__Wind power

by Wayne Miller and Arnie Heller

BREATH OF AlIR

Predicting wind power
with greater accuracy

Researchers at Lawrence Livermore National Laboratory in the USA are
combining fieldwork, advanced simulations and statistical analysis to
help wind farm and electric grid operators maximize power production

he wind is a variable and uncertain
power source that is dependent on
a number of complex atmospheric
forces. Reducing the uncertainty of wind
power [orecasts, upon which wind farm
operators and power grid operators depend,
is the goal ol a team ol researchers at
Lawrence Livermore National Laboratory
in California.

Many wind farms generate less energy
than expected because of uncertainties
in forecasting winds and simulating the
complex flows within wind [arms. Greater
understanding of the wind is needed to
optimize power production from wind
farms and to develop higher-fidelity
forecasting models relating atmospheric
conditions to power outputl. A major goal
is to better understand how power
production is related to windspeed
variability and other atmospheric variables,
such as turbulence, across a broad range
of spatial and temporal scales, and in wildly
varying geographic areas.

Turbulence and simulations
Livermore field researchers are
characterizing winds in numerous locations,
but especially in complex terrain. They have
made significant discoveries studying the
dynamics of atmospheric stability and
turbulence in the lower atmosphere and
their effects on wind farm power outpult.
A particularly important variable is
turbulence, which can be thought of as
a [luctuation of background wind flow,
as it aflects the power extracted [rom wind
turbines, as well as the reliability and
lifespans of turbine components.
Atmospheric scientist Sonia Wharton
explains, “Our measurements help us better
understand the atmospheric physics of the
atmospheric boundary layer. Increased
understanding can help optimize power
generation from wind farms and validate our
numerical models.” She uses wind profle
data to investigate stability lactors including
turbulence, veer, vertical intensity,
horizontal turbulence intensity, and shear.

A wind simulation
shows the evolution
of large turbulent
eddies as they
propagate over
complex terrain at
Livermore's Site 300
experimental
research facility.
The wind flows in
the direction of the
simulated slices,
from lower left to
upper I"iﬂl’lt. The
colors denote the
strength of the
turbulence, with
red representing
the strongest
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She compares the data to supervisory
control and data acquisition (SCADA) data
remotely transmitted by the turbines.

Wharton notes that wind turbine
manulacturers typically provide operators
with a simple IEC power curve that
frequently err by £50% of actual power
output. “We're trying to add refinements to
power curve models so that they reflect our
improved understanding of the aerodynamic
environment. While the average windspeed
in a turbine rotor disk largely determines
the amount of power that is generated,
wind shear and turbulence intensity also
influence power output.” The result, she
says, is that “the more you understand
atmospheric processes, the more accurate
your power predictions.”

Advanced simulation challenges
Livermore simulation and modeling efforts
use massive parallel computation to study
atmospheric flows relevant to wind larm
operations. The task is enormous because
the length scales involved span eight orders
of magnitude [rom the mesoscale (about
100-1,000km) to wind farm scales (1 to
several kilometers) to turbine blade
aerodynamic leatures (meters to millimeters).
The job is vastly compounded when
attempting to model a wind [arm consisting
of 100 or more turbines. What's more,
simulations must account for varying terrain
that can alfect power output from one wind
turbine to the next, and turbulent wakes
from the front rank of spinning turbine
blades that can rob power [rom turbines
downstream. Fortunately, Lawrence
Livermore has the required computational
horsepower and also simulation expertise.
Atmospheric scientist Jell Mirocha and
others are engaged in elforts to advance the
state-ol-the-art weather research and



- Windpower

A researcher checks a solar-powered lidar
station at a wind farm near Lawrence

- ' Livermore. Lidar stations provide vertical
profiles of windspeed, direction and turbulence
in the lower layer of the atmosphere
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forecasting (WRF) model. This atmospheric
simulation code, used and maintained
collectively by more than 10,000 users and
contributors worldwide, was developed
primarily for larger-scale weather applications.
Livermore researchers are extending the
applicability of this popular model to the
wind farm scale to address knowledge gaps
and research challenges associated with the
simulation ol flows at those scales.

Mirocha says, “We have modified WRF
extensively to make it applicable to the
smaller scales relevant to wind turbines. The
reason for these modifications is that many
different scales of motion, [rom weather
systems Lo turbulence, all interact and
combine Lo determine the {low conditions
al the wind farm scale, and therefore the
power that can be produced. Accurate wind
power forecasts therefore require a
multiscale simulation approach to account
for all these important scales.”

As an example of multiscale methodology,
one can start with a simulation of Europe to
capture the evolution of large-scale weather
patterns. Therealter, a combination of
smaller grid spacing and Livermore-
developed submodels can accurately resolve
the additional smaller-scale features
important at wind farms.

In addition, once smaller scales of flow
are resolved. engineering wind turbine
models can be implemented 1o investigale
processes important Lo engineering
applications, such as wakes, power
production and turbine component fatigue.
“Wind power simulation lies at the
boundary of engineering and atmospheric
sciences,” says Mirocha, who is attempting
to seamlessly blend WRF atmospheric
simulation with scales ol motion

traditionally handled by computational fluid
dynamics (CFD) codes.

To capture the interactions between wind
turbines and complex atmospheric flows,
Mirocha has implemented a generalized
actuator disk (GAD) wind turbine model
into WRF. This approach depicts a 2D disk
containing the rotating turbine, with the lift
and drag forces of a turbine in response to
atmospheric flow. The GAD calculates both
the power output of a turbine, as well as the
wakes that emanate downstream. These
wakes, which feature both reduced
windspeeds and increased turbulence, are
of key concern because they are associated
with significant power losses (up to 40%)
as well as shortened operational lifespans.

Immersed boundary method
Because the standard WRF model was
designed primarily for larger scales, it was
restricted to simple terrain with shallow
slopes. However, an additional Livermore
development effort, the immersed boundary
method (IBM), eliminates this restriction.
Using the IBM approach, WRF can
simulate highly complex terrain. Mechanical

Right: As statistical models account for
increasingly complex information about wind
dynamics, the root mean squared error
associated with predicted power output from

a wind turbine decreases considerably.
Livermore researchers used lidar data as input
to five power curve models (gold squares) and
compared their results with a manufacturer's
power curve (pink sguare) for a number of data
sets. The power curve models incorporating
successively more information about wind
dynamics tended to have a much lower
prediction error

Wind power

Left: Two simulations of a generalized actuator
disk wind turbine model within the Weather
Research and Forecasting (WRF) code depict
the wake downstream from a wind turbine rotor
plane (dashed line). The simulations, viewed
from above looking down at the turbines, show
how the strength of background atmospheric
turbulence (convective instability) influences
turbine wakes. Stronger turbulence (top)
attenuates the wake more rapidly than weaker
turbulence (bottom)

engineer Katie Lundquist developed the
code for her dissertation, and is currently
refining it so that it communicates well with
WREF. “IBM allows us 1o use a Cartesian
grid,” says Lundquist. For the first time, she
says, simulations of flow in highly complex
mountainous terrain with near vertical
slopes can be accommodated without
compromising accuracy and with grids

as small as 1m.

Minimizing uncertainties

A group of Livermore researchers is
studying how to reduce uncertainties both
in the errors associated with data they
gather, as well as the assumptions, inputs
and approximations inherent in the physics
of the WRF code, its constituent modules,
and the nested CFD codes. The work takes
advantage of the laboratory’s strength in
statistical modeling and uncertainty
quantification. Livermore researchers

are applying uncertainty quantification

to collected field data as well as 1o groups
of lorecasts.

“Wind power forecasting involves
converting atmospheric forecasts into a
[orecast of power output from an individual
turbine or many turbines in a wind farm,”
says statistician Vera Bulaevskaya.
Traditional manulacturer-supplied power
curves model power as a function of the
windspeed at the hub height of the turbine.
In reality, however, power output is a
function of many additional variables. For
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example, windspeed at heights below and
above the hub, as well as air density, wind
shear and turbulence, are also sirong
predictors of power production, so taking
them into account provides a more complete
power curve model, she says.

Moreover, to be valuable, a forecasting
tool must not only produce accurate
forecasts of power, but also correctly
quantily the uncertainty, or confidence
level, associated with these predictions.
Such confidence levels are particularly ol
value to electricity grid operators, who use
predictions of output (with their associated
confidence) to determine which sources ol
power to turn on and off, and when.
Quantifying uncertainty in output is also
critical for selecting sites [or wind farms.

Bulaevskaya has investigated various
statistical approaches for modeling power
as a function of changes in atmospheric
conditions. She discovered that their
performance in terms of prediction
accuracy is significantly better than that
of manufacturers’ power curves. One
statistical technique, known as a Gaussian
process model, has an additional advantage:
unlike the other approaches, it easily
provides the uncertainty estimates
associated with predictions.

|u class

0.05
0.08
. = 0,11
- 0.14

AT
0.20° .

0.24
0.27 lconvective

stable

neutral

Power capacity factor (%)

= turbine power output (10-minute)
= mianufacturer's power curve

Left: Wind turbine
manufacturers typically
provide operators with a
simple ‘power curve’,

% AT which shows power from

. the turbine as primarily
the cube of hub-height
windspeed. However,
Livermore researchers are
showing that power
curves frequently err by
+50% of actual power
output, as seen in this
plot of observed power
versus windspeed at a
northern California wind
farm. The color map
relates atmospheric
stability conditions to

wind speed (ms’)
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Ensemble modeling

To reduce uncertainties in wind forecasts,
atmospheric scientist Matthew Simpson
processes ‘ensemble modeling’, which means
running a forecast dozens or even hundreds
ol times using slightly dilferent starting
conditions. “Ensemble modeling shows us
competing models of reality,” says Simpson.
He explains that WRF constitutes many
individual packages, each representing
a particular atmospheric physics such as
turbulence, aerosols, solar radiation,
precipitation, surface roughness, clouds,
boundary layer mixing (turbulence), heat
rising from the ground, aerosols, wind
shear, etc. One way Lo caplure uncertainty
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Above: Ensemble forecasts provide a statistically
relevant range of possible outcomes for future
wind conditions. In this example, an ensemble is
used to predict an observed up-ramp (black line).
The up-ramp is bracketed by the range of
ensemble outcomes (blue shaded area). Different
methods of creating the ensembles such as
multi-analysis (red line) and multiphysics (blue
line) produce different outcomes. Selecting the
best approach is site-specific
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in forecasts is by running ensembles with
different values ol parameters in a given
package. Also, Simpson can substitute
different physics packages that attempt

to describe the same phenomena. For
example, there exist several dillerent
models of cloud simulation in WRF, and
each offers the developer’s best description
of physical processes.

One of the chiel advantages of ensembles
is the ability to spot outliers such as a wind
ramp. Because power is proportional to the
cube of the windspeed, it is important to
be aware of outliers. “If you get a sudden
increase in power, it is not a big problem
because you can always shut down wind
turbines,” says Simpson. “However, if
electricity demand increases and the wind
suddenly drops, grid operators must start
up a natural gas plant or import power, and
that can be costly.”

Atmospheric scientist Don Lucas has
worked extensively with climate and
atmospheric model uncertainties and has
run thousands of ensemble simulations
during his career. “Uncertainty
quantification is at the interface of
simulation and statistical analysis,” he says.

“Someltimes changing parameters or their
relative strengths doesn't alfect the output or
exerts only a small influence,” says Lucas.
“We can also look for which factors greatly
influence forecast, and then [ocus
compulational resources on that.”

Lucas also notes that relevant field data
helps keep models “honest”. “We want Lo
improve uncertainty quantification
calculations with observations to see how
well we know the model and how well the
model performs.” I

Wayne Miller and Arnie Heller are from Lawrence
Livermore National Laboratory, California, USA



