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Many of the meteorological phenomena occurring at meso-γ require observations sufficiently
close together in time and space. The multichannel microwave radiometer (MMWR) provides
continuous temperature and humidity profiles. We demonstrate a method for profile bias
correction that significantly improves vertical temperature (T) and water vapor density (δwv)
profile accuracy.
We compared MMWR temperature (TRD) and humidity (δwvRD) profiles during winter in the
Sierra of Guadarrama (Madrid) at 1150 m altitude with thousands of radiosonde temperature
(TRW) and humidity (δwvRW) soundings from a launch site at 610 m altitude and 50 km
distance. In spite of relatively large horizontal and vertical separation between the two sites,
sounding differences above the boundary layer are comparable to observation error typically
assigned to radiosonde soundings when they are assimilated into numerical weather models.
Systematic bias between the paired values of TRW and TRD and δwvRW and δwvRD ranges
from 0.2 to 1.2 K and 0.05 to 0.5 g m−3. This bias can be removed using a corrector function
that is applied at each T and δwv level. Using this method, the bias for both variables is reduced
to insignificant levels and their accuracy is significantly improved.
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1. Introduction

Atmospheric movements occur over a broad continuum of
space and time scales: from seconds to days and from microns
to thousands of kilometers. Terrain height variations and
differential surface fluxes of heat momentum and moisture
affect meteorological phenomena on a wide range of scales.
Many of them occur at meso-γ as a result of topographic
forcing and a combination of a variety of instability operating
on this scale. Consequently, those phenomena and the intensity
to which they occur can be featured by observations sufficiently
close together in time and space and, therefore, we can de-
termine the mesoscale factors on which they depend. However,
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the lack of observations necessary to define mesoscale systems
is a critical meteorological problem.

In order to settle this difficulty, one option is to use
numerical models complemented with sensibility analysis,
since it allows us to study the mesoscale factors that intervene
in the appearance of a meteorological perturbation, and es-
timate the influence of each one of these factors (for instance,
García-Ortega et al., 2007, 2009; Vich et al., 2011). However, the
formulation of the models contains non-linear equations of
motion and continuity equations for mass heat and water,
which can only be solved with approximations. At the same
time, the resolution of these equations requires to know, for a
given boundary, the initial meteorological conditions. Again, we
find ourselves with a situation in which the predictability of a
model depends on the initial conditions being established with
the greatest detail and precision possible. In other words, there
are factors that intervene, such as the density of meteorological
observation stations on the surface, and the number of weather
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balloons that can be used, among others. However, the
number of rawinsonde launching stations included in the
worldwide network is sparse and generates data only twice per
day.

In order to establish the initial conditions for a mesoscale
model, we need to perform a series of steps (Sashegyi and
Madala, 1994), including: (i) quality control, (ii) objective
analysis and (iii) initialization and assimilation. Both in the first
and in the last step, the observed data intervenes in a decisive
way. Here we see that, in addition to being sparse, there tend
to be errors and/or data gaps (Schwartz and Doswell, 1991;
Soden and Lanzante, 1996). Furthermore, there are two
additional aspects that have to be monitored in regard to
meteorological observation and the treatment of databases:
the registers have to be done with “adequate” frequency, and a
“good” method must be chosen to assimilate the data. With all
of this, we obtain, as accurately as possible, the state of the
atmospheric flow on a regular grid. If we pay attention to these
two aspects, the characterization of the initial conditions will
be reasonably predicted. But, a small error in the initial con-
ditions affects the results of the numerical models, and as such,
this affects the quality of the forecast in terms of space and
time. This is especially relevant for many meteorological
phenomena, and especially for those related to the precipita-
tion processes.

From all of the above, we can establish that the capacity to
make forecasts using Numerical Weather Predictions (NWPs)
depends, in large part, on the quality and frequency of data
observed. Introducing the time dimension in the assimilation
period guarantees a better treatment of the data, which is not
centered solely on the main synoptic time (Rabier, 2005). For
instance, when we try to improve the quality of the predicted
precipitation field, one option is to use the observations made
by satellites and incorporate them into the initialization
process. We have a few examples, such as in the BOLAM
model (Davolio and Buzzi, 2004; Lanciani et al., 2008), which
employs a data-assimilation scheme that takes into account
the precipitation field estimated by satellites. The results
allow us to improve forecasts, even in the case of flooding
conditions (Malguzzi et al., 2006). Other authors (Michaelides
et al., 2009), point out that the non-linear 4D-Var assimilation
methods from geostationary satellite observations improve
the models' forecasting.

It seems reasonable to assume that the use of high-
frequency sampling of thermodynamic profiles allows for a
better understanding of some mesoscale phenomena, since
they improve the predictability of the NWPs. The sparce
network of rawinsonde launching stations, made it necessary
to turn to different alternatives. For instance, we can make
use of polar orbiting satellites since they are capable of
estimating vertical profiles of temperature and moisture.
They have an advantage since satellites have global coverage,
but the accuracy and the vertical resolution at lower levels
are limited (Zhou et al., 2007).

If knowing the vertical profiles of temperature in the
greatest number of observation points is important, along
with it being done at a good frequency, the case of the water
vapor measurement is even more important due to its
variability in terms of space and time. In many processes, for
example, cloud formation and precipitation, the role that water
vapor plays is very important. Some Projects, such as WALES
(ESA, 2003) have allowed us to know the possibilities that
represent the different water vapor measurement systems
taken from space. So, Wulfmeyer et al. (2005) did a compar-
ative analysis of active and passive water vapor remote sensing
from space by means of lidar technology. In the Global Water
Vapor Project of WMO (Randel et al., 2011), a combination of
rawinsondes and passive remote sensing systems were used to
derive blended globalwater vapor data sets for climate research.
In general, the difficulty involved in adequately measuring
water vapor in the atmosphere provokes limitations in the
initialization of numerical models, and, as a consequence, the
quality of precipitation and cloud-formation forecasting is
affected.

At this point, it seems necessary to turn to methods other
than rawinsondes. There are basically two options: ground-
based microwave radiometric profilers and Fourier transform
infrared emission spectroscopy (FTIR) (Knuteson et al., 2004a,b).
The former are very sensitive to precipitation, while the
latter are impeded in cloudy fields of vision and are
restricted to the subcloud layer (and, as such, they are
used in studies orientated toward atmospheric contamina-
tion) (Feltz et al., 2003; Spänkuch et al., 1996, 1998, 2000)
in the boundary layer.

Multichannel ground-based microwave radiometers
(MMWR) can be used as profilers of temperature and humidity
since they allow us, unlike with traditional rawinsondes, to
obtain constant continuous measurements of water vapor
profiles and estimated integrated water vapor (IWV). They
have the advantage of high-frequency sampling of thermody-
namic profiles, with a resolution at levels between 50 and
250 m, and can reach a height of up to 10,000 m. MMWR
profiling methods make use of atmospheric radiation mea-
surement in the range of 20 to 200 GHz.

MMWRs have been used in different projects. For example,
in the Baltex Bridge Campaign, CLIMA-NET and ARM (Cimini et
al., 2011, 2006; Friedrich et al., 2012; Löhnert and Maier, 2012;
Mattioli et al., 2007; Spänkuch et al., 2011; Turner et al., 2003),
the results show the advantages of continuous measurements
of water vapor and its influence in cloud formation. Güldner
and Spänkuch, 2001, investigated the capacity of MMWRs to
sound the thermodynamic state of the atmosphere almost
continuously, and found an accuracy of the retrieved temper-
ature profiles from 0.6 K near the surface to 1.6 K at 7 km. In
the case of water vapor density, the accuracy of profiles was
0.2–0.3 g m−3 near the surface to 0.8–1.0 g m−3 at an altitude
of 2 km. Recently, Knupp et al., 2009 did an analysis of the
capacity of a ground-based passive profiling of MMRW to
characterize the atmosphere in different dynamic weather
conditions. They selected a series of meteorological events and,
using MMWR, analyzed the continuous thermodynamic pro-
files of temperature and moisture. Iassamen et al., 2009
analyzed, via MMRW, the distribution of tropospheric water
vapor in clear and cloudy conditions, finding a close relation-
ship to those found by the European reanalysis meteorological
database ERA 15. Similarly, radiometric retrievals compare
fairly well with the corresponding values obtained from the
operational rawinsonde dataset.

Within the context of TECOAGUA Project, a series of
measurements that are conducive to both characterizing
the winter precipitation processes that affect the Central
Mountain Range of the Iberian Peninsula, and to improving
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the predictability of snowfall in Madrid, were carried out.
In this paper, we will focus on the comparison of the data of
thermodynamic profiles using MMWR obtained during
three winter seasons with those provided by the rawin-
sonde station in Madrid-Barajas Airport. All of this is done
with the objective of knowing the accuracy of MMWR
measurements and to be able to introduce data assimila-
tion techniques to the initialization of mesoscale models.

2. Radiometer and noise

The MMWR used is an MP‐3000A Hyper‐Spectral Micro-
wave Radiometer (manufactured by Radiometrics). Profiles are
retrieved from a subset of 35 channels (21 K‐band and 14 V‐
band), by means of the Stuttgart Neural Network Simulator
(SNNS) trained with 10 years of historical soundings from 3
rawinsonde stations. Profiles of temperature (T), and water
vapor density (δwv) are obtained approximately every 2.5 min.

Ten years of RAOBs from Madrid-Barajas and Coruña
(both in Spain) and Denver (USA) were used as the training
set of a neural network. Denver was chosen because it is
located at a latitude and altitude similar to the placement of
the MMWR (N 41° W 4°, 1110 MSL), and there is no other
similar station in the Iberian Peninsula.

The MMWR was placed in the Central Mountain Range
(see Fig. 1), at a height of 1150MSL, about 70 km to the north
of Madrid and 50 km from the rawinsonde station at
Madrid-Barajas (situated at 610 MSL). The neural network
retrievals were based on all-season retrievals, although in this
paper, we only refer to those retrieved in thewinter periods of
2009–2010 and 2010–2011 since some of the data obtained
by the MMWR were used to support part of the TECOAGUA
Project (whose objectives were focused on the analysis of
winter cloudmasses which produce snow precipitation in the
Central Mountain Range).

Once the MMWR was placed on the field, we tested the
LWP (liquid water path) values on 52 completely cloudless
days, since the expected value would be 0 mm. With a total
of 54,325 profiles retrieved by the MMWR in these condi-
tions, we obtained an average LWP of 0.021 mm, which led
us to establish that the background noise is very low both
during the day and at night.

Some authors, such as Hewison (2007), have established
the threshold value of LWP in conditions of completely
cloudless skies at a value of 0.017 mm, which is in accordance
with our results. Therefore, we concluded that the power
receiver of our MMWR has a highly stable noise-diode as a
gain reference.

3. Data stratification

The initial objective was to determine the validity of T and
δwv retrievals for each of the levels/profiles obtained via the
MMWR. We had to consider that the retrievals can be af-
fected by liquid precipitation, which can alter the measure-
ment of the signal received. Some authors use this fact, along
with data obtained from MMWRs, to make an estimate of
rain (Marzano et al., 2002, 2006).

The MMWR that we used has a precipitation sensor that
marks Yes/No for precipitation, but in our case, we decided to
complement it with a Visibility and Present Weather sensor
(VPF-730) that, along with presenting less uncertainty than
the MMWR sensor, it also classifies types of precipitated
hydrometeors. Thus, for each profile we can identify if it was
affected by precipitation and if it was liquid or snow.

To continue on to the comparison between the MMWR and
the rawinsonde at Madrid-Barajas at 0000 and 1200 UTC, we
took the retrievals from the MMWR between 2330 UTC to
0030 UTC, and we calculated the average values in order to
obtainmean temperature andwater vapor profiles at 0000 UTC.
Similarly, we obtained data at 1200 UTC, taking the mean
profile of the retrievals from 1130 UTC to 1230 UTC.

Despite the fact that the precipitations have been mostly
in snow form, the data sample was stratified into three
different groups, according to the following criteria:

• Group 1: All of the vertical profiles for T and δwv at 0000
and 1200 UTC independent of whether precipitation was
registered over the MMWR. The sample size (N) used was
of 18,304 profiles.

• Group 2: Extracting the vertical profiles obtained while
precipitation was absent from Group 1. The sample size (N)
was of 6226 profiles.

• Group 3: Extracting the profiles obtained while precipitation
was registered over the MMWR from Group 1. The sample
size (N) was of 2645 profiles.

It is necessary to consider that the neural network retrieval
outputs give 58 levels from the ground to 10 km AGL. The
vertical resolution for the MMWR is 50 m near the surface to
about 500 m, 100 m to about 2 km and 250 m to about 10 km.
Consequently, the radiometer retrieval accuracy is higher near
the surface and decreases with height. Thus, on one hand, we
took the values obtained at each level for T and δwv, and, on
the other hand, the same variables obtained with the cor-
responding RAOB sounding at the Madrid-Barajas station. In
doing this, we were able to establish a correlation between
estimated temperature from the MMWR and the observed T
from RAOB at each level (i) (which will be named from now
on as TRDi and TRWi, respectively). Analogously, we could es-
tablish a correlation between the estimated density of water
vapor fromMMWR and the observed density from RAOB from
Madrid-Barajas (named δwvRDi and δwvRWi, respectively).

4. Results of the comparison between radiosounding vs.
MMWR profiles

The results obtained from the comparison of T, for the
three groups are shown in Figs. 2–4. Figs. 5–7 show the
comparison of δwv for the same three groups. As can be seen,
the correlation coefficients of T are of the order of 0.99 for the
three groups. The slopes are about 0.98. For δwv, the
correlation coefficients take values of 0.94, 0.90 and 0.96 for
each of the three groups, respectively, and slopes are 0.94,
0.91 and 1.00, respectively, for the groups. In other words,
the fit is slightly worse in situations with no precipitation.
Although in general, the MMWR and RAOB data from
Madrid-Barajas fit well, we can see that in situations with
precipitation and with greater water vapor concentration, the
fit is better.

Thus, we can conclude that there are barely any differences
between the different groups. This result was expected, con-
sidering that in most of the occasions with precipitation, it was



Fig. 1. Guadarrama Mountains, Madrid, Barajas Airport and the radiometer position.
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Fig. 2. Comparison of radiometric and sounding temperature profiles using all the profiles at 0000 and 1200 UTC. The sample size, N, the correlation coefficient
(CORR.COEF), and the fitting are shown.
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in snow form and this affects neither the K-bandnor the V-band
frequencies in which MMWR operates (Kneifel et al., 2010). So,
we can use the entire winter data sample independent of
whether or not there is winter precipitation.

Considering the importance that small variations of T and
δwv have in the initialization of the mesoscale models, we
have calculated the bias and the root mean square (rms),
along with the standard deviation. In Figs. 8–10, we see the
Fig. 3. Comparison of radiometric and sounding temperature profiles using all the p
sample size, N, the correlation coefficient (CORR.COEF), and the fitting are shown.
results for each of the groups, both for T and δwv. In all three
cases, the behavior was similar. So, the temperature in the
level closest to the ground shows an rms that is somewhat
greater than at the other levels (which is attributable to the
environmental conditions at the boundary layer, which are
different from the location of the MMWR and the rawinsonde
at Madrid-Barajas). Above this layer, the temperature presents
an rms between 1.5 K and 3 K, except at the levels superior to
rofiles when no precipitation was detected at 0000 and/or at 1200 UTC. The



Fig. 4. Comparison of radiometric and sounding temperature profiles using all the profiles when precipitation was detected at 0000 and/or at 1200 UTC. The
sample size, N, the correlation coefficient (CORR.COEF), and the fitting are shown.
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10 km, which reach about 4 K. Thus, the lowest rms values are
found at levels below 2.8 km MSL. It seems clear that above
9 kmMSL, the retrievals obtained by theMMWR separate from
the RAOB measurements at Madrid-Barajas. In the case of the
biases, they are, on average, close to 0, with a tendency to be
negative until the first 5 km MSL. The biggest difference is
registered at a height of about 3 km, and, as we can see, the
retrievals tend to underestimate the value of temperature until 6
Fig. 5. Comparison of radiometric and sounding profiles of water vapor density usi
coefficient (CORR.COEF), and the fitting are shown.
or 7 km MSL. Beyond that point, the retrievals begin to
overestimate temperature. In the analysis of the standard
deviations we can see that the variability is greater in the
profiles of the RAOB than for the MMWR, which seems to
mean that the RAOBs used are more sensitive to the
changes in the values of the variables.

Upon analyzing the results of water vapor density
(Figs. 8–10), the rms values obtained are very satisfactory
ng all the profiles at 0000 and 1200 UTC. The sample size, N, the correlation



Fig. 6. Comparison of radiometric and sounding profiles of water vapor density using all the profiles when no precipitation was detected at 0000 and/or at
1200 UTC. The sample size, N, the correlation coefficient (CORR.COEF), and the fitting are shown.
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since at the lower levels, they are below 1 g m−3 in the three
groups, and the biases are close to 0 at every level, being
somewhat worse in the lower levels than in the higher ones.

As such, in the previous analysis, we can say that the
retrievals of the T and δwvprofiles obtained by theMMWR for
the winter campaigns are consistent with data from the RAOB
Fig. 7. Comparison of radiometric and sounding profiles of water vapor density using
The sample size, N, the correlation coefficient (CORR.COEF), and the fitting are show
atMadrid-Barajas. The fact that therewas a discrepancy in the
levels closest to the ground is due to the fact that they are
located in different places and at different heights. Above this
level, the rms shows relatively stable values, around 2.5 K.

Thus, the reconstruction of the temperature and water
vapor profiles for our MMWR can be considered satisfactory
all the profiles when precipitation was detected at 0000 and/or at 1200 UTC.
n.



Fig. 8. Retrieval error statistics for temperature (left) and density of water vapor (right), for all the profiles at 0000 and 1200 UTC. The bias, root mean square
(rms), and standard deviation for the RAOB (std RAOB) in Madrid Barajas and for MMWR (std radiom) are shown.

Fig. 9. Retrieval error statistics for temperature (left) and density of water vapor (right), for the profiles when precipitation was not detected at 0000 and/or at
1200 UTC. The bias, root mean square (rms), and standard deviation for the RAOB (std RAOB) in Madrid Barajas and for MMWR (std radiom) are shown.
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Fig. 10. Retrieval error statistics for temperature (left) and density of water vapor (right), for the profiles when precipitation was detected at 0000 and/or at
1200 UTC. The bias, root mean square (rms), and standard deviation for the RAOB (stand RAOB) in Madrid Barajas and for MMWR (stand radiom) are shown.
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and are better than those found by Güldner and Spänkuch
(2001) and Liljegren et al. (2001), when they compared these
same variables obtained with an MMWR similar to ours with
data provided by the RAOB of a nearby rawinsonde station.

It is useful to point out that typical observation error
assigned to radiosonde soundings when they are assimilated
into models vary between 1.3 and 2.2 °C for temperature and
1.6 and 2.4 g m−3 for humidity (Cimini et al., 2011; Knupp et
al., 2009).

5. Amethod to diminish uncertainty: correcting the profiles
layer by layer

Although the values for T and δwv retrieved by the
MMWR are acceptable, it is clear that we should try to
diminish uncertainty. Keeping the importance of these vari-
ables in mind, the existence of these discrepancies among the
RAOB data from Madrid-Barajas and the MMWR, have
motivated us to look for a correction method that will simplify
and improve systematically the reconstructions of the atmo-
spheric profiles.

The special feature of this method is that it does not correct
the profile in its entirety; rather, it does so layer by layer. In
doing so, at each layer, a correction factor is calculated. The final
objective is to reduce the discrepancy between the TRDi and
TRWi profiles, and between the δwvRDi and δwvRWi profiles
estimated by the MMWR and RAOB sounding, respectively.
Thus, we can reduce the retrievals' uncertainties for the T and
δwv and use them operatively at heights greater than those
proposed by other authors (at heights of 3 to 5 km, e.g. Güldner
and Spänkuch, 2001; Hewison, 2007).

This method is based on a linear regression, in which the
correction factors are calculated for each of the 58 layers. To
do this, we used the following methodology:

• First, the initial sample of 338 days was divided into two
random sub-samples: the first one (Sub-sample 1) contains
66.6% of the total days (225 days), and was used to find the
best possible fits (level by level). The second one (Sub-sample
2) contains the remaining 33.4% (113 days), and it was used
to validate the model-fitting.

• For each layer, i, and for Sub-samples 1 and 2, databases
were constructed obtaining the paired values for TRDi and
TRWi, and δwvRDi and δwvRWi respectively, according to the
method described in the previous section. The paired values
from Sub-sample 1 were compared layer by layer, so that
we obtained a correction factor for each variable and for
each layer. Fig. 11 (left) shows the rms values obtained after
comparing TRDi and TRWi of Sub-sample 1 before (rms1) and
after applying the model-fitting (rms1′). It can be seen that
the values were close to 2 K up to 3000 MSL and they
exceed 3 K upwards of 9000 MSL. The rms1′ manifests
lower values, especially at high heights. In Fig. 11 (right),
rms1 is presented for water vapor density. Although the
uncertainty of the measurement can seem like a very low
value, an rms of 1 g m−3 at low levels usually represents
situations of precipitation to the order of 20–25% of water
vapor density in the area in winter.



52 J.L. Sánchez et al. / Atmospheric Research 122 (2013) 43–54
• Afterwards, we took Sub-sample 2 with the paired TRD2i
and TRW2i, and δwvRD2i and δwvRW2i data, respectively, and
applied the model-fitting to a stretch of data, following the
methodology mentioned in the previous point. In this way,
with the second sub-sample, we can validate the fit and
discuss the results.

In order to validate the model-fitting, we applied the
correction factors obtained from Sub-sample 1 to the TRDi
and δwvRDi of Sub-sample 2. Fig. 12 (left) shows the rms of
temperature before (rms2) and after (rms2′) the correction
factors were applied. As a result, the uncertainty of T
diminished, since the error was reduced at every level, and
especially at higher altitudes, where rms2′ decreased more
than 1 K. The correction factors applied to the δwvRDi in
Sub-sample 2 also improved the retrievals of water vapor
density. The rms2′ values are 0.2 g m−3 inferior to the rms of
Sub-sample 2 (rms2) at levels up to 4500 MSL, as we can see
in Fig. 12 (right).

6. Discussion and conclusions

Continuous measurements done using MMWR can be very
useful for the detection of mesoscale phenomena that require
very high spatial and temporal scales. However, this mea-
surement technology is based on an indirect measurement
and, as such, it is necessary to know the uncertainty of these
measurements. In our case, vertical profiles were initially
Fig. 11. On the left: original (dashed lines) and corrected (bold lines) RMS and BIAS
and rms are shown for Sample 1 and Sample 2.
retrieved from a subset of 35 channels by means of the
Stuttgart Neural Network Simulator trained with 10 years
of historical soundings from 3 rawinsonde stations.

In comparing data for temperature and water vapor
density obtained by the MMWR and from the rawinsonde
station at Madrid-Barajas, we were able to prove that there is
a good correlation between both stations, with correlation
coefficients superior to 0.90 in the case of water vapor, and
0.99 for temperature. Since the measurement campaigns
were carried out in winter conditions and in a mountainous
area, the precipitation in snow form did not affect the
measurements. When T and δwv vertical profiles were
analyzed layer by layer, we were able to prove that while
some strati adjusted quite well (there are barely differences
between the RAOB and MMWR data), in other cases, some
biases were detectable, and some rms values were not very
satisfactory.

Using a linear adjustment method, stratus by stratus, it
was possible to limit the discrepancy to be no greater than
1 K at all heights, and in the case of water vapor density, it
did not exceed 0.2 g m−3.

In these conditions, the method allows us to diminish the
characterization of the initial conditions that can be done
using continuous MMWR measurements. With these values,
we believe we have objective criteria that can be applied to
improve T and δwv retrievals. In turn, they can be used as
data assimilation for improving the forecasting of mesoscale
phenomena with NWP models.
for retrieved temperature; and on the right for water vapor density. The bias



Fig. 12. a) Original (dashed lines) and corrected (bold lines) RMS and BIAS for retrieved temperature; and b) same as Fig. 11 (left) but for water vapor density.

53J.L. Sánchez et al. / Atmospheric Research 122 (2013) 43–54
Acknowledgments

This paper was supported by the following grants:
Micrometeo.com (IPT-310000-2010-22) and Granimetro pro-
jects (CGL2010-15930). Special thanks to Estibaliz Gascón,
Santiago Gómez, Roberto Weigand and Lauren Giera. We
would like to thank the Canal de Isabel II for the facilities
used to install the MMWR.

References

Cimini, D., Hewison, T., Martin, L., Güldner, J., Gaffard, C., Marzano, F., 2006.
Temperature and humidity profile retrievals from ground-based micro-
wave radiometers during UTC. Meteorol. Z. 15, 45–56. http://dx.doi.org/
10.1127/0941-2948/2006/0009.

Cimini, D., Campos, E., Ware, R., Albers, S., Giuliani, G., Oreamuno, J., Joe, P.,
Koch, S.E., Cober, S., Westwater, E., 2011. Thermodynamic atmospheric
profiling during the 2010WinterOlympics using ground-basedmicrowave
radiometry. IEEE Trans. Geosci. Remote. Sens.. http://dx.doi.org/10.1109/
TGRS.2011.2154337.

Davolio, S., Buzzi, A., 2004. A nudging scheme for the assimilation of pre-
cipitation data into a mesoscale model. Weather Forecast. 19, 855–871.

ESA, 2003. System requirements document for the WALES water vapor lidar
experiment in space. The five candidate earth explorer core missions.
European Space Agency EEM-FP/2001-12-560.

Feltz, W.F., Smith, W.L., Howell, H.B., Knuteson, R.O., Woolf, H., Revercomb, H.E.,
2003. Near-continuous profiling of temperature, moisture and atmospheric
stability using the Atmospheric Emitted Radiance Interferometer
(AERI). J. Appl. Meteorol. 42, 584–597.

Friedrich, K., Lundquist, J.K., Aitken, M., Kalina, E., Marshall, R.F., 2012. Stability
and turbulence in the atmospheric layer: a comparison of remote sensing
and tower observations. Geophys. Res. Lett. 39, L03801. http://dx.doi.org/
10.1029/2011GRL050413.
García-Ortega, E., Fita, L., Romero, R., López, L., Ramis, C., Sánchez, J.L., 2007.
Numerical simulation and sensitivity study of a severe hailstorm in
northeast Spain. Atmos. Res. 83 (2–4), 225–241.

García-Ortega, E., López, L., Sánchez, J.L., 2009. Diagnosis and sensitivity
study of two severe storm events in the Southeastern Andes. Atmos. Res.
93 (1–3), 161–178.

Güldner, J., Spänkuch, D., 2001. Remote sensing of the thermodynamic state of
the atmospheric boundary layer by ground-based microwave radiometry.
J. Atmos. Ocean. Technol. 18, 925–933.

Hewison, T. J., 2007. Profiling Temperature and Humidity by Ground-based
Microwave Radiometers. PhD Thesis, Department of Meteorology, Uni-
versity of Reading, UK, 191 pp.

Iassamen, A., Sauvageot, H., Jeannin, N., Ameur, S., 2009. Distribution of
tropospheric water vapor in clear and cloudy conditions from
microwave radiometric profiling. J. Appl. Meteorol. Climatol. 48 (3),
600–615.

Kneifel, S.U., Löhnert, A., Battaglia, S., Crewell, D. Siebler, 2010. Snow
scattering signals in ground‐based passive microwave radiometer
measurements. J. Geophys. Res. 115, D16214. http://dx.doi.org/10.1029/
2010JD013856, 2010.

Knupp, K.R., Ware, R., Cimini, D., Vandenberghe, F., Vivekanandan, J.,
Westwater, E., Coleman, T., Phillips, D., 2009. Ground-based passive
microwave profiling during dynamic weather conditions. J. Atmos. Ocean.
Technol. 26 (6), 1057–1073.

Knuteson, R.O., Revercomb, H.E., Best, F.A., Ciganovich, N.C., Dedecker, R.G.,
Dirkx, T.P., Ellington, S.C., Feltz, W.F., Garcia, R.K., Howell, H.B., Smith,
W.L., Short, J.F., Tobin, D.C., 2004a. Atmospheric emitted radiance
interferometer. Part I: instrument design. J. Atmos. Ocean. Technol. 21,
1763–1776.

Knuteson, R.O., Revercomb, H.E., Best, F.A., Ciganovich, N.C., Dedecker, R.G., Dirkx,
T.P., Ellington, S.C., Feltz, W.F., Garcia, R.K., Howell, H.B., Smith, W.L., Short,
J.F., Tobin, D.C., 2004b. Atmospheric emitted radiance interferometer. Part II:
instrument performance. J. Atmos. Ocean. Technol. 21, 1777–1789.

Lanciani, A., Mariani, S., Casaioli, M., Accadia, C., Tartaglione, N., 2008. A
multiscale approach for precipitation verification applied to the FORALPS
case studies. Adv. Geosci. 16, 3–9.

http://dx.doi.org/10.1127/0941-2948/2006/0009
http://dx.doi.org/10.1109/TGRS.2011.2154337
http://dx.doi.org/10.1109/TGRS.2011.2154337
http://dx.doi.org/10.1029/2011GRL050413
http://dx.doi.org/10.1029/2010JD013856, 2010
http://dx.doi.org/10.1029/2010JD013856, 2010


54 J.L. Sánchez et al. / Atmospheric Research 122 (2013) 43–54
Liljegren, J.C., Lesht, B.M., Kato, S., Clothiaux, E.E., Solheim, F.S., Ware, R.H.,
2001. Initial evaluation of profiles of temperature, water vapor and
cloud liquid water from a new microwave radiometer. This paper is to
appear in the preprint volume of the 11th Symposium onMeteorological
Observations and Instruments, Albuquerque, NM.

Löhnert, U., Maier, O., 2012. Operational profiling of temperature using
ground-based microwave radiometry at Payerne: prospects and chal-
lenges. Atmos. Meas. Tech. 5, 1121–1134. http://dx.doi.org/10.5194/
amt-5-1121-2012.

Malguzzi, P., Grossi, G., Buzzi, A., Ranzi, R., Buizza, R., 2006. The 1996
“century” flood in Italy. A meteorological and hydrological revisitation. J.
Geophys. Res. 111, D24106.

Marzano, F.S., Fionda, E., Ciotti, P., Martellucci, A., 2002. Ground-based
multifrequency microwave radiometry for rainfall remote sensing. IEEE
Trans. Geosci. Remote. Sens. 40 (4), 742–759.

Marzano, F.S., Fionda, E., Ciotti, P., 2006. Neural-network approach to
ground-based passive microwave estimation of precipitation intensity
and extinction. J. Hydrol. 38, 121–131.

Mattioli, V., Westwater, E.R., Cimini, D., Liljegren, J.C., Lesht, B.M., Gutman, S.I.,
Schmidlin, F.J., 2007. Analysis of rawinsonde and ground-based remotely
sensed PWV data from the 2004 North Slope of Alaska Arctic Winter
Radiometric Experiment. J. Atmos. Ocean. Technol. 24 (3), 415–431.

Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T., Lane, J.E.,
2009. Precipitation: measurement, remote sensing, climatology and model-
ling. Atmos. Res. 94 (4), 512–533.

Rabier, F., 2005. Overview of global data assimilation developments in
numerical weather-prediction centres. Q.J.R. Meteorol. 131, 3215–3233.

Randel, L., Kummerow, C.D., Ringerud, S., Crook, J., Randel, D., Berg, W., 2011.
An observationally generated a priori database for microwave rainfall
retrievals. J. Atmos. Ocean. Technol. 28 (2), 113–130.

Sashegyi, K., Madala, R.V., 1994. Initial conditions and boundary conditions.
Mesoscale modelling of the atmosphere. Meteorol. Monogr. 25 (47),
1–12 (AMS. Boston).
Schwartz, R.S., Doswell III, C.A., 1991. North American rawinsonde observations:
problems, concerns, and a call to action. Bull. Am. Meteorol. Soc. 72,
1885–1896.

Soden, B.J., Lanzante, J.R., 1996. An assessment of satellite and rawinsonde
climatologies of upper-tropospheric water. J. Clim. 9, 1235–1250.

Spänkuch, D., Döhler, W., Güldner, J., Keens, A., 1996. Ground-based passive
atmospheric remote sounding by FTIR emission spectroscopy—first
results with EISAR. Atmos. Phys. 69, 97–111.

Spänkuch, D., Döhler, W., Güldner, J., Schulz, E., 1998. Estimation of the
amount of tropospheric ozone in a cloudy sky by ground-based Fourier
transform infrared emission spectroscopy. Appl. Opt. 37, 3133–3142.

Spänkuch, D., Döhler, W., Güldner, J., 2000. Effect of coarse biogenic aerosol
on downwelling infrared flux at the surface. J. Geophys. Res. 105 (D13),
17,341–17,350.

Spänkuch, D., Güldner, J., Steinhagen, H., Bender, M., 2011. Analysis of a
dryline-like featured in northern Germany detected by a ground-based
microwave profiling. Meteorol. Z. 20 (4), 409–421.

Turner, D.D., Lesht, B.M., Clough, S.A., Liljegren, J.C., Revercomb, H.E., Tobin,
D.C., 2003. Dry bias and variability in Vaisala RS80-H rawinsondes: the
ARM experience. J. Atmos. Ocean. Technol. 20, 117–132.

Vich, M., Romero, R., Brooks, H.E., 2011. Ensemble prediction of Mediterranean
high-impact events using potential vorticity perturbations. Part I: compar-
ison against the multiphysics approach. Atmos. Res. 102 (1–2), 227–241.

Wulfmeyer, V., Bauer, H., di Girolamo, P., Serio, C., 2005. Comparison of
active and passive water vapor remote sensing from space: an analysis
based on the simulated performance of IASI and space borne differential
absorption lidar. Remote. Sens. Environ. 95, 211–230.

Zhou, D.K., Smith, W.L., Liu, X., Larar, A.M., Mango, S.A., Huang, H.L., 2007.
Physically retrieving cloud and thermodynamic parameters from
ultraspectral IR measurement. J. Atmos. Sci. 64, 969–982.

http://dx.doi.org/10.5194/amt-5-1121-2012
http://dx.doi.org/10.5194/amt-5-1121-2012

	A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by mea...
	1. Introduction
	2. Radiometer and noise
	3. Data stratification
	4. Results of the comparison between radiosounding vs. MMWR profiles
	5. A method to diminish uncertainty: correcting the profiles layer by layer
	6. Discussion and conclusions
	Acknowledgments
	References


