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Abstract. The retrieval of accurate profiles of tempera-

ture and water vapour is important for the study of atmo-

spheric convection. Recent development in computational

techniques motivated us to use adaptive techniques in the re-

trieval algorithms. In this work, we have used an adaptive

neuro-fuzzy inference system (ANFIS) to retrieve profiles

of temperature and humidity up to 10 km over the tropical

station Gadanki (13.5◦ N, 79.2◦ E), India. ANFIS is trained

by using observations of temperature and humidity mea-

surements by co-located Meisei GPS radiosonde (henceforth

referred to as radiosonde) and microwave brightness tem-

peratures observed by radiometrics multichannel microwave

radiometer MP3000 (MWR). ANFIS is trained by consid-

ering these observations during rainy and non-rainy days

(ANFIS(RD+NRD)) and during non-rainy days only (AN-

FIS(NRD)). The comparison of ANFIS(RD+NRD) and

ANFIS(NRD) profiles with independent radiosonde obser-

vations and profiles retrieved using multivariate linear re-

gression (MVLR: RD+NRD and NRD) and artificial neu-

ral network (ANN) indicated that the errors in the AN-

FIS(RD+NRD) are less compared to other retrieval meth-

ods.

The Pearson product movement correlation coefficient (r)

between retrieved and observed profiles is more than 92 %

for temperature profiles for all techniques and more than

99 % for the ANFIS(RD+NRD) technique Therefore this

new techniques is relatively better for the retrieval of tem-

perature profiles. The comparison of bias, mean absolute er-

ror (MAE), RMSE and symmetric mean absolute percent-

age error (SMAPE) of retrieved temperature and relative hu-

midity (RH) profiles using ANN and ANFIS also indicated

that profiles retrieved using ANFIS(RD+NRD) are signif-

icantly better compared to the ANN technique. The analy-

sis of profiles concludes that retrieved profiles using ANFIS

techniques have improved the temperature retrievals substan-

tially; however, the retrieval of RH by all techniques consid-

ered in this paper (ANN, MVLR and ANFIS) has limited

success.

1 Introduction

Atmospheric convection plays an important role in the en-

ergy circulation of the atmosphere by transporting heat, mo-

mentum and moisture from the boundary layer to the free

atmosphere. The vertical transport of these fluxes (heat, mo-

mentum and moisture) determines the evolution of multiscale

convective phenomena such as thunderstorms and tornadoes

(Lane and Moncrieff, 2010; Shaw and Lane, 2013). The tem-

poral scale of these phenomena ranges from a few minutes

to hours, and they are associated with disastrous effects that

are of socioeconomic importance (Doswell III, 1985). There-

fore, a continuous monitoring of the profiles of the atmo-

sphere is important for their study. Conventionally, profiles

of temperature and humidity are observed using radiosonde

(GPS sonde hereafter referred to as radiosonde) measure-

ments. However, it is difficult to study the evolution of con-

vection using these observations due to their temporal reso-

lution (frequency of vertical profiles). Further, these obser-

vations have a limited availability: operational radiosonde

profiles are generally available at 00:00 and 12:00 UTC of

every day as it is very expensive to launch radiosonde oper-

ationally at regular intervals of 1 h. Therefore, it is difficult

to monitor the convective systems which evolve during the
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interval in between these launches. Moreover, the network of

radiosonde observations is spatially coarse, and many times

convection may not occur where the radiosonde is flying.

Sometimes, updrafts and downdrafts present in the convec-

tion cause either spatial drift of the radiosonde or the bursting

of the rubber balloon. On the other hand, space-based mea-

surements of vertical profiles of the atmosphere using radio

and microwave radars or radiometers on low Earth-orbiting

satellites, sun synchronous satellites or geostationary satel-

lites are useful to identify the convections, their movement

and evolution. However, their revisit time/frequency of the

observations and limited retrieval skill in the lower part of

the atmosphere does not allow investigating the genesis and

evolution of convection in most of the cases.

In this situation, multichannel microwave radiometers

(MWRs) have evolved as powerful tools for monitoring the

genesis and evolution of the convection over a station (Chan,

2009). MWR enables continuously monitoring microwave

brightness temperatures, from which temperature, relative

humidity and liquid water content can be derived. There are

many studies targeting the retrieval of temperature and hu-

midity profiles using MWR (Waters et al., 1975; Pandey

and Kakar, 1983; Rodgers, 2000; Ware et al., 2003; Löhn-

ert et al., 2004; Rose et al., 2005; Knupp et al., 2009; Mat-

zler and Morland, 2009; Löhnert and Maier, 2012; Stähli et

al., 2013; Xu et al., 2014). These investigations are aimed

at determining temperature and water vapour soundings by

observing radiated power at different microwave frequen-

cies. Snider and Hazen (1998) described the observations of

water vapour and cloud liquid based on MWR at frequen-

cies of 20, 23, 31 and 90 GHz. D’Auria et al. (1998) used

19, 35 and 85 GHz frequency observations to study cloud

properties and to generate a database of cloud genera useful

for radiative-transfer modelling. Westwater et al. (1998) de-

ployed a scanning MWR operating at a frequency of 5 mm

(60 GHz) to study differences in boundary layer evolution

over land and ocean. Their results showed the excellent

agreement between atmospheric temperatures estimated by

MWR and other measurements (meteorological towers and

IR measurement). Ware et al. (2003) chose 12 microwave ob-

servation frequencies (22.035, 22.235, 23.835, 26.235, 30.0,

51.25, 52.28, 53.85, 54.94, 56.66, 57.29 and 58.8 GHz) to

determine temperature, humidity and cloud liquid profiles.

For these calculations the observed radiative power at differ-

ent microwave frequencies converted into brightness temper-

atures using Plank’s law. The profiles of temperature, relative

humidity and liquid water content are retrieved using these

brightness temperatures.

There are many retrieval algorithms proposed by previous

investigators. Basili et al. (2001) developed a method to re-

trieve temperature profiles by microwave radiometry using

a priori information on atmospheric spatial–temporal evolu-

tion. Bleisch et al. (2011) discussed the technique of the re-

trieval of water vapour profiles using MWR operating at a

frequency of 22 GHz and its application to retrieve humid-

ity profiles in the upper troposphere and lower-stratospheric

(UTLS) region. Cimini et al. (2003) discussed the perfor-

mance, calibration and achievable accuracy of a set of four

MWRs operating in the 20–30 GHz band for the Atmo-

spheric Radiation Program field experiments. They found

that the brightness temperature measurements for two iden-

tical instruments differed less than 0.2 K over a period of

24 h. Binco et al. (2005) have demonstrated the synergistic

use of microwave radiometer profiles and wind profiler radar

to retrieve atmospheric humidity. They used wind profiler

radar to estimate the potential refractivity gradient profiles

and optimally combined them with MWR-estimated poten-

tial temperatures in order to fully retrieve the humidity gradi-

ent profile. Their results showed the significant improvement

in the spatial vertical resolution of the atmospheric humid-

ity profilers. Iassamen et al. (2009) used 12 frequencies of

MWR to analyse the statistical distribution of tropospheric

water vapour content in clear and cloudy conditions. They

found that, vertically integrated water vapour content follows

a Weibull distribution. Also, the vertical profiles of water

vapour content during clear and cloudy conditions are well

described by a function of temperature of the same form as

the Clausius–Clapeyron equation. Haobo et al. (2011) pro-

posed a retrieval method for temperature and humidity pro-

files based on principal-component analysis and stepwise re-

gression.

It is found from these studies that MWR is becoming a ro-

bust tool for the monitoring of brightness temperatures and

retrieving temperature and humidity profiles and hence the

thermodynamic conditions of the atmosphere, which are very

important for studying convective storms (Chan, 2009; Ci-

mini et al., 2011). Güldner and Spänkuch (2001) discussed

remote sensing of the thermodynamic state of the atmo-

spheric boundary layer using ground-based microwave ra-

diometer. Chan (2009) discussed the use of an MWR ther-

modynamic profile for the nowcasting of severe weather,

such as a rainstorm, using a humidity profile and K index.

They found that the accumulation of water vapour and the in-

crease in the instability in the troposphere 1 h prior to occur-

rences of heavy rain are useful for its nowcasting. Therefore,

MWR is becoming a useful tool for the nowcasting of in-

tense convective weather due to high-frequency and accurate

measurement of thermodynamical profiles. These profiles are

very important for understanding the mesoscale processes

and physical mechanisms involved in the preconditioning

and triggering of small-scale convections such as thunder-

storms and tornados. and also for understanding their tempo-

ral evolution. This understanding is very important for study-

ing global energy transport. However, only limited efforts ex-

ist, especially over the tropical region because of the unavail-

ability of high-frequency observations over this region.

Recent developments in the retrieval algorithms and com-

putational techniques are adaptive and devise a model (Gaf-

fard and Hewison, 2003) which improves the performance

and accuracy of radiometer retrievals. Many nonlinear sta-
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tistical/evolutionary algorithms are being developed for re-

trieving the profiles of the atmosphere using MWR (Sol-

heim et al., 1998). These include the artificial neural network

(ANN), Newtonian iteration of statistically retrieved profiles

and Bayesian most probable retrieval. ANNs are widely used

for different types of infrared and microwave-sounding in-

struments (Frate and Schiavon, 1998; Binco et al., 2005).

Frate and Schiavon (1998) presented an inversion technique

to retrieve profiles of temperature and water vapour using

MWR. Their techniques combined a profile over a complete

set of orthogonal functions with ANN, which performs the

estimate of the coefficient of the expansion itself. Their anal-

ysis shows that this technique is flexible and robust. Ajil

et al. (2010) used a new nonlinear technique ANFIS (adap-

tive neuro-fuzzy inference system) to improve the first guess

using simulated infrared brightness temperatures for Geo-

stationary Operational Environmental Satellite (GOES)-12

sounder channels. They found that the results of ANFIS re-

trieval are robust and reduce the root mean squared error by

20 % compared to regression fitting. They also argued that, as

ANFIS uses a fuzzy-information system (FIS) for the classi-

fication of input, the classification of the training data set is

not needed as it is required for regression techniques. In the

present work, we have developed an ANFIS model-based re-

trieval of atmospheric parameters using MWR observations

at NARL (National Atmospheric Research Laboratory), In-

dia. The objective of this algorithm development is to im-

prove the accuracy of the retrieval of temperature and humid-

ity profiles of MWR especially over the lower atmosphere.

The paper is organized as follows. Section 2 of this paper

describes the details of data used for this study. The details of

the method used and the ANFIS algorithm are described in

Sect. 3. The experimental results are discussed in Sect. 4, and

conclusions obtained from this work are presented in Sect. 5.

2 Microwave radiometer

The principal sources of atmospheric microwave emissions

and absorptions are weak electric dipole rotational transi-

tion and magnetic dipole transitions of water vapour, oxy-

gen and cloud liquid water (Westwater, 1993). Therefore,

continuous monitoring of these thermal radiations has poten-

tial applications in meteorology and related sciences. MWRs

are used for monitoring these radiations and are useful for

continuous thermodynamical soundings (Ware et al., 2003).

These MWRs are generally passive radiometers, continu-

ously monitoring brightness temperature at various wave-

lengths in the microwave region of electromagnetic spec-

tra. Ware et al. (2003) described the details of the MWR

instrument, which is useful for temperature, water vapour

and moisture sounding in clear and cloudy conditions. This

instrument monitors the water vapour absorption line at

22 GHz to determine the water vapour profile as the mag-

nitude of pressure broadening of water vapour absorption

line at this frequency decreases with height. This instru-

ment monitors radiated power in a molecular oxygen absorp-

tion band around 60 GHz to determine temperature profiles

and radiative power at selected frequencies of 22 to 59 GHz

together to determine the liquid water profile. Cloud base

height is estimated from zenith-infrared observations and re-

trieved temperature profiles. The MWR K band channels

(22–30 GHz) are calibrated using tipping and V band chan-

nels (51–59 GHz) using a patented cryogenic black-body

target. These calibrations are automatically transferred to a

temperature-stabilized noise source. The internal mirror and

azimuthal drive are used to point at any direction in the sky.

The brightness temperatures are determined at various fre-

quencies by using Plank’s law and radiative-power observa-

tions (Han and Westwater, 2000; Ware et al., 2003). These

brightness temperatures are used as input to the neural net-

work for regression retrievals.

MWR is associated with the software (VIZMet-B)-

enabled ANN retrieval algorithm for retrieving the profiles

of temperature, relative humidity, liquid water content and

vapour density. This ANN is a simple back-propagation neu-

ral network developed by Stuttgart University. The back-

propagation algorithm is trained using microwave radiances

observed by MWR as inputs and corresponding radiosonde

observations as outputs. ANN generated weighing func-

tions corresponding to different microwave frequencies as re-

quired by a radiative-transfer model, which, in turn, is useful

for deriving the height profiles of temperatures and relative

humidity. This MWR provides data with a vertical resolu-

tion of 50 m from surface up to a height of 500 m, 100 m

from 500 m to 2 km and 250 m from 2 to 10 km. The further

details of this MWR are available at the following website:

http://www.radiometrics.com.

Gaffard and Hewison (2003), in their trial report on this

radiometer (Radiometrics MP3000), have shown that the

RMSE in the temperature profiles increases rapidly from

0.5 K at the surface to 1.5 K at 1 km and more slowly to 1.8 K

at 5 km. According to Cimini et al. (2006, 2010), temperature

and humidity retrieval accuracy is best near the surface and

degrades with height; also, above 3 km, the retrieval accu-

racy and resolution degrade rapidly for all techniques. These

studies used the observations reported without rain because

the MWR cannot make any useful atmospheric observations

during anything more than moderate rains. Thus, the ma-

jor limitation of MWR is its performance degradation un-

der heavy-precipitation conditions. Nevertheless, this instru-

ment is believed to play an important role in investigating the

thermodynamic condition of convection; however, the relia-

bility and the performance can be enhanced by using better

retrieval algorithms.Therefore, to improve/test the improve-

ment of the accuracy of the retrieval of temperature and hu-

midity profiles using MWR observations, we have developed

the ANFIS system.
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(a)

(c)

(e)

(b)

(d)

Figure 1. Sensitivity of 31 microwave brightness channels measured by MWR at (a) 20–30 GHz and (b) 50–60 GHz and the composite of

vertical profiles of equivalent potential temperature (c) and relative humidity (d) retrieved during a convection event on 28 May 2013 over

NARL Gadanki using MWR (ANN algorithm). The time resolution of these profiles is 4 min. (e) Sensitivities of integrated water vapour to

brightness temperatures observed by MWR (rate of changes in integrated water vapour with respect to changes in brightness temperatures in

each channel at a constant time span).

3 Data

At the National Atmospheric Research Laboratory, Gadanki

(13.5◦ N, 79.2◦ E), India, MWR (MP3000-A manufactured

by M/S Radiometrics, USA) is installed to study diurnal vari-

ations in convection and rainfall, for which an understanding

of the genesis and further evolution of convection is very im-

portant. MWR at NARL has 31 channels in the microwave

frequency range of 20–200 GHz (22 in K band and 14 in

V band). For this study, we have used the observations from

this MWR in zenith direction from 10 microwave channels,

viz. 22.234, 22.500, 23.034, 23.834, 25.000, 26.234, 28.000,

30.000, 57.964 and 58.800 GHz, to retrieve profiles of atmo-

spheric temperature and relative humidity. These channels

are selected based on the sensitivity of these channels dur-

ing the occurrence of thunderstorms over the study site as

shown in Fig. 1a and e. These figures show that these chan-

nels are sensitive to the advection of water vapour over this

site (Fig. 1d) and its condensation during the period of 4 h

prior to thunderstorm occurrence (Fig. 1c). Figure 1e shows

the sensitivities of retrieved integrated water vapour content
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to microwave brightness temperatures at different frequen-

cies.

For the formulation, training and validation of multivari-

ate linear regression (MVLR), ANFIS and ANN systems,

we have used the temperature and relative humidity ob-

served by co-located GPS radiosonde (Meisei, Japan make,

RS-01GII) measurements usually available almost every day

at 12:00 UT (LT=UT+ 05:30 h) at NARL Gadanki for the

same period of training data set. Note that the Meisei ra-

diosonde uses the temperature (relative humidity) sensors

made with the thermistor (carbon humidity sensor), which

measures the temperature (relative humidity) in the range

of −900 to +400 ◦C (0–100 %) with an accuracy of 0.2 to

0.5 ◦C (2–5 %) (Basha and Ratnam, 2009).

In this work, we have used 122 days of MWR obser-

vations at the above-mentioned frequencies and radiosonde

observations at 12:00 UTC during the period of June–

September 2011. Out of 122 days (JJAS), 92 days are used

for training the ANFISs (RD (rainy day) +NRD (non-rainy

day)) and 30 days are used as an independent validation

data set. The dates selected for independent validation are

24–30 June, 21–31 July, 26–31 August and 26–30 Septem-

ber 2011. ANFISs are trained using other 92-day observa-

tions excluding observations of the days selected for val-

idation. Also, MVLR models are formulated using these

92-day observations and validated using the validation data

set. The regular profiles of radiosondes are available every

12:00 UTC at the NARL site. Therefore, the ANFISs trained

using 12:00 UTC observations. The ANFIS system would

have been more robust if it had been trained using many ra-

diosonde observations at regular intervals of each day. Unfor-

tunately, obtaining periodic profiles of radiosondes at regular

intervals of each day for long periods (monsoon months) to

train the ANFIS system are not economically feasible. In this

paper, for training and validation, we have sampled MWR

data at 10 vertical locations at an interval of 1 km starting

from 1 km. The vertical resolution of radiosonde data avail-

able for this study during the observational campaign is of

100 m resolution; therefore, the radiosonde observations of

temperature and relative humidity at an altitude of within

±100 m of the target altitude are assumed at the sampled al-

titude.

4 Method

4.1 Fuzzy-information system

Fuzzy logic (FL) provides a simple way to arrive at a definite

conclusion based upon vague, ambiguous, imprecise, noisy

and missing input information (Priyono et al., 2005). Most

of the FL models are empirically based, relying on an opera-

tor’s experience rather than a technical understanding of the

system. FL methods allow a number of inputs and generate a

number of outputs. However, the generation of more inputs

and outputs will create more rules, and their interrelations

make models more complex. To avoid the subjectivity in the

operator’s experience, Takagi and Sugeno (1985; TS85) pro-

posed a mathematical tool to build a fuzzy model of the sys-

tem. The TS85 system is based on the fuzzy partition of the

input space into fuzzy subspace and on generating a linear

relationship between each fuzzy subspace. Thus it forms a

multidimensional fuzzy set in the product space of input vari-

ables to identify the premise of the fuzzy rule and then as-

signs linear consequents of each rule (Priyono et al., 2005).

The identification of the fuzzy model can be improved us-

ing multidimensional reference fuzzy sets. The model is then

structured into a set of IF–THEN statements. The Takagi–

Sugeno–Kang fuzzy model composed of IF–THEN rules is

described by Priyono et al. (2005) and is described below.

R(k) :If x1 is A1
k and x2 is A2

k and . . .

and xm is Amk then yk is fk(x), (1)

where fk(x)= α
0
k+α

1
kx1+α

2
kx2+. . .+α

m
k xm is a linear func-

tion and

– k = 1. . .n denotes the node number

– yk = output variables

– Amk = fuzzy sets (linguistic labels) associated with each

node.

The above equation suggests that each fuzzy rule describes

local linear behaviour. For any input x̂ = (x
1,
k x

2,.
k x

m
k ) the

inferred value of the Takagi–Sugeno–Kang (Takagi and

Sugeno, 1985; Sugeno and Kang, 1988) fuzzy models is cal-

culated as

γ =

m∑
k=1

Ak(x̂)
∗

m∑
k=1

Ak(x̂)

=

m∑
k=1

τk · fk(x̂)

m∑
k=1

τk

, (2)

where Ak(x̂)= τk = A
1
k(x

1
k ) ·A

2
k(x

2
k ) · . . . ·A

m
k (x

m
k ), τk is the

level of firing of the kth rule for the current input x̂. The

model output is linear in weight but nonlinear in centre

and standard deviation. The fuzzy clustering divides the in-

put data space into fuzzy clusters, each representing one

specific part of the system behaviour. There are several

methodologies proposed for the clustering (Priyono et al.,

2005). Chiu (1997, 1994) proposed the subtractive fuzzy-

clustering method, and it is described in detailed by Priyono

et al. (2005). We have used this method to build the fuzzy

rules. This helps in reducing the number of rules and auto-

matically determining the number of clusters (Chiu, 1994).

The number of fuzzy rules varies depending on the total num-

ber of clusters (Chiu, 1997; Yager and Filev, 1994). Subtrac-

tive clustering finds the high-density region in the feature

space (Jang, 1997; Jang et al., 2007). Subtractive clustering

identifies the cluster centre in the data points with the follow-

ing procedure:
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1. Let N be the number of data points with n dimension

vectors xikk = 1,2, . . .ni = 1, . . .m.

2. Density measure is calculated for each data point. A

density measure at data point xik is

Dik =

n∑
j=1

exp

‖xik − xij‖
( ra

2
)

2
 , (3)

where ra is the radius of the cluster. We have set its value

to 0.3 in this analysis.

3. Based on the density measure, the data point with the

highest density is selected as the first cluster centre xc1,

with a density measure of Dc1.

4. The density measure for each data point is revised by

Dik =D
i
k −D

i
c1

n∑
j=1

exp

(
‖xik − x

i
j‖

(
rb
2
)2

)
. (4)

The constant rb defines a neighbourhood to be reduced

in density measure. To avoid repetition in the data points

within the selected cluster, the data points within the

cluster are discarded, and their absence is ensured in the

next cluster. With the new feature space, a new high-

density point is identified by the algorithm. This proce-

dure is continued until all the data points are evaluated.

Finally, the algorithm returns a set of clusters based on

the Euclidean distance between the cluster centre and

the data point (search radius).

4.2 ANFIS

ANFIS is a hybrid learning procedure which constructs an

input–output mapping based on fuzzy if–then rules with ap-

propriate member functions to generate the stipulated input–

output pairs (Jang, 1993). ANFIS exploits the machine-

learning potential of ANN and multi-valued logic of a fuzzy

system in a single framework. Fuzzy logic is used for the

classification of an input data set in different classes and

forms the input to artificial neural networks. Then ANN is

used to predict the output based on the training data sets.

Thus, fuzzy logic controls the way of processing data by

its classification to minimize the error in the neural net-

work prediction (Tahmaseb and Hezarkhani, 2010). In recent

decades, the ANFIS system has been used for many applica-

tions, such as turning tool-failure detection (Lo, 2002), quan-

titative structure activity relationships (Buyukbingol et al.,

2007), drought forecasting (Bacanli et al., 2009), sea level

prediction (Lin and Chang, 2008) and grade estimation (Tah-

maseb and Hezarkhani, 2010). ANFIS caters to the need of

complex real-world problems, which require intelligent sys-

tems that combine knowledge, techniques and methodolo-

gies from various sources.

In this work, the ANFIS is used with 10 predictors (bright-

ness temperatures of 10 channels observed by MWR as men-

tioned above) as input to retrieve the temperature and humid-

ity each at 10 sampled altitudes, i.e. to determine 20 outputs.

This means output parameters are correlated in some fash-

ion. We have used a Sugeno-type subtractive fuzzy clustering

(Chiu, 1994) to reduce the number of predictors to decrease

the training rule in FIS to make ANFIS more robust. The re-

duction in the number of rules automatically determines the

number of clusters by assuming each data point as a potential

cluster centre and creates clusters based on the density (Chiu,

1994). We found that subtractive-type clustering forms six

rules for retrieval of temperature and seven rules for retrieval

of RH with number of degrees of freedom equal to four and

three respectively. The ANFIS model structure used in this

work is shown in Fig. 2 and described in the next session.

4.3 ANFIS model structure

In this work, to profile the vertical distribution of tempera-

ture and relative humidity, a separate ANFIS model is de-

veloped for each level starting from 1 to 10 km with a ver-

tical resolution of 1 km. Each ANFIS model in this work

uses tier-3 architecture (Fig. 2) based on the fuzzy set if–then

rules proposed by Takagi and Sugeno (1983). It comprises

of five layers viz. input layer, input membership functions,

rules, output membership functions and output. Layer 0 of

this model passes the input to all membership functions by

using the observed brightness temperature at 10 different mi-

crowave frequencies at each height level as mentioned earlier

(i.e. m= 10). Layer 1 is known as the fuzzification layer, in

which the input values of brightness temperatures (x) are nor-

malized with a maximum equal to 1 and a minimum equal to

0. This layer uses Gaussian function for normalization. This

process is termed fuzzification and each node k associated

with the membership function O1
k .

O1
k = µAk(xk) (5)

As discussed earlier, xk is the input, Ak are the linguistic la-

bels associated with the membership function and µAk is a

Gaussian function written as

µAk(x
i
k)= exp

−(xik − bk
ak

)2
 , (6)

where, akbk are model parameters determined quantitatively

and responsible for variation in the shape of input member-

ship functions.

Layer 2 multiplies input signals and sends product out. The

node in layer 2 is the product of the degrees to which the

inputs satisfy the membership functions, and it is found by

wk =5µAk(xk),k = 1, . . .n. (7)

Layer 3 is the normalization layer in which the ratio of each

rule’s firing strength is calculated with respect to the sum of
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Figure 2. An ANFIS architecture for the Sugeno system used in this study (where m= 10, n= 2, i = 1,2 and k = 1,2, . . .,10).

the firing strengths of all the rules.

w̄k =
wk
n∑
k=1

wk

(8)

The output of each node in layer 4 (defuzzification layer) is

the weighted consequent value, and it is calculated by

O4
i = w̄fk = w̄k(α

0
k +α

1
kx1+ . . .+α

m
k xm), (9)

where αik is the parameter set.

Layer 5 is the summation layer, and its output is the sum

of all the outputs of layer 4.

O5,1 =

n∑
k=1

w̄kfk =

n∑
k=1

wkfk

n∑
k=1

wk

(10)

In this analysis, the FIS has been generated using the function

genfis2 in MATLAB.

We have trained the ANFIS system in two ways: (1) by

considering rainy days in the training data set and (2) by not

considering rainy days in the training data sets. In this paper

we have used ANFIS(NRD) to refer to ANFIS trained using

microwave brightness temperature inputs only on non-rainy

days and ANFIS(RD+NRD) to refer to ANFIS trained us-

ing microwave brightness temperature inputs on rainy and

non-rainy days observed during the training period. The fit-

ness of both the ANFIS and ANN models is tested as de-

scribed below.

4.4 Multivariate linear regression

Multivariate linear regression (MVLR) is a classical linear

statistical forecasting tool for understanding the relationship

between a dependent variable and two or more independent

variables. The multiple regression technique formulates a

model to obtain estimates of the values of the dependent vari-

able by fitting a linear equation to observed variables. Gener-

ally the form of the regression model is expressed as follows:

yi = β0+

n∑
p=1

βpxip + εi where i = 1,2, . . .m, (11)

where yi is a dependent variable which needs to be predicted

(temperature and RH at different heights), xip is an indepen-

dent variable (brightness temperatures measured by MWR

at 10 different frequencies as mentioned above), βp is a co-

efficient of linear regression which measures changes in yi
with respect to xip, εi is an error term representing the col-

lective unobserved influence of any omitted variables, m is

the number of in dependent variables, i.e. 10 in this paper,

and n is the number of days used for training, i.e. 92 (total

of 122 days of the months June to September 2011 – 30 days

for independent verification) in this paper. Tables 1a, b and

2a, b list the values of βp for temperature and RH profiles

for MVLR(RD+NRD) and MVLR(NRD) respectively. In

this paper, we have compared ANFIS(RD+NRD) and AN-

FIS(NRD) retrievals of profiles of temperature and RH with

predicted profiles using MVLR. The results are discussed in

the next section.
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(a)

Figure 3.
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(b)

Figure 3.
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Table 1a. Multivariate regression coefficients and intercepts for temperature approximation at different height levels. Coefficients are derived

using rainy and non-rainy days data.

Height (km)

MVLR coefficients 1 2 3 4 5 6 7 8 9 10

Intercept 76.27 180.98 273.72 303.64 283.82 238.34 238.05 217.77 176.39 171.46

22.23 −0.16 0.16 0.26 0.25 0.52 0.29 0.57 1.00 0.81 0.60

22.5 0.54 0.06 −0.05 −0.57 −0.35 −0.34 −0.45 −0.69 −1.19 0.14

23.03 −0.60 −0.55 −0.39 −0.20 −0.86 −0.58 −0.60 −0.56 −0.18 −0.46

23.83 0.08 0.17 0.59 0.66 0.70 0.56 0.33 −0.02 1.22 −0.74

25 0.29 0.31 −0.53 0.14 0.20 0.19 0.70 0.74 −0.19 0.48

26.23 −0.11 0.37 −0.32 0.02 0.46 0.28 −0.46 −0.25 −0.84 −0.01

28 0.11 −0.34 0.77 −0.44 −0.91 −0.15 −0.15 −0.47 0.20 −0.05

30 −0.14 −0.12 −0.32 0.14 0.26 −0.22 0.06 0.28 0.19 0.04

57.96 0.13 0.00 0.00 0.11 −0.03 0.01 −0.10 −0.04 −0.18 0.03

58.8 0.61 0.36 0.04 −0.19 0.00 0.10 0.19 0.17 0.41 0.20

Table 1b. Same as Table 1a but for relative humidity.

Height (km)

MLR coefficients 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Intercept 1364.58 545.24 −366.83 −532.92 63.44 720.22 196.00 856.69 688.20 811.07

22.23 −0.66 −3.92 −7.57 3.19 −4.87 7.27 6.43 −3.12 −5.39 1.46

22.50 −2.47 1.77 4.45 0.87 2.83 −9.07 9.03 12.32 20.06 8.33

23.03 2.22 4.15 3.49 −5.72 10.60 13.18 −5.21 3.23 −6.83 0.04

23.83 1.09 −1.36 −3.17 8.57 −3.62 −10.66 −12.02 −17.04 −9.83 −11.36

25.00 1.28 0.39 8.38 −0.29 2.32 4.99 −6.03 −2.70 −10.17 −6.24

26.23 3.13 −0.72 4.38 −8.46 −14.74 −15.01 7.93 5.35 15.11 2.82

28.00 −4.25 −1.34 −14.23 −3.42 −2.08 3.62 −3.07 6.36 1.22 11.45

30.00 0.08 1.20 5.06 5.81 9.47 5.59 2.97 −4.09 −3.79 −6.32

57.96 −0.95 0.21 2.43 2.03 0.88 −5.99 5.07 −0.61 1.74 2.53

58.80 −3.55 −1.93 −1.32 −0.54 −1.52 3.33 −5.85 −2.30 −4.04 −5.24

5 Results and discussions

5.1 MWR observations during convection

Figure 1a–e show the evolution of thunderstorm ob-

served continuously (temporal resolution of temperature

and relative humidity (RH) profiles: 4 min) by MWR on

28 May 2013. Figure 1a–b show the time series of different

microwave channels at different frequencies between 20–30

and 50–60 GHz respectively. It can be seen from these fig-

ures that there is an increase in the magnitudes of brightness

temperatures about 3 h prior to the occurrence of a thunder-

storm. Therefore, the observed profiles of equivalent poten-

tial temperatures indicate preconditioning of the vertical col-

umn of the atmosphere to be conducive to the occurrence of

thunderstorms about 3–4 h prior to their actual occurrence

(Fig. 1c). The profile of relative humidity indicates the hori-

zontal advection of moisture in a layer between 800–600 hPa

and uplifting of moisture about 4 h prior to the occurrence

of a thunderstorm. Therefore, MWR is found useful for in-

vestigating the genesis and behaviour of the convection. The

different microwave channel sensitivities to integrated water

vapour content over the site of MWR are shown in Fig. 1e.

As seen from this figure, different microwave frequencies are

sensitive to changes in the water vapour content of the atmo-

sphere. Figure 1a–e indicate that microwave brightness tem-

perature observations can be used as a predictor for retrieving

high-frequency profiles of relative humidity, and tempera-

tures provided robust, reliable and accurate algorithms. In re-

cent decades, ANFIS has been used for many applications, as

mentioned above, because FIS trains back-propagation neu-

ral networks for different sets of input classification to gen-

erate robust results.

5.2 ANFIS training phase

The temperature and humidity profiles retrieved from AN-

FIS models for the training period are compared with the

profile derived from GPS radiosonde observations. (Figure

is not shown in the paper.) It is observed that during the
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Figure 3. Scatter plot of difference between retrieved values of (a) temperature and (b) relative humidity using ANN, ANFIS(RD+NRD),

ANFIS(NRD), MVLR(RD+NRD) or MVLR(NRD) techniques with radiosonde observations versus the retrieved values using these tech-

niques respectively. Panels (c) and (d) are vertical distributions of bias in retrievals by different techniques for temperature and RH respec-

tively.

Table 2a. Multivariate regression coefficients and intercepts for temperature approximation at different height levels. Coefficients are derived

using only non-rainy days data.

Height (km)

MLR coefficients 1 2 3 4 5 6 7 8 9 10

Intercept 66.18 177.71 280.74 317.54 293.35 246.38 246.26 225.88 199.99 182.26

22.23 −0.06 0.43 −0.06 −0.13 −0.10 −0.10 0.02 0.55 0.09 0.52

22.5 0.34 −0.47 0.17 0.11 0.50 0.01 0.22 −0.09 −0.42 0.12

23.03 −0.46 −0.22 −0.17 −0.19 −0.95 −0.19 −0.57 −0.58 0.11 −0.51

23.83 0.06 0.08 0.29 0.18 0.50 0.04 0.24 −0.10 0.66 −0.46

25 0.18 0.37 −0.35 0.16 0.22 0.40 0.42 0.37 −0.27 0.30

26.23 0.01 0.28 −0.17 −0.05 0.37 0.26 −0.33 −0.13 −0.56 0.05

28 0.19 −0.18 0.73 0.00 −0.66 −0.25 0.13 0.03 0.61 0.16

30 −0.22 −0.22 −0.43 −0.09 0.13 −0.14 −0.12 −0.05 −0.19 −0.17

57.96 0.20 0.01 0.00 0.07 0.12 0.23 0.07 0.22 −0.02 0.05

58.8 0.57 0.36 0.00 −0.20 −0.18 −0.15 −0.01 −0.12 0.18 0.15

training period the values of the RMSE of temperature and

relative humidity profiles are less than 0.01◦ C and 0.01 %

respectively for all heights. The decrease in RMSE values

regarding both RH and temperature retrieval are observed at

heights of 2, 4 and 8 km for temperature retrieval. Similarly,

for an RH profile there is a decrease in the RMSE values

at 2, 6 and 9 km during the training period. It is seen that

the number of radiosonde observations within 100 m of these

sampled altitudes is higher compared to other altitudes. The

decrease in the values of RMSE at this altitude may be due

to the availability of relatively more samples for training. In

general, it is found that, during the training phase, the AN-

FIS model shows a very good fit to radiosonde observations.

Therefore, it is worth testing this model using an independent

data set which is not considered for the training as discussed

in Sect. 2.

5.3 Bias and scatter plots analysis

Figure 3a and b show the scatter plots between radiosonde

observations and ANFIS(NRD), ANFIS(RD+NRD),

MVLR(RD+NRD), MVLR(NRD) and ANN retrievals of

temperature and relative humidity for different heights. The

vertical profile of the bias in temperature and RH profiles

is shown in Fig. 3c–d. It is seen from these figures that

there is a significant reduction in the value of the bias for

ANFIS(RD+NRD) and MVLR(RD+NRD) retrieval algo-

rithms compared to MVLR(NRD), ANN and ANFIS(NRD)

algorithms. However, it is seen from the analysis that ANN

has relatively more systematic bias compared to ANFIS al-

gorithms. More investigation in terms of the optimal amount

of input data required for the appropriate classification using

FIS and training of neural network is needed and is the aim

of another publication.
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Table 2b. Same as Table 2a but for relative humidity.

Height (km)

MLR coefficients 1 2 3 4 5 6 7 8 9 10

Intercept 1451.02 575.59 −557.29 −833.55 −304.23 920.46 660.87 973.55 370.93 517.24

22.23 −0.73 −4.98 −2.47 5.02 2.49 3.83 5.51 1.20 3.97 4.90

22.50 −2.34 4.47 −0.09 −3.84 −2.92 −1.98 8.46 7.76 13.71 4.98

23.03 2.31 1.58 2.01 −2.20 5.20 8.20 −2.99 2.69 −12.42 1.06

23.83 0.79 −0.14 −0.22 9.07 3.21 −7.25 −12.27 −16.59 −7.49 −17.23

25.00 1.67 −0.21 7.45 −3.01 −2.06 0.27 −5.19 −0.96 −8.32 2.01

26.23 2.02 0.01 0.59 −5.74 −14.80 −13.06 3.54 4.12 15.94 3.99

28.00 −3.25 −1.79 −12.13 −5.59 2.11 5.26 −1.03 5.09 −5.54 2.89

30.00 −0.10 1.22 5.59 6.87 6.82 4.53 3.75 −3.00 0.49 −2.35

57.96 −1.71 0.36 2.01 0.37 0.93 −3.58 1.63 −3.02 0.32 1.55

58.80 −3.06 −2.16 −0.27 2.09 −0.26 0.28 −3.92 −0.27 −1.53 −3.32

(a)

(b)

Figure 4. Pearson product movement correlation coefficient (r) be-

tween radiosonde (a) temperature and (b) humidity profiles with

retrieved profiles using ANN, ANFIS(RD+NRD), ANFIS(NRD),

MVLR(RD+NRD) and MVLR(NRD).

5.4 Correlation between retrieved and radiosonde

profiles

The values of r calculated for the dates selected for the test-

ing of retrieved profiles are shown in Fig. 4a and b. The r val-

ues for the temperature retrieval are more than 0.99 for ANN

and ANFIS(RD+NRD) algorithms, and the value is rela-

tively less for ANFIS(NRD) but better than 0.92. This indi-

cates that these algorithms are successful in retrieving tem-

perature profiles. It is also seen from Fig. 4a that the per-

formance of ANFIS(RD+NRD) for temperature retrieval is

slightly better compared to the other two algorithms. There-

fore it may be stated that the retrieval of temperature profiles

using ANFIS(RD+NRD) is more reliable and can be used

for the investigation of the physical mechanism associated

with tropical convective systems. However, the retrieval of

RH is also very important for investigating different micro-

physical processes responsible for the convection. Figure 4b

shows the values of r for RH retrieval. One of the limitations

of radiosonde observations is that the radiosonde drifts far

away due to heavy winds during dynamical weather condi-

tions when, generally, the atmosphere is moist and cloudy.

Therefore, the data set of RH may not represent true mea-

surements above the region zenith of the MWR as RH has

more spatial variability than temperature. Also, there is lim-

ited information content in the brightness temperatures for

the vertical distribution of moisture. Therefore, it is difficult

to correlate the RH-retrieved profiles with that observed with

radiosonde measurements. Nevertheless, the values of r are

more than 60 % for about 18, 13 and 9 cases out of 29 cases

for the ANFIS(RD+NRD), ANFIS(NRD) and ANN algo-

rithms. For the rest of the cases, the values of r are less than

60 %. In the case of the ANN(ANFIS) retrieval of RH, it is

found that 4 (1) case(s) out of 29 cases are negatively cor-

related with the radiosonde measurements. Thus, we found

that the retrieval of RH using ANFIS(RD+NRD) is compar-

atively better than that of other two algorithms. However, we

believe that a detailed investigation is required to understand

and improve the correlation between RH radiosonde profiles

and retrieved profiles, especially in the cloudy atmosphere or

convectively efficient environment. It is worth investigating

the impact of clouds on MWR brightness temperatures and

consequently the retrieval of the humidity profile. This re-

quires understanding the environmental dependence of the

brightness temperatures measured by MWR. The adaptive

virtue of ANFIS makes them suitable for further improve-

ment of the retrieval technique presented in this paper, with

the above-mentioned considerations. However, we strongly
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(a)

(c)

(b)

(d)

Figure 5. Comparison of vertical profiles of (a) temperatures observed by radiosonde and temperature profiles retrieved from ANN AN-

FIS(RD+NRD), ANFIS(NRD), MVLR(RD+NRD) and MVLR(NRD) and (b) RMSE, (c) MAE and (d) SMAPE of retrieved profiles

using ANN ANFIS(RD+NRD), ANFIS(NRD), MVLR(RD+NRD) and MVLR(NRD) with respect to temperature profiles observed by

radiosonde.

feel that more systematic investigation is required to under-

stand it, and we think that it should be addressed in another

publication rather than in this paper.

5.5 Error analysis of retrieved temperature profiles

Figure 5a–d show the mean vertical profiles obtained by

radiosonde profiles and retrieved from ANFIS(RD+NRD),

ANFIS(NRD), MVLR(RD+NRD), MVLR(NRD) and

ANN techniques. As mentioned in the previous section, it

is seen from Fig. 5a that the mean (30 hypothesis testing

days) observed and retrieved profiles overlap and have

relatively very less errors. The RMSE for the verification

data set is less than 0.7◦ C up to 2 km and shows a slight

increase of 1 to 2.3 ◦C at higher heights (Fig. 5b). The

average error is 1.08 ◦C. The profile of RMSE shows a small

warm bias in the retrieved values of temperatures using the

ANFIS(RD+NRD) model. However, ANFIS(RD+NRD)

shows a significant reduction in bias and relatively better

performance as compared to other two algorithms. The

mean absolute error (MAE) for the test data set follows the

qualitative trend of RMSE but is slightly less in magnitude.

The ANFIS(RD+NRD) algorithm has relatively less MAE.

The behaviour of the symmetric mean absolute percentage

error (SMAPE) (Fig. 5d) suggests that ANFIS(NRD)

considers relatively more variation in temperature compared

to the ANFIS(RD+NRD) and ANN algorithms and has a

positive bias below 3 km and above 6 km and a negative bias

in between 3 and 6 km.

Venkat Ratnam et al. (2013) have compared GPS ra-

diosonde profiles with retrieved profiles using the ANN al-

gorithm available with MWR (ANN–MWR). Their results

showed that the warm (cold) bias between radiosonde and

MWR in temperature is clearly observed below (above) 3–

4 km depending upon the time. Madhulatha et al. (2013) have

studied the mean profiles for temperature and vapour density

and the difference between temperatures and vapour density

along with standard deviations derived from ANN–MWR

and a GPS radiosonde for the period June through Decem-

ber 2011. They found a very close agreement in temperature

profiles between MWR and GPS radiosonde. Their results

show differences in retrieved profiles with an ANN–MWR

cold bias of about 2 ◦C up to 4 km and a warm bias of about
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(a)

(c)

(b)

(d)

Figure 6. Comparison of vertical profiles of (a) RH observed by radiosonde and temperature profiles retrieved from ANN AN-

FIS(RD+NRD), ANFIS(NRD), MVLR(RD+NRD) and MVLR(NRD) and (b) RMSE, (c) MAE and (d) SMAPE of retrieved profiles

using ANN, ANFIS(RD+NRD), ANFIS(NRD), MVLR(RD+NRD) and MVLR(NRD) with respect to relative humidity profiles observed

by radiosonde.

2 ◦C above 4 km. As seen from Fig. 5b, the ANFIS method

is successful in reducing this bias with the average RMSE of

1.08.

5.6 Error analysis of retrieved humidity profiles

Figure 6a–d show the mean profile of retrieved relative hu-

midity using ANFIS, ANN or MVLR models and observed

brightness temperatures. The figure shows that the profile re-

trieved using the ANFIS(RD+NRD) model is qualitatively

better compared to that using the ANN model. It is seen from

Fig. 6b that the RMSE of retrieved relative humidity aver-

aged over the training data set is less than 0.01 % through-

out the profile. However, the values of RMSE of the test-

ing data set for ANFIS, vary significantly (5–20 %) with re-

spect to height. At 1 km, the value of RMSE is 4.87 %, at

2 km it is 6.19 % and it gradually increases towards higher

heights up to a maximum of 23.89 % at 8 km. It is seen from

Fig. 6b that ANFIS(RD+NRD) shows better performance

than ANN in retrieving relative humidity. The variation of

MAE is more or less consistent with the behaviour of RMSE.

The behaviour of SMAPE with height shows that the AN-

FIS model takes into account more variability compared to

ANN models but has a more negative bias at higher heights.

The study by Venkat Ratnam et al. (2013) also indicated a

large wet (dry) bias of 6–8 g kg−1 in the specific humidity

below (above, except around 5–6 km) 2–3 km between the

radiosonde and ANN algorithm.

6 Conclusions

In this work, we have presented a formulation of the AN-

FIS model for the retrieval of atmospheric profile tempera-

ture and humidity using brightness temperatures observed at

different microwave frequencies mentioned above by MWR.

The ANFIS models are trained by considering rainy and non-

rainy days together (ANFIS(RD+NRD)) and also only for

non-rainy days (ANFIS(NRD)). In this work we found that

ANFIS(RD+NRD) is more suitable for retrieving vertical

profiles of the atmosphere by observing the power received

on the ground due to different emissions at different mi-

crowave frequencies. Our results indicated that the perfor-

mance of the ANFIS(RD+NRD) model is better than the
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ANN back-propagation algorithm in retrieving profiles of

both temperature and RH. The retrieved temperature profiles

are relatively closer to the observations by radiosonde. How-

ever, an improvement is needed in the retrieval of relative hu-

midity to reduce relatively large error at higher heights. For

this purpose, a detailed investigation is required to be carried

out to understand the behaviour of the brightness tempera-

tures in a cloudy atmosphere and its impact on the weight-

ing functions of MWR and the retrieval of vertical profiles

using the ANFIS method. The development of robust algo-

rithms for the retrieval of temperature and relative humidity

using the new method ANFIS, especially during complex en-

vironmental conditions, will lead to MWR as a novel tool to

investigate the physical mechanisms associated with small-

scale convections.
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