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Abstract.  Computing resources donated by volunteers have generated the first superen-

semble of regional climate model results, in which the Had ley regional model 

HadRM3P and  atmospheric global model HadAM3P were implemented  for the western 

US at 25km resolution.  Over 136,000 valid  and  complete one-year runs have been gen-

erated  to date: about 126,000 for 1960-2009 using observed sea surface temperatures 

(SSTs) and 10,000 for 2030-2049 using projected  SSTs from a global model simulation.  

Ensemble members d iffer in initial conditions, model physics, and  (potentially, for fu-

ture runs) SSTs.  This unprecedented  confluence of high spatial resolution and  large e n-

semble size allows high signal-to-noise ratio and  more robust estimates of uncertainty.  

This paper describes the experiment, compares model output with observations, shows 

select results for climate change simulations, and  gives examples of the strength of the 

large ensemble size. 
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Capsule. Volunteers contributing id le computing time are helping to create an unprece-

dented  combination of high spatial and high statistical resolution in simulations of cl i-

mate in the western US for 1960-2009 and 2030-2049. 
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1. Introduction 

Climate system modeling has made tremendous advancements in recent decades.  

Rapid ly expanding computational capabilities and  scientific research on fundamental 

processes have allowed simultaneous progress on a variety of fronts, such as expansion 

of the processes represented in climate models including interactive carbon cycles 

represented  by biogeochemical models (e.g., Flato 2011), increases in spatial resolution 

(global models now provid ing century-long runs at grid  spacing as low as ~50km), and  

the number of simulations possible with a given model.   

One area of research currently at the crossroads of basic research and applications is 

the description of present and future climate at spatial scales that are meaningful both 

scientifically and  for management applications (e.g., Means et al. 2010). Regional 

climate models (RCMs, e.g. Giorgi 1990) have been implemented  over specific areas of 

interest with resolutions as high as 500m (Wang et al. 2013) compared to 50-300 km for 

a GCM.  Typically, such stud ies run the RCM one or at most a handful of times.  The 

problem with having a very small number of simulations is that d ifferences between 

past and  future simulations can stem from several sources, not just the change in 

greenhouse gases: uncertainty is not well quan tified.  As O’Brien et al. (2011) note, some 

stud ies tacitly assume “that d ifferences between model simulations are entirely due to a 

physical forcing” and  show that internal variability can be larger than the signal in 

some instances; they also show that an ensemble of even 4 members can sometimes 

isolate physical responses from random internal variability.  A variety of lines of 

evidence suggests that, depending on the quantity of interest, a minimum of 8-10 
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simulations may be needed  just to achieve a robust estimate of the mean value of some 

global and regional quantities (see Mote et al. 2011), and  far more if the desired  quantity 

is an accurate measure of the uncertainty, e.g., the standard error of the mean.  From 

large numbers of simulations, we may also better represent the probability d istribution 

of the underlying population, which, for example, allows for d irect calculation of the  N-

year return period.  The return period (RP), used  frequently with precipitation or 

streamflow data in risk analysis and design, is the average number of years N between 

those years in which an event x (e.g., the heaviest one-day rainfall of the year) of some 

magnitude is exceeded , and is calculated as RP(x) = 1 /  [1 - F(x)], where F(x) is the 

cumulative d istribution function of x.   

Usually, estimates of uncertainty are derived by sampling available model results, 

w ithout d irectly addressing the contributions from natural variability and model 

formulation; by contrast, Hawkins and Sutton (2011) explicitly quantified these 

d ifferent sources of uncertainty for global models, and Northrop and Chand ler (2014) 

further investigated distributions for which the number of model runs is variable.  

Disentangling the contributions of natural variability, model formulation, and  

emissions scenario remains an important challenge requiring large numbers of 

simulations with a careful research design. 

Figure 1 illustrates the tradeoff between spatial resolution and  number of 

simulations in currently available climate modeling runs.  Numerou s global simulations 

are available through the Coupled Model Intercomparison Project 5 (CMIP5; Taylor et 

al. 2012): some modeling groups have provided , through the CMIP5 data portal, as 
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many as 40 simulations of the 21st century, using 4 scenarios of futur e greenhouse gas 

concentrations known as Representative Concentration Pathways or RCPs.  This large 

ensemble allows a rigorous quantification of uncertainty resulting from internal 

variability, anthropogenic forcing, and model formulation: In aggregate, CM IP5 

provides several hundred  simulations of future climate, each with up to 4 RCPs and  up 

to 17 ensemble members constructed  using d ifferent initial cond itions.  There is also an 

ensemble of 40 runs with the NCAR CCSM3 (Branstator and  Tang 2010).  However, the 

spatial resolution of the global models is inadequate for most impacts stud ies; statistical 

downscaling cannot properly represent important processes like snow -albedo feedback, 

so the downscaled changes may be inaccurate.   

Over the past several years, more concerted  efforts to generate ensembles of 

regional modeling have emerged.  In some, the multiple GCMs d rive a single RCM (4 in 

Duffy et at., 2007; 2 in Salathé et al., 2010; 3 in Deque et al, 2012; 3 in Hostetler et al. 

2012).  In addition, several coordinated  ensemble modeling projects have been 

conducted  with regional models.  “Prediction of Regional scenarios and Uncertainties 

for Defining EuropeaN Climate change risks and  Effects” (PRUDENCE; Christiansen et 

al, 2007), ran between 1 and 5 simulations using 8 RCMs at 50km over Europe, for 1961-

90 and  2071-2100.  The North American Regional Climate Change Analysis Project 

(NARCCAP; Mearns et al. 2009) had  12 simulations using 6 RCMs over the United  

States and  Canada, also at 50km resolution, for 1971-2000 and 2041-2070. Other 

examples include ENSEMBLES (van der Linden and  Mitchell 2009) involving 14 RCMs 

run over Europe and  CLARIS (Boulanger et al., 2010) involving 7 RCMs run over South 
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America.  

Recognizing that these efforts are limited  to specific regions and  do not follow a 

common experimental design allowing for cross-region comparison, the World  Climate 

Research Programme initiated  the Coord inated  Regional Downscaling Experment 

(CORDEX) programme (Giorgi et al, 2009). CORDEX has defined standard  RCM 

domains covering all land  areas and some elements of an experimental protocol 

includ ing a comprehensive d iagnostic list and data/ meta -data format specifications. 

Importantly, in liaison with the global modeling community it was agreed  that the data 

archiving protocol for CMIP5 would include 6-hourly 3-D data suitable for conversion 

to boundary cond itions for RCMs. Initial results from CORDEX have included 

assessment of multi-RCM simulations d riven by the new European Centre for Med ium 

Range Weather Forecasts Reanalyses (ERA) dataset, ERA-Interim (Dee et al., 2011), over 

Africa (Nikulin et al. 2012) and Europe (Vautard  et al., 2013) and  an initial climate 

projection experiment d riven by a sub-set of the CMIP5 GCMs over Europe (Jacob et al., 

2013).  

Though these coord inated  ensemble downscaling simulation and  projection 

experiments are a significant advance on earlier work, they still only involve relatively 

short simulations (20-30 years) of the climate of the recent past or single realizations of 

future climate change. These are sufficient to assess the ability of the models to 

represent mean climate and some aspects of climate variability and  its d rivers (e.g. 

Endris et al, 2013 and Kalognomou et al., 2013 for Southern and Eastern Africa 

respectively) or changes in these quantities (e.g. Laprise et al., 2013 for Africa). 
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However, for establishing robust estimates of higher moments of variability and 

extremes, and changes therein, requires the relevant climate states to be much better 

sampled . (The fact that stud ies are increasingly using multiple RCMs is potentially of 

use in this context, but the influence of differences in formulation on the results from 

such an ensemble make it difficult to argue that results from these simulations can be 

pooled  to represent a common climate or changed  climate). This is particularly relevant 

when assessing changes in the risk of extremes under transient climate where defining 

the “climate” of a particular decade or 30-year period can only be done by constructing 

multiple samples of the climate of the period  in question. As demonstrated  by Kendon 

et al. (2008), obtaining reasonable estimates of changes in moderately high intensity 

precipitation events (e.g. 95th or 99th percentiles of daily precipitation) in relatively 

high resolution RCM projections for a 30-year period  requires multiple realizations of 

the projected  changes. 

To these other modeling efforts, each of which has strengths and  weaknesses, can 

now be added  the work presented  here.  It represents a significant advancement in 

simultaneously solving the problems of spatial resolution and  large number of 

simulations (Fig. 1).  By running a nested global-regional model on volunteers’ 

computers, we have compiled  over 136,000 simulated  years (a “superensemble”) at 25 

km resolution - and the archive of simulations will continue to grow.  This paper briefly 

describes the approach, compares the simulated  results with observations, and provides 

a few examples of the advantages of the high resolution superensemble. Shortcomings 

of this approach, d iscussed in section 4, include the use of only one GCM, and the 
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d ifficulty of generating long continuous runs.  No regional modeling approach, 

includ ing this one, simultaneously solves the challenges of high spatial resolution, 

complete process representation (includ ing carbon cycle), and  complete exploration of 

uncertainties.   

 

2. ClimatePrediction.Net applied to the western US 

Allen (1999) proposed  using volunteers’ computers to run large numbers of 

simulations with a global climate model; in 2003, climateprediction.net (CPDN) was 

publicly launched.   CPDN uses various versions of the Had ley Centre’s global climate 

model, configured  to run on a personal computer.  Using the “Berkeley Open 

Infrastructure for Network Computing” (BOINC , Anderson 2004), CPDN has leveraged 

the resources of tens of thousands of volunteers around  the world  to produce 

superensembles of climate simulations with many thousands of members and  totaling 

over 126 million model-years and  counting (Massey et al. 2014).   

The chief strength of the CPDN approach (shortcomings are covered in the 

Discussion section) is that with this vast computing resource, large numbers of 

simulations can be performed  to quantify various sources of uncertainty, includ ing 

those associated  with model formulation through the use of perturbed physics 

ensembles (Murphy et al., 2004).  Perturbed physics ensembles are a way to explore the 

effects on simulated climate of specific parameter choices for a set of parameters.  Using 

a parameter sampling approach described by Rowland  (2011), each parameter is varied 

across its range in combinations of parameters that are selected to span multi-
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d imensional parameter space.  Parameter combinations are evaluated  both to determine 

the realism of the simu lated  climate compared  with observed (20th century) climate, 

and  to determine the climate sensitivity (Stainforth et al. 2005). 

While large ensembles of global models (like CMIP5 and  climatepred iction.net) 

are valuable for quantifying uncertainty, they can not by themselves solve another 

challenge of climate modeling: to quantify the likely changes at spatial scales that may 

be useful for applications, especially in regions of sharp spatial variations.  The climate 

of the western United  States varies greatly  over short distances because of the effect of 

mountains and , near the coast, the ocean. Processes involving interaction between 

airflow and mountains, coastal fog and stratus, sea breezes, snow -albedo feedbacks, 

thin coastal clouds, and  d rainage of cold air in valleys, all conspire to produce 

vegetation ranging from wet temperate coastal rain forests to ice-covered  mountain 

ranges to arid  scrublands, all of which exist within 100 kilometers of each other in some 

places. These processes are likely as well to shape the regional response to the changing 

large-scale climate (see, for example, Leung et al. 2004 and  Salathé et al. 2008).    

The objective of the regional CPDN project (known as Weather@Home) is, to put it 

simply, to occupy the useful upper left corner of Figure 1: to simulate past and  future 

regional climate with a novel combination of fine spatial resolution and  very high nu m-

ber of simulations.  Weather@Home nests the Hadley Regional Model HadRM3P (Jones 

et al. 2004) at 25 km spatial resolution over the western US (see Figure 2a) in the global 

atmospheric model HadAM3P, which runs at a spatial resolution of 1.25
°
×1.875° and  19 
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vertical levels; Weather@Home is also running in Europe, Africa, South Asia, and  Au s-

tralasia.  The HadAM3P/HadRM3P model formulation is based on the atmospheric 

component of the HadCM3 climate model (Gordon et al., 2000). It consists of a coupled 

atmospheric and land surface model representing processes related to dynamical flow, 

atmospheric sulphur cycle, clouds, precipitation, radiation, land surface, and deep soil. 

The atmospheric component is a hydrostatic version of the full primitive equations with 

19 vertical levels. The land-surface component comprises MOSES 2.2 (Met Office Sur-

face Exchange Scheme version 2.2), which is a tiled land surface scheme (Essery et al., 

2001) with soil moisture and temperature simulated over 4 soil levels.  For a more com-

plete description of the model configuration see Massey et al. (2014).   

HadRM3P over this domain was initially configured  and  tested  using reanalysis d a-

tasets for the period  2003-2007 and  was also nested  in the HadCM3 model and run for 

100 years (Zhang et al 2009). To evaluate the regional simulation, they compared 

HadRM3P, WRF36 (Weather Research and  Forecasting regional model at 36 km resolu-

tion), WRF12 (12km), and  station observations for both means and  extreme events 

(Zhang et al 2009; Dulière et al. 2011). Simulations for surface temperature were about 

as skillful for HadRM3P as for WRF-12, while for precipitation the HadRM3P simula-

tion showed  slightly less skill.  

The process of build ing this superensemble begins when a volunteer registers with 

BOINC and  obtains a task from the BOINC server at Oxford  University, and  the task 
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runs on his/ her computer while it is id le.  A d isp lay allows the user to check on the 

progress of the simulation, provid ing a visible reward  and  sense of engagement. A vo l-

unteer can also track, either as an individual or as team of volunteers, the total number 

of simulations completed  and  compare them to other volunteers. Our simulations are 

designed  to last for one model year, though for a variety of technical reasons not all are 

completed  (see Massey et al. 2014 for details). After the simulation finishes (typically 

after about 1 week in real time), the task post-processes the results and  uploads them to 

the master database, hosted  at Oregon State University (Fig. 2b).    

The first set of simulations, which has now been completed , started  between 2000 

and  3740 work units on December 1 of certain years between 1959 and  2009 (Fig. 2c). 

These simulations included  both standard  physics, started  every 5th year (1959, 1964,...) 

and  perturbed  physics (where the physical parameters were perturbed in the global 

model, and  runs were started  in every year).  Initial cond itions for the global model 

were also perturbed  in both sets of runs by add ing 3-D perturbations to the potential 

temperature field . These perturbations are calculated  by first taking 348 next day diffe r-

ences from a 1-year integration of the global mod el, scaling the differences in the verti-

cal, and  then multiplying the perturbation fields globally by 1.1, 1.2, 1.3, 1.4 and  1.6 to 

generate a set of 1740 initial cond ition perturbations (for details see Massey et al. 2014). 

Although these initial cond ition perturbations are only applied  in the global model, 

they immediately affect the regional simulations.  A restart file containing information 

on the state of system at the end  of the simulation period  is uploaded  to the server at 

Oxford  and  sent out with the same model binary file as a new task: the totals shown in 
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each year (Fig 2c) include such runs, which explains why there is a declining (but still 

large) number of runs for the standard  physics runs, in years following the first year of 

each set (1959 etc.). A file management error removed  some of the first -year runs which 

is why there are more second  year runs. For lower boundary cond itions, these simula-

tions use the HadISST v1.1 data set (Rayner et al. 2003) to specify the sea surface te m-

perature and  sea ice concentration for each month. Land  surface (i.e. soil temperature 

and  moisture) initial conditions were prescribed  from a model climatology.    

During simulation, GCM fields are fed  to the RCM each day. HadAM3P runs for one 

day, a subset of global fields are saved  for averaging and  d iagnosis, and  19 prognostic 

field s are saved in the sponge layer (several grid points bound ing the domain) every 6 

model hours.  Then HadRM3P runs for one day, using the saved  GCM data applied  in 

the sponge layer as boundary cond itions (as described  in Jones et al., 1995). RCM ou t-

puts are not fed  back to the GCM.  This process is repeated  until the end  of the month 

when monthly d iagnostics are performed, includ ing the identification of extreme daily 

values of precipitation, wind  speed , and  maximum and  minimum temperature.  Small 

monthly “trickle” files consisting of regionally and  globally averaged  values of tempe r-

ature are sent back to the BOINC server so that it can track progress of the work unit.  

As of January 2015, 136,124 complete and valid  runs have been returned  to the OSU 

server and  retained  after quality control: 52,150 historical standard  physics, 73,961 his-

torical perturbed  physics, and  10,013 future runs. 

For the simulations of future cond itions, SST values consist of HadISST data to 

which have been added  temporally smoothed  fields of SST changes derived  from long 



 

 

14 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

CMIP5 simulations from HadGEM2-ES, using the forcings given by the Representative 

Concentration Pathway (RCP) 4.5 (van Vuuren et al. 2011; Taylor et al. 2012), a moder-

ate greenhouse gas concentration scenario.    

 

3. Comparison with observations 

A thorough comparison with observations, along with assessment of the suitability 

of d ifferent observational datasets, is beyond  the scope of this paper.  We p rovide some 

illustrative comparisons of both spatial and  temporal patterns, and  for simplicity, we 

focus on the standard  physics simulations. For spatial patterns of temperature we use 

the North American Regional Reanalysis (NARR, Meisinger et al. 2006) wh ich has a 

spatial resolution of 32 km. NARR and  Weather@Home are interpolated  onto a co m-

mon 25-km grid  and  are ad justed  for elevation using a standard  lapse rate of 4.5°C/ km 

(Minder et al. 2011) for the Cascades and  Sierras, and  6.5°C/ km elsewhere (the cho ice of 

lapse rate only affects correlations by at most 0.02).    

In Weather@Home and  NARR, the in fluences of terrain and  coastal moderation are 

obvious in the temperature field , with mountain ranges typically at least 5°C cooler 

than surround ing low terrain (Figure 3): the spatial correlation between panels (a) and 

(b) is 0.98. The mean d ifference is -0.66°C, and  the d ifferences shown in Figure 3c are 

less than 2°C at a large majority of grid points and  are not statistically significant 

(p<0.05, 2-sided  t-test) except at a small fraction of grid  points.  Weather@Home tends 

to be too cool in a few mountain ranges and  too warm in arid  plains includ ing the 

Snake River plain and  Columbia plateau, especially in summer (not shown).  
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As an example of temporal variability, we compare the regionally averaged  tempe r-

ature from Weather@Home and  NCDC’s regionally averaged  temperatures based on 

US Historical Climate Network data (Figure 4). The 50-year trends are nearly identical: 

0.011°C/ yr for Weather@Home and  0.015°C/ yr for observations.  Moreover, the corr e-

lation between the two time series is statistically significant with r=0.67.  Because the 

only source of interannual variability common to both the instrumental record  and  the 

Weather@Home simulations is the global pattern of sea surface temperatures, this high 

correlation indicates the importance of sea surface temperatures.  The observed  variabil-

ity is larger because the model curve (black) is an average of a large number of runs in  

each year  - in a sense, the observations only sample the space of physically plausible 

climate states at the rate of one state per  year whereas Weather@Home provides a more 

thorough sampling.  Not only is there general agreement between Weather@Home and 

NARR on the trend  and  on individual warm and  cool years, the shapes of the curves are 

similar, includ ing a slight reduction in temperatures after the late 1990s consistent with 

the known combination of forcings (Abatzoglou et al. 2014).   

Most stud ies of climate change focus on monthly mean changes in temperature and  

precipitation, but impacts of climate change on ecosystems and  society involve other 

variables and  shorter time periods. As implemented  in the western US, the Weat h-

er@Home framework produces a total of over 40 output variables (Table 1). These ou t-

put variables were designed  with societal and  environmental applications in mind  and  

in consultation with end  users, the better to inform a wide range of decisions. Figure 5 

shows the rate of change in snow water equivalent (the depth to which water would 
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cover the surface if melted), calculated  by linear regression of April 1 obser ved values 

and  monthly mean April values from the ensemble means (500 per year) 1960-2009.  

Nearly all mountain areas in the West show a reduction, and  the correspondence b e-

tween the model and  observations is striking (see also Mote et al. 2005, Pierce et al. 

2009). The biggest differences are in the southern Sierra Nevada mountains at moderate 

to high elevations, where as Mote (2006) showed , increases in temperature more than 

offset increases in precipitation to produce increases in observed Snow Water Equ iva-

lent over this period. 

 

4. Results 

We present a representative sample of interesting results, provid ing illustrations of 

the high statistical resolution, high spatial resolution in representing patterns of change, 

and  the value of the superensemble in improving estimations of the mean and  of statis-

tical distributions. 

With this superensemble we can study extremes with more statistical robustness.  

Our model outputs (Table 1) include the first, second , and  third  highest daily precipit a-

tion totals in each month, as well as the 3 highest high temperatures and  the 3 lowest 

low temperatures (this approach uses less output d isk space and  I/ O than saving daily 

values for the entire month).  Figure 6 compares the return period  curves (see section 1 

for definition) for June-July-August maximum one-day temperature, for 4500 simula-

tions each in the 1960s and  the 2000s over California and  Nevada.  Results show an in-

crease of, on average, 0.6°C at each return period .  Or to put it another way, the return 
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period  of a given threshold d rops by roughly a factor of 2-5 from the 1960s to the 2000s. 

Robust estimation of return periods using just a single decade is possible because each 

year contains hundreds of simulations representing d ifferent cond itions that are phys i-

cally consistent with the boundary forcing in that year. The error bars are acquired  as 

follows.  We sample the 4500 simulations 2000 times, with replacement, generating a 

return period  curve for each sample.  From these, the mean and  2.5 and  97.5 percentiles 

are extracted for each temperature, and  also for each return period.   

A chief benefit of a regional model is to understand  the patterns of regional climate 

change, but as O’Brien et al. (2011) pointed  out, d ifferencing two regional model runs 

may conflate real physical changes with statistical noise because of small sample size.  

Our superensemble improves the likelihood  that d ifferences are physically meaningful.  

Figure 7 compares the simulated  warming from the past (linear fits at each grid  point 

for 1960-2009) with d ifferences between the future runs and  past runs, converted  to 

°C/ yr for comparison.  Average warming is greater in panel (b), consistent with global 

model simulations that show an acceleration in warming for early 21st century co m-

pared  with late 20th century for the Northwest (Mote et al. 2013) as well as globally 

(IPCC, 2013).  For the simulated  past, warming rates are least in coastal gridpoints (e s-

pecially around  the San Francisco and  Monterey Bay areas), and  most in mountainous 

areas and  in the inland states.  Future warming has similar patterns but larger magn i-

tudes.  The enhanced warming in the Cascades and  Sierras is dominated by enhanced 

springtime warming (not shown) associated with depletion of spring snowpack (Fig 5). 

 With such large ensembles, we can investigate other statistical properties of climate 
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that are d ifficult to deduce from observations alone or from small numbers of simula-

tions.  Figure 8 shows the range in estimates of regional mean precipitation for ense m-

bles of increasing size, averaged over the whole domain, for a single year.  Although the 

mean is roughly the same, if only a single simulation is selected , it could differ from the 

ensemble mean by as much as 50%, whereas the spread  decreases rapid ly with ensem-

ble size, illustrating the point made in the introduction and  by O’Brien et al. (2011) that 

larger ensembles reduce the signal to noise ratio especially for sub-regional features. 

 

5. Discussion 

A series of previous stud ies (Deser et al. 2012, 2014; Wettstein and  Deser 2014; Kay 

et al. 2015) have examined  the impact of superposition of internally generated  variabi l-

ity and anthropogenic climate change on projected  climate trends over the next half ce n-

tury, using a 40-member ensemble of climate change simulations con ducted  with the 

National Center for Atmospheric Research (NCAR) community Climate System Model, 

version 3 (CCSM3). These stud ies looked  at d ifferent aspects of uncertainty resulting 

from internally generated  variability: signal to noise ratio, minimum numb er of ensem-

ble members needed  to detect a forced signal, which depends on climate variable, sp a-

tial and  temporal scale, and  geographical location of interest.  They found  substantial 

internal climate variability even on the global scale; the role of intern al variability is 

considerably larger on the regional scale (e.g. Hawkins and  Sutton 2011). 

A new generation of coord inated  regional modeling experiments will improve the 

quantification of uncertainty on the regional scale.  Perhaps the most ambitious of t hese 
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is CORDEX, which as Massey et al. (2014) note,  

...[CORDEX] aims to understand some of the uncertainties in regional modelling by 

comparing many RCMs driven by both observations and output from multiple GCMs. 

Although weather@home is not part of CORDEX, it is aligning itself with the meth-

odologies of CORDEX as closely as possible. For example, the European domain pre-

sented in this article has the same rotated pole as the CORDEX domain and contains 

the agreed common interior. 

Our superensemble of regional model results can augment stud ies like those, by 

characterizing more completely the natural variability of climate on a regional scale and  

quantifying uncertainty in future projections more carefully.  We provided  here a few 

illustrations to show the value and capability of this superensemble.   

As d iscussed  by Massey et al. (2014), this regional project is one of six in the Weat h-

er@Home family of projects, and  it is the first to present results for future climate 

change, joining NARCCAP (Mearns et al., 2009) and  regCLIM (Hostetler et al. 2012) in 

presenting an ensemble of results for western North America.   

The model formulation and  experimental design used  here do have d rawbacks.  

Owing to the limitations in the memory footprint of most volunteers’ com puters, we 

run an atmosphere-only model, and  SSTs are specified  rather than being d rawn from a 

free-running ocean-atmosphere model.  Land  surface data (e.g., vegetation roughness 

and  type) are not perturbed, though they cou ld  be, and  these can certainly in fluence re-

gional climate including the albedo response of snowpack to warming.  Also, unlike the 

CMIP5, NARCCAP, ENSEMBLES, and  PRUDENCE experiments, we are using only a 
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single atmospheric model, and  even with the parameter perturbations it may not span 

the range of climate behaviors that are physically plausible and  that would  be repr e-

sented  by a collection of different models.  Some regional modeling studies have been 

run with higher spatial resolution, which in some cases improves the representation of 

important processes (Zhang et al. 2009, Pavelsky et al. 2012).  Finally, this experimental 

approach focuses on high numbers of short runs (1-5 years), but does not allow long 

continuous runs, which certainly have some advantages. In short, not all kinds of uncer-

tainties can be better quantified  with this approach than with other approaches. 

Nonetheless, Weather@Home can provide unprecedented  guidance to end users 

grappling with climate change.  Society’s awareness of the impacts of climate change 

has matured  to the point that numerous public agencies, businesses, and  investors are 

asking detailed  questions about the future impacts of climate change. This is especially 

true in the western U.S., where many states, following the lead  of California in 2005, 

have made formal commitments to incorporate climate adaptation into the long -range 

planning of their state agencies.  Private businesses and  federal agencies are also begin-

ning proactively to adapt to climate change. 

This awareness has led  to a skyrocketing dem and  for detailed  projections of future 

climate change, in a very wide range of practical applications.  We have been asked  to 

estimate the risk of future floods for determining how to manage and  set policy in a 

flood  plain; to project future wind  speeds an d  evaluate the future energy production 

potential of wind  farms; to project the probability of extremely intense rainfall for d e-

signing culverts, roads, bridges, and  other infrastructure; to project future heat stress on 
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humans; to project frequency of d roughts for agricultural and  water resources planning 

and  policy; to project future sea level and  height of storm surges for locating new infr a-

structure and  protecting existing infrastructure; and  much more.  Indeed , the backers of 

this project (see acknowledgements) include management-oriented  agencies.   

Furthermore, the sophistication of requests has also increased : whereas a few years 

ago most users asked  scientists for one best estimate of how a single climate variable 

would  change, most users now want a  range of that variable or even a probability dis-

tribution of that variable.  The Weather@Home experiment outlined  here and  the data 

generated  by the participation of tens of thousands of volunteers represents an im-

portant step in the quest for scientifically sound , societally relevant climate science.  

Current and  future work in this project includes a more complete evaluation of the 

1960-2009 runs against observations.  We are generating a new set of future simulations, 

in which we will save daily outputs of a few key variables.  We will also use an expan d-

ed  range for the parameter sets, because the physics perturbations used  in the previous 

runs appear to have been too conservative.    
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Table 1. Output variables from the global (HadAM3P, monthly) and regional (HadRM3P, 5-day 

averages) 

Variable global regional 

Geopotential height, temperature, & relative humidity at 500 hPa x  

Soil moisture content x x 

Temperature at 1.5m x x 

Dew point at 1.5m x x 

Surface temperature after timestep  x  

Surface boundary layer heat fluxes (W/ m
2
) x  

Surface latent heat flux (W/ m
2
) x x 

Surface sensible heat flux (W/ m
2
) x x 

Net downward  surface shortwave flux (W/ m
2
) x x 

Net downward  surface longwave radiation flux (W/ m
2
) x x 

Outgoing shortwave radiation flux (top  of atmosphere, W/ m
2
) x x 

Outgoing longwave radiation flux (top of atmosphere, W/ m
2
) x x 

Clear-sky upward  shortwave flux (top  of atmosphere, W/ m
2
) x x 

Clear-sky upward  longwave flux (top of atmosphere, W/ m
2
) x x 

U, V components of wind at 10m x x 

U, V components of wind on pressure levels (hPa) 200, 500, 850 200 

Pressure at mean sea level x x 

Relative humidity at 1.5m x x 
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Total precip itation rate (kg/ m
2
/ s) x x 

Total snowfall rate, large scale p lus convective (kg/ m
2
/ s)  x 

Total rainfall rate, large scale p lus convective (kg/ m
2
/ s)  x 

Surface runoff amount (kg/ m
2
/ s)  x 

Surface snow amount (kg/ m
2
)  x 

Total downward  shortwave flux at the surface  x 

Total downward  longwave flux at the surface  x 

Geopotential height: pressure levels (200, 500, 850 hPa)  x 

Minimum temperature at 1.5m: monthly mean and 1st, 2nd, 3rd  

lowest 

 x 

Maximum temperature at 1.5m: monthly mean and 1st, 2nd, 3rd 

lowest 
 x 

Precip itation on the 3 wettest days of the month   x 
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Figure captions.  

Figure 1.  Depiction of the tradeoff between spatial resolution, represented  by longitud i-

nal grid spacing, and number of simulated  years (note the log scale).  Global modeling 

results available through CMIP5 are shown as blue circles, one for each model
6
, with the 

total number of years including all ensemble members and all RCPs.  The large red ci r-

cle for NARCCAP represents 12 models, all with the same grid size and  number of 

years.  Regional simulations in PRUDENCE (purple circles) include between 1 and  5 

simulations with a given model. A typical standalone regional model experiment is in-

d icated  by the thin red  circle.  The work described in this paper consists of almost 

140,000 simulated  years at 25km resolution. 

 

Figure 2.  (a) Domain and  elevation of terrain (meters) used  in these simulations. (b) 

flowchart ind icating how “workunits” issued to volunteers turn into results on the OSU 

server. (c) Number of valid  runs per year. 

 

Figure 3.   Dec-Jan-Feb average temperature in °C as simulated  by Weather@Home (left) 

and  by the North American Regional Reanalysis (middle), for 1979-2009, and  the d iffer-

ence (right).  The Weather@Home figures are formed  by averaging up to 100 simula-

tions per year. 

                                                
6
 Details on model resolution are taken from IPCC 2013, Table 9.1; details on number of runs available are 

from the CMIP5 archive at LLNL. 
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Figure 4.   Annual mean temperature, averaged  over the Pacific Northwest, for weath-

er@home (25-100 simulations per year) and observations from the National Climatic 

Data Center (red ), along with linear  fits. 

 

Figure 5.  Linear trends in snow water equivalent in cm from (top) observations (1960-

2009), for April 1 (Mote 2006, updated ) and (bottom) the weather@home simulations 

(1960-2009), averaged  for the month of April. Red  indicates declines and  blue in creases.  

 

Figure 6. Return period  curves of maximum one-day temperature in June-July-August, 

each curve representing 4500 standard  physics weather@home simulations for the 1960s 

and  2000s over California and Nevada. Uncertainties are calculated both with respect to 

return period  (horizontal bars) and temperature (vertical bars). 

 

Figure 7. a. Linear trend  in annual mean temperature, 1960-2009; b. Difference in annual 

mean temperature, future runs minus past runs, in °C/ year. 

 

Figure 8.  Convergence in annual mean precipitation for 2007-08, averaged  over the 

weather@home domain (land grid  points), as the ensemble size increases.  Samples of 1, 

4, 16, and 64, and 256 members were randomly selected from a set of 500 simula-

tions.  Box-and-whiskers show the med ian, inner quartiles, and  extremes of the regional 

mean calculated  from those samples. 
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Figure 1.  Depiction of the tradeoff between spatial resolution, represented  by longitud i-
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nal grid spacing, and number of simulated  years (note the log scale).  Global m odeling 

results available through CMIP5 are shown as blue circles, one for each model
7
, with the 

total number of years including all ensemble members and all RCPs.  The large red ci r-

cle for NARCCAP represents 12 models, all with the same grid size and  number of 

years.  Regional simulations in PRUDENCE (purple circles) include between 1 and  5 

simulations with a given model. A typical standalone regional model experiment is in-

                                                
7
 Details on model resolution are taken from IPCC 2013, Table 9.1; details on number of runs available are 

from the CMIP5 archive at LLN L. 
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20 d icated  by the thin red  circle.  The work described in this paper consists of almost  

140,000 simulated  years at 25km resolution.  
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Figure 2.  (a) Domain and  elevation of terrain (meters) used  in these simulations. (b) 

flowchart ind icating how “workunits” issued to volunteers turn into results on the OSU 

server. (c) Number of valid  runs per year.  

 

Figure 3.  Dec-Jan-Feb average temperature in °C as simulated by Weather@Home (left) 

and  by the North American Regional Reanalysis (middle), for 1979-2009, and  the d iffer-

ence (right).  The Weather@Home figures are formed  by averaging up to 100 simula-

tions per year.  
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Figure 4.  Annual mean temperature, averaged over the Pacific Northwest, for weath-

er@home (25-100 simulations per year) and observations from the National Climatic 

Data Center (red ), along with linear fits.     
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Figure 5.  Linear trends in snow water equivalent in cm from (top) observations (1960-

2009), for April 1 (Mote 2006, updated ) and (bottom) the weather@home simulations 

(1960-2009), averaged  for the month of April. Red  indicates declines and  blue increases.  
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Figure 6. Return period  curves of maximum one-day temperature in June-July-August, 

each curve representing 4500 standard  physics weather@home simulations for the 1960s 

and  2000s over California and Nevada. Uncertainties are calculated both with respect to 

return period (horizontal bars) and temperature (vertical bars).  
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Figure 7. a. Linear trend  in annual mean temperature, 1960-2009; b. Difference in annual 

mean temperature, future runs minus past runs, in °C/ year.     
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Figure 8.  Convergence in annual mean precipitation for 2007-08, averaged  over the 

weather@home domain (land grid  points), as the ensemble size increases.  Samples of 1, 

4, 16, and 64, and 256 members were randomly selected from a set of 500 simula-

tions.  Box-and-whiskers show the med ian, inner quartiles, and  extremes of the regional 

mean calculated  from those samples. 

 

 


