are taken to be constant within
layers. Note that the numerical solution of (1) assumes knowl-

edge of boundary conditions which implicitly affect the final
solution.

The previous equation indicates that when the layer albedo
tends to zero, we get the well-known solution for ground-based
observations of clear air and nonscattering clouds. When the
layer albedo is larger than zero, depending on frequency and
layer rain rate, then the equivalent layer temperature (i.e.,

with the atmospheric transmittance) tends
to be diminished by the increase of the albedo itself, while the in-
coherent multiple scattering tends to be increased. The solution
of (1) when represents the “clear-air background” of
the radiometric measurement. This “clear-air background” can
play a role in the interpretation of ground-based measurements
when considering window (e.g., 20–30 and 50–53 GHz) or ab-
sorption (e.g., 54–60 GHz) channels. For window channels the
observed clear-air ’s are fairly low, whereas for absorption
channels the ’s are relatively high. Note that due to
rainfall is fairly well correlated with atmospheric optical thick-
ness which is, in its turn, well correlated to columnar rain water
contents [3], [5], [8]. The latter, with some time delay (up to 10
min depending on rain regime), is related to surface rain rate,
typically measured by rain gauge sensors at ground [15].

In previous works we described a technique to use cloud-re-
solving model output to physically constrain the vertical corre-
lation of hydrometeor content within cloud layers [5], [8], [15].
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Briefly speaking, the gross vertical distribution of four species
of hydrometeors including cloud droplets, raindrops, graupel
particles, and snow particles, has been modeled. Cloud struc-
tures have been vertically resolved, within each cloud class, in
seven homogeneous layers with fixed levels and a vertical reso-
lution of about 1–1.5 km. The cloud dataset, classified into strat-
iform rain clouds (nimbostratus, Ns, including strato-cumuli as
well), convective rain clouds (cumulonimbus, Cb), stratiform
nonraining clouds (stratus, St), cumuliform nonraining clouds
(cumulus, Cu), and clear-air (Cl), has been then extended by
means of a Monte Carlo statistical procedure. Meteorological
variables, such as temperature, humidity and pressure profiles,
have been assumed to be uniformly variable around their mean
values within a given percentage. Microwave gaseous absorp-
tion has been computed by means of the Liebe model [16]. The
land-surface emission has been characterized by a Lambertian
emissivity model, depending on randomly variable surface hu-
midity (giving emissivity values between 0.85 and 0.95) [17].

The hydrometeor shapes have been assumed all spherical and
characterized by inverse-exponential particle size distributions
(PSDs) (see [8] for further details). In the logarithmic plane the
intercept of a PSD has been derived from the assigned equiva-
lent water content within each layer, while the slope has been
parameterized to surface rain-rate using a Marshall-Palmer, a
Sekhon–Srivastava and a Gunn–Marshall PSD for raindrops,
ice graupel and snow, respectively. For stratiform rain clouds,
a melting layer has been modeled by choosing a water-coated
ice-particle model. Indeed, oblateness of raindrops can cause
a depolarization signal, depending on cloud stage and wind
circulation [7], but it is here considered a second-order effect.
Mie absorption and scattering functions have been numerically
computed by imposing hydrometeor diameter ranges and den-
sities [8].

In order to generate a fairly large dataset to cover a wide
range of climatic conditions, the synthetic clouds have been
embedded in various meteorological environments which have
been tuned to the specific measurement site by collecting avail-
able radiosoundings. All meteorological profiles have been sup-
posed to be standard and varied in a random way, with a uni-
form statistics, around mean values of surface and vertical gra-
dient parameters depending on the season. Mean surface tem-
peratures from 273 to 303 K have been imposed with steps of
5 K and a uniform variability of 10 K around the mean values
with a standard gradient of 7.5 K/km (with a uniform variability
of 15%). The mean pressure profile has been supposed to be ex-
ponential with a surface value of 980 hPa (SPG site reference
value) and a uniform variability of 1% of the mean value to-
gether with a scale height of 7 km. Humidity was assumed to
be close to saturation with an exponential profile having a mean
surface value between 7 and 14 g/m , according to the season,
with a uniform variability of 15% of the mean value and a scale
height of 1.5 km. When imposing the variability of meteorolog-
ical profiles, the vertical distribution of rain and ice layers has
been modified accordingly by imposing some physical criteria
such as the absence of ice below the freezing level (except for an
explicit melting layer), the prevention of super-saturation, the
absence of water above the glaciation level and the limitation
of the vertical extension of the rain cloud by using a reduction

factor proportional to the temperature difference between the
synthesized mean profile and the initial one.

By using the coupled rainfall and radiative transfer model
described above, a large classified dataset has been simulated,
consisting of several thousands of cloud structures together
with related brightness temperatures at given frequencies
and observation angles. More precisely, the overall simulated
dataset, adopted in this work, consists of 35 classes, each with
1000 structures, derived from: 1) 7 meteorological (macro-
physical) classes spanning from 0 C to 30 C of mean surface
temperature with steps of 5 C (named as m0, m5, m10, m15,
m20, m25, m30) and 2) within each meteorological class, five
cloud (microphysical) classes categorized as Cl, St, Cu, Ns,
and Cb genera. The number of 1000 cloud structures has been
chosen as a compromise between computation efficiency and
current radiometric system accuracy. The analysis has included
the frequency bands of the operational multichannel radiometer
MWRP. The observation angle has been chosen in accordance
to the application, in principle between 0 and 90 elevation.
Here we will show results only for zenith observations in order
to be able to compare simulations with radiometric and rain
gauge measurements, as discussed in the next sections.

B. Comparison With Radiometric Data

A way to represent the ensemble of multispectral signatures
in a compact manner is to perform a principal component (PC)
analysis (e.g., [20]). If is a column vector made by 12 TBs
measured at the MWRP frequencies (in gigahertz) at zenith, i.e.,

then can be expanded as follows:

(2)

where the angular brackets stands for ensemble average, is
the th principal component , and is the corre-
sponding th eigenvector or empirical orthogonal
function (EOF) of the autocovariance matrix. As known, if

is the th eigenvalue associated to th EOF, then its normal-
ization to the eigenvalue sum represents the dataset explained
variance. Note that the convention is such that PCs are ordered
with explaining the higest relative variance.

As an example, by taking into consideration all the simulated
dataset, in order to explain the 99% of the variance only the first
three principal components are needed, with , , and
explaining 96%, 2%, and 1% of the total variance corresponding
to an associated standard deviation of 213, 28, and 6 K, respec-
tively. The information content carried by the first three EOFs
is shown in Fig. 4 by plotting the elements of with respect
to the frequency band.

It isworthmentioning thatEOF1ismostlyaffectedbyacombi-
nation of liquid water and water vapor emission, EOF2 responds
basically to water vapor channels, while EOF3 weighs humidity
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Fig. 4. First three relevant spectral empirical orthogonal functions (EOFs)
from the simulated dataset. EOF1 spans 96% of the total variance, while 2%
and 1% for EOF2 and EOF3, respectively.

and temperature sounding channels. Considering that EOF el-
ements are proportional to the –PC correlation coefficients,
we note that the first PC is fairly correlated with the window-fre-
quency and water-vapor absorption ’s, the second PC is
correlated with water-vapor absorption and 60 GHz more trans-
parent channels, while the third PC is correlated with 60-GHz
absorbed channels and cloud-liquid channel at 30 GHz. It should
be stressed that, when we consider only a cloud class dataset
for a given meteorological surface condition, the contribution
of oxygen-band channels to the third PC tends to be negligible.

A valuable objective to verify the simulation outputs is to
compare radiometric measurements, introduced in Section II,
with the synthetic dataset, described in the previous section.
This comparison can give an indication of the realism and phys-
ical consistency of the ground-based radiometric simulations
over a wide span of microwave frequencies.

Fig. 5 shows rainfall spectral signature in terms of scatter
plots of ’s at different frequencies. About one year of radio-
metric observations at ARM SGP site are involved in this plot.

’s from the simulated dataset are shown in black, while mea-
surements are shown in gray (number of points are 35 000 for
the simulations and 37 569 for the measurements). In the top
panel, which shows low frequency ’s, nonraining cases are
concentrated below 100 K, while raining cases cover the range
up to 300 K mainly dominated by hydrometeor emission [see
(1)]. On the other hand, for higher frequency, nonraining cases
are clustered in the middle of the distribution, thus indicating
the presence of both emission (i.e., ’s increase) and scattering
(i.e., ’s decrease) signature mechanisms.

Fig. 5 demonstrates that simulations are able to represent
a reasonable range of measured ’s, both for weak absorp-
tion (20–30 GHz) and strong absorption (55–60 GHz) frequen-
cies. By comparing simulated and measured data, we can appre-
ciate a similar behavior. The similarity between the synthetic
and the observed data distributions gives us some confidence in
using the first as a training set for estimating rain rate from the
set of observations.

IV. RADIOMETRIC ESTIMATION OF RAINFALL

The inversion technique introduced in this work has been
developed mainly by focusing on the multispectral nature of
MWRP radiometric measurements and on its operational real-
time features. Based on previous work [5], [8], [18], we here
have developed a new inversion technique suited for the MWRP
multispectral observations. Such technique, when trained with
simulations and applied to observations, provides estimates of
a variety of rainfall parameters, such as columnar hydrometeor
content and rain rate. In this work, we do not attempt to esti-
mate a rain water profile, even though in principle it could be
performed with some approximations [10]. This potential and
capability to easily generalize and extend the results is one of
the major advantages of a physically based inversion algorithm
with respect to an empirical one.

Radiometer-based rain rate can be validated when measure-
ments from a collocated rain gauge are provided, as discussed in
Section IV-B. This intercomparison is affected by several prob-
lems. Indeed, the type of measurements are profoundly different:
one can provide the rain water along a slant column, while the
other the accumulated water at a ground point. A major problem
concerning rainfall ground-based observation by radiometers is
related to the instrument antenna exposure to hydrometeor fall,
which can contaminate measurements. Water films forming
on the antenna have resulted with a possible significant impact on
observed ’s [11]. The effects on the retrievals of water films
on the antenna and an experimental demonstration of how to
substantially reduce them by hardware solutions are discussed
elsewhere [12], [19]. Here we do not consider such hardware-
corrected MWRP data and concentrate on the exploitation of a
statistical estimator sufficiently robust to unknown noise, such
as ’s due to antenna water films, being aware that this would
imply a slightly less expected accuracy [8].

A. Inversion Technique

The inversion procedure, designed for MWRP, is structured
in three subsequent steps, specifically extended and tuned for
this application but easily extendible to any other sensor config-
uration. The three foreseen steps are the following:

Step 1) classify the meteorological background scenario;
Step 2) detect rainfall and classify the cloud genera and,

eventually, rain regime (stratiform or convective);
Step 3) estimate the rain columnar water contents and sur-

face rain rate.
The entire inversion algorithm is formulated in terms of PCs.

As justified in the previous section, the first three PCs (and
EOFs) are sufficient in our case to explain more than 99% of the
total variance. The PC transformation has several advantages,
mainly its robustness to unknown noise and higher accuracy in
best fitting predictands to predictors—the latter feature gener-
ally due to the lower degree of nonlinearity of the fitting model
[9], [20], [21]. These properties have been numerically proven
by using the illustrated synthetic dataset as well.

Once a measured vector (where “m” stands for mea-
surement) is available, the measured PCs vector is basi-
cally computed by inverting (2), i.e.,

(3)
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Fig. 5. Rainfall spectral signature in terms of scatter plots between T at different frequencies. Simulated datasets are shown in black, while about one year of
measurements (June 2001–June 2002) are shown in gray.

where is the 3 12 matrix whose rows are represented by
the first three EOFs and “(c)” stands for the class. Note that, for
each classification step, the matrix is different as it is derived
from different datasets—for Step 1), we use 35 000 (i.e., 35
1000) records, while for Steps 2) and 3) we operate on 5000
(i.e., 5 1000) and 1000 records, respectively.

For the first two classification steps, a maximum a posteriori
probability (MAP) criterion has been used [8]. Briefly speaking,
if is the cloud class, then the conditional probability density
function (pdf) of considered class given a measurement
can be expressed through the Bayesian theorem. If the metrics
is assumed to be a multivariate Gaussian pdf, then the MAP es-
timation of cloud class reduces to the following maximization:

(4)

where is the PC-converted measurement autocovariance di-
agonal matrix of class and is the matrix determinant, while

is the PC mean value vector of class and repre-
sents the a priori discrete pdf of class . The computation of the
mode in (4) requires to know the mean value of the radiometric
principal component and its autocovariance at each
classification step. This statistical characterization of each cloud
class can be derived from the generated synthetic dataset, while
the prior pdf can be used to subjectively weight each class
as a function of other available information. For simplicity, we
have assumed as uniform in this work. Note that (and

TABLE I
CONFUSION MATRIX OF CLOUD CLASSIFICATION, EXPRESSED IN PERCENTAGE

FOR Cl, St, Cu, Ns, AND Cb CLOUD GENERA, GIVING THE NUMBER OF

CORRECTLY CLASSIFIED CLOUDS ON THE DIAGONAL AND MISCLASSIFIED

CLOUDS ON THE OFF-DIAGONAL ELEMENTS. ROWS ARE INPUTS, AND

COLUMNS ARE OUTPUTS (THE SUM OF EACH ROW IS EQUAL TO 100%,
AS EXPRESSED BY THE LAST COLUMN)

TABLE II
STATISTICS INDEXES FOR RAIN DETECTION, AS DEFINED IN [9]. THE ENTIRE

DATASET OF 14 716 RAINING AND NONRAINING CASES HAS BEEN USED FOR

THIS ANALYSIS DURING THE CONSIDERED YEAR (JUNE 2001–JUNE 2002)

then PC) probability density is a truncated-Gaussian within each
cloud class, but the ensemble of all classes is not necessarily
Gaussian [8]. Since we have assumed a Guassian metrics for
each class distance, the inherent error is not critical. The veri-
fication of the long-term statistics of each cloud class through
measured data is beyond the scopes of this paper and, indeed,
not an easy task due to the lack of reference data apart from vi-
sual inspections.

As an example of the expected accuracy of the classification
step, we have performed a simulated analysis on synthetic mea-
surements, divided in the already mentioned five classes (Cl, St,
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Fig. 6. Scatter plots between T and rain rate for the six MWRP lower frequency channels (22.235–51.25 GHz). Black dots represent simulated rain rate and
T , while gray dots show radiometric observations and the respective rain rate estimates.

Cu, Ns, Cb). A similar analysis was also performed in Marzano et
al. [8] using window channels only. Table I shows the so-called
confusion matrix of cloud classification from radiometric data,
expressed in error percentage and giving the number of correctly
classified clouds on the diagonal and misclassified clouds on the
off-diagonal elements. Elements on the rows are the “true” in-
puts and those on the columns are the “estimated” outputs. Ide-
ally the confusion matrix should be a diagonal matrix with all el-
ements equal to 100%. The sum of each row is equal to 100%,
as expressed by the last column. From Table II it emerges that
clear cases are always well detected, while nonraining clouds
(St and Cu) are very often misclassified as clear sky due to their
thin opacity. Stratiform rainfall can be confused with cumulus
clouds, while convective rain is fairly well identified.

At Step 3), after discriminating among cloud class and having
identified rain regime, a polynomial regression algorithm can be
applied, using the data belonging to the selected rainfall class as
a training set. This procedure implies that regression coefficients
must be computed for each rainfall class. We have chosen, after
an optimization analysis among fitting models, a polynomial
expression in terms of selected principal components. Within
each class , assuming a cubic form, surface rainfall rate
can be directly estimated from measurements, converted in
PCs through (3), by means of

(5)
where are the regression coefficients and
stands for the measured th principal component. Similar ex-

pressions can be written for columnar hydrometeor contents
(with for cloud, rain, graupel, and ice hy-

drometeor, respectively), i.e.,

(6)
being the proper regression coefficients.

B. Comparison With Rain Gauges

A way to check the consistency between modeled and mea-
sured datasets is to show the relationship between rain rate and

in the weak absorption region (20–50 GHz), as in Fig. 6.
Here black dots represent and rain rate extracted from the
overall simulated database, while gray dots correspond to
measured by the MWRP and rain rate estimates obtained from
radiometric measurements applying the inversion technique
previously described.

In order to assess the quality of our retrieval, we can consider
the detection from the MWRP rain binary sensor as a test for
the technique to correctly distinguish between rain and no-rain
cases. Finally, the quantitative estimate of rain rate can be tested
by comparing with measurements from a collocated rain gauge.
In Fig. 7 (left), a time series of about 12 h of rain rate esti-
mates from MWRP observations is plotted, together with the
rain sensor detection. The latter can only be 0 (no rain detected)
or 1 (rain detected), although we multiply values by 10 for en-
hancing the figure clarity. It is evident that the estimate based on
radiometric observations senses rain for a shorter period than
does the rain detector. Although this might seem to be a rain
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Fig. 7. (Left) Time series of MWRP estimated rain rate. Dashed gray line, representing rain sensor detection (0/1), has been multiplied by 10 for convenience.
(Right) Time series of 30-min accumulated rain for the same case. Dashed gray line represents rain sensor detection (0/1). Dash-dotted gray line represents
measurements from a rain gauge, while the solid black line represents radiometric estimates.

rate estimator problem, it is actually an advantage of the MWRP
technique. In fact, this effect is probably due to residual water
droplets laying on top of the MWRP, which are misinterpreted
by the rain detector. On the other hand, the retrieval algorithm
we have developed is able to interpret this water as residual and
to estimate actual rainfall.

Fig. 7 (right) can further justify this latter explanation since
it shows, for the same case study, measurements from the col-
located rain gauge. Rain sensor detections are now shown with
their original values (0/1), while rain rate estimates had to be av-
eraged into 30-min accumulated rain in order to match the rain
gauge time sampling. Rain gauge measurements clearly confirm
the duration of the rain shower sensed by radiometric observa-
tions, but also show a good quantitative agreement with the ra-
diometric estimates.

Similar to Fig. 7, four time series of rain rate at ARM SGP
central facility, extending for one to three days, are plotted in
Fig. 8. Note that averaging for 30 min has substantially reduced
the dynamical range available for rain rate. By comparing with
rain gauge measurements, it is evident that radiometric esti-
mates follow quite well both the detection of rain and the values
of rain rates, although there are some differences mainly attrib-
utable, in our opinion, to their diverse mode of precipitation
sensing.

In order to have a statistical comparison between radiometric
estimates and rain gauge measurements we have aligned the two
datasets and averaged them into 30-min bins. This filtering op-
eration results in 14 716 bins when both measurements were
available. A first analysis concerning the capability of the pro-
posed technique to detect rain is performed on the whole set,
and reported in Table II. Here we use the statistics indexes as
defined in [9] to measure the probability of detection of rain
(PODR), the probability of detection of no-rain (PODNR), and
the false alarm ratio (FAR). From Table II, we see that the dis-
cussed technique shows an excellent PODNR and fairly good
PODR and FAR. The last two indexes might be also slightly af-
fected by time-space variation of the rain field, since the MWRP
and the rain gauge were sitting some hundreds meters apart (see
Section II).

A further analysis concerns the ability of the proposed
technique to retrieve quantitatively the value of rain rate, once
raining conditions have been detected. Thus, we have limited
the set of observations to those classified as rain, a selection
which drastically reduces the number of bins to 98. This dataset
is plotted in Fig. 9 and has been used to obtain Table III. It is
evident that there is a fairly good correlation (about 0.82) be-
tween the two measurements, although the statistics is limited
by the relative small range of variation. The bias and standard
deviation of the error are about 0.9 and 1.8 mm, respectively,
which results in a root mean square of about 2.0 mm. This error
is attributable to the combination of the uncertainty for rain
gauge measurements ( 0.25 mm, according to the manufac-
turer), the uncertainty related to the retrieval technique, which
depends on the rain rate [8]–[10], but also in large extent to the
different features of the two observing systems.

V. SUMMARY AND FUTURE DEVELOPMENTS

A large set of ground-based multifrequency radiometric mea-
surements and simulations for different precipitation regimes
has been analyzed. The modeled frequencies have been selected
in order to match the set of channels currently available on an
operational ground-based radiometric system. Rain events oc-
curred in Boulder, CO, and at the ARM SGP site have been
analyzed in terms of comparisons between measurements and
model data. This comparison has in a way validated that the ob-
served radiometric signatures can be attributed to rainfall scat-
tering and absorption.

We have discussed and applied a three-step nonlinear inver-
sion technique, based on principal components decomposition
to estimate rain rate from radiometric observations. This statis-
tical inversion approach is advantageous mainly because of its
robustness to unknown noise and higher accuracy in best fitting
predictands to predictors. The proposed technique relies on the
generated cloud radiative database to train the nonlinear regres-
sion algorithm. This feature makes the technique easy to gener-
alize and to extend to applications with other observing systems.
The consistency of simulations with both measurements and re-
trievals has been proven as well.
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Fig. 8. More rain events are shown. As in Fig. 7, dash-dotted gray line represents 30-min accumulated rain as measured by the rain gauge, while the solid black
line represents radiometric estimates. Dashed gray line represents the rain sensor detection (0/1).

Fig. 9. Scatter plot of 30-min accumulated rain (in millimeters) as measured
by the rain gauge (SMOS) and as estimated by the MWRP. The sample size is
reduced to 98 cases.

Retrieval results have been presented comparing time series
of radiometric estimates with rain sensor detections and rain

TABLE III
STATISTICS INDEXES FOR RAIN ESTIMATE, AS DEFINED IN [9]. THE DATASET

CONSISTS OF 98 RAINING CASES DURING THE CONSIDERED YEAR

(JUNE 2001–JUNE 2002)

gauge measurements. These results are encouraging, showing
the potential of this approach, and indicating that the use of the
considered radiometric system together with the proposed in-
version technique are not too much affected by water films over
the antenna. Statistical indexes for rain detection and estimate
show reasonable agreement, although the analysis is limited by
the relative small range of variation available.

A final remark can be highlighted in terms of a provocative
question: do we need a radiometric estimate of rainfall rate at the
ground if you can have a gauge there? Would not gauge measure-
ments be more accurate after all? Indeed, we are interested in the
rain water content of the atmosphere more than its rate at surface.
For historical and practical reasons we need to validate our es-
timators with rain gauge data, but the aim is not to replace rain
gauges but to add estimated rainfall contents to microwave ra-
diometer products as a new feature. This would open to ground-
based radiometry an unique potentiality as an all weather instru-
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ment for atmospheric monitoring. We hope that the results here
presented can contribute to support the use of ground-based
multifrequency microwave radiometry for rain monitoring.

Future developments of this work will regard both mod-
eling and empirical issues. Indeed, the solution of the forward
problem might be improved by considering a more sophisti-
cated melting layer and including depolarization effects, while
the quality of observations could be further improved if the for-
mation of water film on the antenna is prevented by instrument
hardware upgrades (e.g., [11] and [12]). Finally, further work
shall be devoted to the analysis of a larger set of rainfall cases
in various climatological conditions, possibly spanning a larger
range of rainfall variation, and to the comparison with other
rain sensors, such as weather radars.
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