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Abstract— A variational retrieval method is described to 

combine observations from microwave and infrared radiometers 
and surface sensors with background from short-range Numerical 
Weather Prediction (NWP) forecasts in an optimal way, 
accounting for their error characteristics. The required forward 
models are described. Observation errors are found to be 
dominated by representativeness, due to their sensitivity to 
atmospheric variability on smaller scales than the NWP model 
gird. Their effect can be reduced by evaluating this dynamically. 
Profiles of temperature and total water content are retrieved 
from synthetic data using Newtonian iteration. An error analysis 
shows these are expected to improve mesoscale NWP, retrieving 
temperature profiles with an uncertainty of <1 K up to 5 km and 
humidity with <40% up to 3 km, albeit both with poor vertical 
resolution. A cloud classification scheme is introduced to address 
convergence problems and constrain the retrievals. This method 
can be extended to form a basis for future Integrated Observing 
Systems. 
 

Index Terms—Atmospheric measurements, Microwave 
radiometry, Remote sensing, Variational methods. 
 

I. INTRODUCTION 

he retrieval of temperature and humidity profiles from 
passive ground-based sensors is an ill-posed problem, 

because there are an infinite number of atmospheric states that 
can produce a given observation vector within its uncertainty. 
This can be resolved by the addition of background data. 
Variational retrievals provide an optimal method of combining 
observations with a background in the form of a short-range 
forecast from a Numerical Weather Prediction (NWP) model 
which accounts for the assumed error characteristics of both. 
For this reason they are often referred to as Optimal 
Estimation retrievals. This is similar to the Integrated 
Profiling Technique [1], but takes its background from an 
NWP model instead of radiosondes and uses different control 
variables to concentrate on retrieving profiles of atmospheric 
temperature and humidity. 

The variational retrieval is performed by adjusting the 
atmospheric state vector, x, from the background state, xb, to 
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minimize a cost function of the form [2]: 
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where B and R are the error covariance matrices of the 
background, xb, and observation vector, y, respectively, H(x) 
is the forward model operator and T and -1 are the matrix 
transpose and inverse, respectively, using the standard notation 
of [3]. 
 

II. BACKGROUND DATA AND STATE VECTOR 

The mesoscale version of the Met Office Unified Model is 
used to provide background data for the retrievals in the form 
of profiles of temperature, humidity and liquid water. The 
model grid points (12 km apart) are interpolated to the position 
of the observations. This model is initiated every six hours, 
including data from radiosonde stations. A short-range forecast 
(T+3 to T+9 hr) is used for the background, as would be 
available to operational assimilation schemes. This is 
independent of any radiosondes launched at observation time, 
which may be used to validate the retrievals. The background 
was found to have a consistent bias with respect to co-located 
radiosondes used in this study. This is believed to be due to the 
mesoscale model’s limited representation of the orography. 
This bias was corrected empirically prior to using the 
background in the retrieval. 

The state vector, x, used in the retrievals is defined as the 
temperature and total water on the lowest 28 model levels. 
These extend up to 14 km, but are concentrated near the 
surface, where most of the radiometer’s information is. 

In this study the humidity components of the state vector are 
defined as the natural log of total water, lnqt. (q is the specific 
humidity.) This control variable is a modified version of that 
suggested in [4], with a smooth transfer function between 
water vapor for qt /qsat < 90% and liquid water for 
qt /qsat >110% (where qsat is q at saturation.) The condensed 
part of the total water is further partitioned between liquid and 
ice fractions as a function of temperature, following [5]. This 
inhibits the formation of liquid water at very low temperatures. 
The use of total water has the advantage of reducing the 
dimension of the state vector, enforcing an implicit super-
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saturation constraint and correlation between humidity and 
liquid water. The use of the logarithm creates error 
characteristics that are more closely Gaussian and prevents 
unphysical retrieval of negative humidity.  

The background error covariance, B, describes the expected 
variance at each level between the forecast and true state 
vector and the correlations between them. In this work, B was 
taken from that used to assimilate data from satellite 
instruments operationally at the Met Office. It could also be 
calculated from the differences between the  radiosondes and 
background from the mesoscale forecasts over an extended 
period. This B is defined in terms of temperature and lnq. It is 
assumed that the error characteristics of lnqt are similar to 
those of lnq as liquid water is not measured by the 
radiosondes. This method provides a worst-case estimate of B 
as it includes contributions from the radiosonde error and the 
representativeness errors. The diagonal components of B are 
shown for reference in Fig. 4. 

 

III. OBSERVATIONS 

This study uses observations from the Radiometrics 
TP/WVP-3000 microwave radiometer [6]. This has 12 
channels: seven in the oxygen band 51-59 GHz, which provide 
information primarily on the temperature profile and five 
between 22-30 GHz near a water vapor line, which provide 
cloud and humidity profile information. This radiometer 
includes sensors to measure pressure, temperature and 
humidity at ~1 m above the surface. The pressure is taken as a 
fixed reference from which geopotential height is calculated at 
other pressure levels via the hydrostatic equation. The 
instrument’s integral rain sensor is used to reject periods which 
may be contaminated by scattering from precipitation, as this 
is not included in the forward model and emission from 
raindrops on the radome, which may bias the calibration. This 
radiometer incorporates an optional zenith-viewing infrared 
radiometer (9.6-11.5 µm) to provide information on the cloud 
base temperature. 

In this study the observation vector, y, is defined as a vector 
of the zenith brightness temperatures (Tb) measured by the 
radiometer’s 12 channels, with additional elements for the 
surface temperature and humidity (converted to lnq) and the 
infrared brightness temperature (Tir). 

The observation error covariance, R, has contributions from 
the radiometric noise (E), forward model (F) and 
representativeness (M) errors ( R = E + F + M ).  

The radiometric noise, E, can be evaluated as the covariance 
of the Tbs measured while viewing a stable scene (such as a 
liquid nitrogen target) over a short period (~30 min). This term 
is approximately diagonal – i.e. the channels are independent – 
with diagonal terms ~(0.1-0.2 K)2.  
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Fig. 1. Diagonal components of Observations Error Covariance Matrix, R. 

The representativeness error, M, allows for the radiometer’s 
sensitivity to fluctuations on smaller scales than can be 
represented by the NWP model. It is possible to estimate M by 
studying the fluctuations in the radiometer’s signal on typical 
time scales taken for atmospheric changes to advect across the 
horizontal resolution of the NWP model. In the case of the 
mesoscale model with a 12 km grid, a time scale of 1200 s was 
chosen to represent a typical advection timescale. The r.m.s. 
difference in brightness temperatures measured over this time 
scale was used to calculate M. This showed strong correlation 
between those channels sensitive to liquid water, water vapor 
and temperature, respectively. The liquid water and humidity 
terms were found to vary by an order of magnitude, depending 
on the atmospheric conditions. The average values calculated 
over a 7 day period of dry conditions with variable cloud 
amounts were taken to be typical. The representativeness term 
evaluated in this way dominates the observation error 
covariance matrix, with terms ~(0.2-2.5 K)2. (This method also 
implicitly includes the radiometric noise.)  

The representativeness error has also been evaluated 
dynamically in this way, based on the time series of 
observations within a 1 hour window around each observation 
used for retrieval. It is hoped that this technique will allow the 
observation errors to be reduced in periods of atmospheric 
stability, when more confidence can be placed that the 
radiometer observations are representative of the model’s 
state. Early trials with real data have produced more stable 
retrievals with similar characteristics to using a fixed value of 
E. 
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The magnitude of the diagonal components of each term of 
R is shown in Fig. 1 for the 12 channels of the microwave 
radiometer, surface temperature and humidity sensors (as 
dimensionless lnq) and infrared radiometer.  
 

IV. FORWARD MODEL AND ITS JACOBIAN 

 
Fig. 2. Atmospheric absorption spectrum for typical surface conditions: 
T=288.15 K, p=1013.25 hPa, RH=100%, L=0.2 g/m3 following [5]. Line 
styles show total absorption coefficient and contribution from oxygen, water 
vapour and cloud according to the legend.  Grey vertical bars indicate the 
passbands of the Radiometrics TP/WVP-3000 microwave radiometer. 

A forward model, H(x), is needed to transform from state 
space to observation space. For the microwave radiometer, 
each channel’s Tb is calculated at an equivalent 
monochromatic frequency [9] using the radiative transfer 
equation to integrate down-welling emissions from each 
atmospheric layer between model levels using a standard 
absorption model [5], which was found to have small biases in 
these channels [10]. The forward model for the surface 
temperature and humidity sensors is trivial – a 1:1 translation 
to the lowest level of the state vector, x. A simple forward 
model defines Tir as the temperature of the lowest level with 
any cloud. A more sophisticated radiative transfer model has 
also been developed  for Tir which accounts for absorption by 
atmospheric water vapor and the finite extinction in liquid 
water cloud, assigning extinction coefficients of 
7.2 Np/km.(kg/m3)-1 [11] and 0.02 Np/km.(kg/kg)-1 

respectively. This model was found to give more Gaussian 
error characteristics, due to having less abrupt transitions. 

The Jacobian is a matrix of the sensitivity of the 
observation vector, y, to perturbations of each element of the 
state vector, x, H=∂y/∂x. It is needed to minimize the cost 
function (see section VI). In this case, H is calculated by 
‘brute force’ – each level of the state vector, x, is perturbed by 
1 K in temperature or 0.001 in lnqt. The magnitude of these 
perturbations was selected to ensure linearity of H, while 
preventing numerical errors due to truncation. 

However, to speed up the calculation, a Fast Absorption 

Predictor model is used to calculate the absorption in each 
level below 100 hPa as a third order polynomial function of 
pressure, temperature and q following [1]. This introduces an 
additional random error in the calculation of Tb approximately 
as large as the forward model error contribution above. 

H is only calculated for levels between 0-8 km, 
corresponding to the maximum range of likely impact from the 
radiometer data. For levels above this, H=0. 

 
Fig. 3. Temperature Jacobians of 51-59 GHz channels of Radiometrics 
TP/WVP-3000, scaled by model layer thickness,∆z:  H/∆z =(∂y/∂x)/∆z. 

V. ERROR ANALYSIS 

An estimate of the uncertainty on the retrieved profile can 
be derived by assuming the errors are normally distributed 
about the solution and that the problem is only moderately 
non-linear. In this case, the error covariance matrix of the 
analysis, A, is given by [2]: 

 ( ) 1T
i i

−-1 -1A = H R H + B  (2) 

where Hi is evaluated at the solution (or final iteration). 
Although A depends on the reference state, it has been 
evaluated for different combinations of instruments in a US 
standard atmosphere in Fig. 4. This shows error in the 
temperature profile retrieved from the radiometer is 
expected to approach 0.3 K near the surface, but increases 
with height, to exceed 1 K above 5 km. For the humidity 
profile, A varies greatly with x. In this case the retrieval’s 
lnq error increases from 0.1 (~10%RH) near the surface to 
0.4 (~40%RH) by 3 km. This presents a substantial 
improvement on the background, which exceeds 1 K at all 
levels, and the surface sensors alone, which only influence 
the lowest 500 m, but obviously falls short of the 
radiosonde’s accuracy above 1 km for both T and lnq. 
However, the radiometer provides much more frequent 
observations than radiosondes can, reducing errors of 
representativeness applying their data to analysis at arbitrary 
times. 
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Fig. 4. Background error covariance matrix from mesoscale model, B (black) 
and analysis error covariances matrices, A¸ with surface sensors only (green), 
12 channel radiometer and surface sensors (red), and radiosonde only (blue). 
Plotted as square root of the diagonal components for the lowest 5km of 
temperature [K] and humidity (lnq) [dimensionless]. 

 
Fig. 5. Vertical Resolution of temperature and humidity (lnq)  retrievals. 

However, A only tells part of the story. The other important 
aspect of the retrieval’s performance is the vertical resolution 
– i.e. its ability to resolve a perturbation in state space. One 
simple, robust definition of the vertical resolution is the 
inverse of the trace of the averaging kernel matrix [2], 
following  the concept of data density [12]. This is evaluated 
in Fig. 5, which shows that the vertical resolution of 
temperature profiles increases with height, from ~1 km near 
the surface, as approximately twice the height from 0.5-4 km. 
For lnq, it increases from 1.5 km near the surface, as 
approximately 4 times the height above 1.5 km. However this 
definition tends to over-estimate the vertical resolution by a 
factor of ~2 compared to other methods [13], [14].  
 

VI. MINIMIZATION OF COST FUNCTION 

Variational retrievals are performed by selecting the state 
vector that minimizes a cost function in the form of (1). For 
linear problems, where H is independent of x, this can be 
solved analytically. However, the retrieval of profiles of 
temperature above ~1 km and humidity is moderately non-
linear, so the minimization must be conducted numerically. 
This can be achieved using the Gauss-Newton method [2], by 
applying the following analysis increments iteratively: 
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where xi and xi+1 are the state vector before and after 
iteration i, B and R are the error covariance matrices of the 
background and observations, respectively, Hi is the Jacobian  
matrix at iteration, i. 

This is iterated until the following convergence criteria  [2] 
is satisfied, based on a χ2 test of the residuals of yo-H(x): 

( ) ( )1 1

T

i i i iH H H H mδ+ + <<� � � �� � � �
-1

y(x ) - (x ) S (x ) - (x ) (4) 

where Sδδδδy is the covariance matrix between yo and H(xi) and 
m is the dimension of yo (number of observations).  

This typically takes 3-10 iterations, each requiring ~0.25 s 
of CPU time on a 2.4 GHz Pentium IV using the Fast 
Absorption Predictor model. 

Upon convergence the retrieved state vector, x̂ , is tested for 
statistical consistency with xb and B by calculating the value:  

 ( ) ( )2 ˆ ˆχ = b -1 bx - x B x - x  (5) 

Retrievals with a χ2>20 were rejected, based on the 
expected distribution of χ2 for 99% of a population with 8 
degrees of freedom. While it is recognized that this over-
estimates the true number of degrees of freedom, it is 
important not to use a test that is too restrictive as we are 
particularly interested in cases where the background does not 
provide an accurate estimate of the truth. The choice of χ2 
threshold was found not to be critical, as it had a small 
influence on the statistics of the retrievals. 

 

VII. EXAMPLE 1D-VAR RETRIEVALS 

Fig. 6 shows an example of a 1D-VAR retrievals using 
synthetic observations, generated to be consistent with R. 
These are based on a real radiosonde profile  for Camborne 
(UK) at 11:21 on 9/12/2004 and NWP background profile 
from a 5 hr forecast, valid 21 minutes earlier. This case was 
selected because the model had forecast the inversion ~200 m 
too low and overestimated the humidity by a factor of ~2 over 
the whole profile. The retrieval was repeated for 100 such sets 
of observations, 83% of which converged within an average of 
9.1 iterations. The retrieved profiles are closely clustered with 
typical standard deviations of 0.2-0.5 K in temperature and 
0.0-0.1 in lnq, showing they are relatively robust in the 
presence of observation noise. In all cases, the retrieval thins 
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the cloud and gives profiles closer to the truth than the 
background. However, the structure of B makes it impossible 
for the retrieval to move a misplaced feature in the vertical.  

 
Fig. 6. Example retrievals (red) with 100 synthetic observations, with profiles 
between NWP model background (black) and truth (blue). Left panel shows 
temperature profiles. Right panel shows profiles of humidity (lnq) and liquid 
water (lnql) and specific humidity at saturation (dotted line). Retrievals 
improve background state, but fail to move inversion in vertical.  

VIII. CLOUD CLASSIFICATION SCHEME 

Examination of the performance of the retrieval scheme 
shows there are often problems when profiles approach the 
threshold of cloud formation – the residuals will often oscillate 
without reaching convergence. Attempts have been made to 
address this by implementing the Levenberg-Marquardt [2] 
method of minimization, which adjusts the size of the 
increment at each iteration to change from the classic Gauss-
Newton method towards the method of steepest decent, 
according whether the previous iteration has improved the χ2 
value of xi. These investigations are continuing. 

Convergence problems in borderline cloud conditions can 
also be caused by the error characteristics of Tir, which can be 
highly non-Gaussian. This has been addressed by introducing a 
cloud classification as a pre-processing step to the retrieval, 
based on a threshold of the infrared brightness temperature, 
Tir. If the observed (or synthetic) Tir > min{Tamb-40 K, 223 K}, 
the profile is classified as cloudy and the retrieval proceeds as 
described above. Otherwise, the profile is classified as clear 
and the control variable changed from the logarithm of the 
total water, lnqt to that of the specific humidity, lnq. In this 
case, an addition term [15] is added to the cost function, 
modified to prevent saturation or super-saturation. In clear 
cases, Tir will have no impact on the retrievals and the 
representativeness term, which dominates R, can be reduced 
by re-evaluating it in only clear sky conditions, as for optically 
thin channels, this is dominated by cloud variability. This 
reduction allows the retrievals to be more accurate in clear 
conditions. Rainy observations are rejected. 

IX. STATISTICS OF 1D-VAR  RETRIEVALS 

1D-VAR retrievals were performed on an extended dataset 
of radiosonde profiles from Camborne during winter 2004/05, 
using synthetically generated observations and backgrounds, 
consistent with R and B, respectively. The statistics for the 
cloudy cases, shown in Fig. 7, are in excellent agreement with 
the expected performance from the error analysis, albeit with a 
poor convergence rate (77/179 cases). However, the retrieved 
temperature profiles do show a small, but consistent bias at 
higher levels. This may be introduced due to remaining non-
linearity in the retrieval [16]. 

 
Fig. 7. Statistics of 1D-VAR retrievals using synthetic observations and 
background for 77 cloudy cases from Camborne, UK during winter 2004/05. 
Solid lines show standard deviation of difference between retrieved and sonde 
profiles. Dashed lines show bias. Diagonal terms of error covariances are 
shown as dotted lines for the analysis, A, black lines for the background, B. 
Red lines show the statistics of the cloudy 1D-VAR  retrieval. 

The retrieved values of Integrated Water Vapor (IWV) were 
also compared to the radiosonde values. These were found to 
be good, with a small bias and a standard deviation of 
0.63 kg/m2 (compared to the corresponding value for synthetic 
backgrounds, 2.38 kg/m2). This compares favorably with other 
methods, which have been shown to retrieve IWV from 
microwave radiometer observations with an accuracy of better 
than 1.0 kg/m2 compared to radiosondes in mid-latitude winter 
[17]. This implies that the retrievals do not need an additional 
constraint in the cost function to force the IWV to match that 
retrieved by a simpler method.  

X. CONCLUSIONS AND FUTURE WORK 

A variational retrieval method has been developed to allow 
observations from ground-based microwave and infrared 
radiometers and surface sensors to be combined with a 
background from an NWP model in an optimal way, which 
accounts for their error characteristics. This has been shown to 
be advantageous over methods taking their background from 
statistical climatology [18]. This has been used to retrieve 
profiles of temperature, humidity and cloud using a novel total 
water control variable. 
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The 1D-VAR retrievals also have the advantage of 
providing an estimate of the error on the retrieved profile. 
Error analysis has shown the microwave radiometer improves 
the NWP background, retrieving temperature profiles with 
<1 K uncertainty up to 5 km and humidity with <40% 
uncertainty below 3 km. However, the vertical resolution of 
the retrieved profiles is poor and degrades with height. 

Variational methods allow different instruments to be 
combined if their observations’ forward model operator and 
error estimates are available. In this case, the observation 
errors were dominated by representativeness errors. To reduce 
their impact, these can be evaluated dynamically. This has 
been demonstrated by the addition of data from an infrared 
radiometer to a microwave radiometer in this study. However, 
convergence problems were encountered, due to the non-
Gaussian error characteristics of Tir. A cloud classification 
scheme has been introduced to address this and help constrain 
the retrievals. Other minimization schemes and convergence 
criteria may also help. 

The 1D-VAR retrievals are important in the development of 
future Integrated Observing Systems. In the future the 
retrievals will be tested with real observations and further 
refined by the addition of observations from other instruments, 
including the cloud base height from a ceilometer, IWV from 
GPS, cloud base/top from a cloud radar and boundary layer 
height from a wind profiler. 

Assimilation of these observations could improve mesoscale 
NWP, especially in the boundary layer and cloud properties. 
However, to fully exploit the high time resolution available 
from ground-based instruments will require 4 Dimensional 
Variational Assimilation (4D-VAR). 
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