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ABSTRACT  
Ground-based microwave radiometry offers a new opportunity to automate upper air observations 
by providing information on temperature and humidity profiles as well as the integrated water 
vapour and liquid water amounts with high time resolution. To improve their relatively poor vertical 
resolution and provide a more complete picture of the vertical profile, radiometer observations can 
be combined with other instruments making up an Integrated Profiling Station.  
 
This paper describes a variational method of combining observations from different instruments 
with background from Numerical Weather Prediction (NWP) models in a statistically optimal way, 
accounting for their error characteristics. This method is illustrated using microwave and infrared 
radiometers and surface sensors as an example showing the requirement for a forward model of 
each observation and an estimate of their error covariance. Methods to exploit the high time-
resolution of ground-based observations while assimilating them into NWP are discussed, as these 
may compensate for the geographic sparsity of a future network of Integrated Profiling Stations. 
 

1. INTRODUCTION  
This section introduces the general benefits of ground-based remote sensing systems and the 
concept of combining them as part of an Integrated Profiling Station (IPS) to meet user 
requirements for temperature and humidity profiling. A variational technique is introduced in the 
following section to retrieve these profiles by combing observations with Numerical Weather 
Prediction (NWP) model data. This uses the example of a microwave radiometer, which is 
considered as a cornerstone of the IPS because of its ability to provide information on the basic 
temperature and humidity profile, which can be further improved by adding observations from other 
instruments. The final section outlines possible methods by which this may be achieved. 

a) User requirements 

The stated requirements of all the users of upper air observations were reviewed by Stringer [2006]. 
These are expressed in terms of the accuracy, vertical and horizontal resolution, observing cycle 
and delay required of temperature in the boundary layer and lower troposphere, humidity in the 
lower troposphere and column integrated water vapour for climate monitoring, global and regional 
NWP, synoptic, aeronautical and nowcasting applications. The requirements are defined in terms 
of the minimum threshold for an observations to have any impact on each application, the 
breakthrough threshold at which the observations could provide a significant advance in forecast 
capability (relative to that currently available), and the maximum threshold, above which no 
significant benefit will be felt. All observing systems have strengths and weaknesses – none meet 
the breakthrough levels for all aspects (accuracy, vertical and horizontal resolution, observation 
cycle and delay). The best that can be expected is to achieve this level of performance from a 
combination of systems. The user requirements are shown in Table 1 for regional NWP. 
 
Regional NWP needs observations with better accuracy, vertical and horizontal resolution than 
global NWP. It is here that observations from ground-based remote sensing systems are expected 
to have most impact, because their information is concentrated in the boundary layer, which often 
has high temporal variability that may be well captured by their high frequency observations. Better 
temperature accuracy, vertical and horizontal resolution is required in the boundary layer than the 
rest of the lower troposphere due to its greater variability in space and time.  
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Table 1 User requirements of temperature and humidity profiles for Regional NWP – minimum, 
breakthrough and maximum thresholds 

Temperature (K) 
Boundary Layer 

Temperature (K) 
Lower Troposphere 

Relative Humidity (%)
Lower Troposphere 

Integrated Water Vapour 
(kg/m2) 

NWP Regional 

Min. Brk. Max. Min. Brk. Max. Min. Brk. Max. Min. Brk. Max. 

 
Accuracy  
 

1.5  0.5 1.5  0.5 10  5 5  1 

Vertical  
Resolution 
(km) 

0.5 0.3 0.01 2 1 0.1 2 1 0.1 N/A N/A N/A 

Horizontal 
Resolution 
(km) 

50 10 1 200 30 3 200 30 3 100  10 

Observing  
Cycle (hr) 3 1 0.166 12 3 0.5 12 3 0.5 1  0.5 

Delay in  
Availability (hr) 3  0.083 5  0.25 5  0.25 0.5  0.1 

 
However, if the user requirement for the minimum horizontal resolution of boundary layer 
temperature profiles is taken at face value, then observations will have no impact in regional NWP, 
unless they can be deployed in a dense network of ~100 in the UK. It would be prohibitively 
expensive to deploy a network of ground-based instruments that essentially take spot 
measurements (i.e. do not cover a significant area) capable of exceeding the stated minimum 
threshold for horizontal resolution of regional NWP. However, it may be possible to exploit the 
observations’ high time-resolution as a proxy for horizontal sampling within 4D-VAR (section 4). 

b) Expected benefits of ground-based remote sensing 

There are a diverse set of ground-based remote sensing systems capable of providing 
observations on a range of atmospheric variables at different stages of operational implementation. 
For example, microwave radiometers, wind profiling radars, laser ceilometers, cloud radars provide 
information on the temperature, humidity and cloud profiles and, when combined at a common 
location, have the potential to provide a complete picture of the atmospheric profile at that point. 

The geometry of ground-based observations typically means their information is concentrated in 
the planetary boundary layer. This is particularly beneficial to NWP as it complements the 
information available from aircraft and satellites over land, whose application near the surface is 
limited by variable emissivity and surface temperature in the case of microwave sounders, and 
extinction by cloud for infrared sounders. For this reason, ground-based observations are expected 
to have most impact on short-range NWP. And because of the high time-resolution available from 
ground-based remote sensing systems, they are able to detect variability on convective scales, 
which is only resolvable by the latest generation of high resolution NWP models. 

c) Integrated Profiling Station Concept 

The Integrated Profiling Station (IPS) concept describes a combination of co-located ground-based 
remote sensing systems operating continuously to provide a complete picture of the vertical 
atmospheric profile. These instruments should be able to operate automatically, requiring minimal 
manual intervention. Profiles of atmospheric temperature, humidity and cloud can be retrieved by 
integrating observations from different systems to exploit their relative strengths. This paper 
discusses a variational method to combine observations with an NWP background. 
 
It is proposed that a number of IPSs may, in the future, form part of the operational upper air 
network, including radiosondes and profiles from commercial aircraft. This network would provide 
observations to complement satellite soundings. Until now it has been difficult to fully exploit 
observations in the boundary layer due to its great spatial and temporal variability. However, this is 
expected to change in the next few years with the advent of 4-Dimensional Variational assimilation 
(4D-VAR) in convective scale NWP models. 
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2. VARIATIONAL RETRIEVALS (1D-VAR) 

A 1-Dimensional Variational (1D-VAR) retrieval method is developed using data from the 
Radiometrics TP/WVP-3000 microwave radiometer [Ware et al., 2003] as an example. This 
method provides the basis of the Integrated Profiling System as it retrieves profiles of temperature 
and humidity, albeit with poor vertical resolution, as well as the Integrated Liquid Water (ILW). 
However, the retrievals are ill posed as there are many possible profiles that fit a given set of 
observations. To resolve this ambiguity requires a priori information, which are provided as 
background information from short-range NWP forecasts for the variational retrievals. Variational 
methods provide a statistically optimal method of combining observations with a background, 
which accounts for the assumed error characteristics of both. For this reason they are often 
referred to as Optimal Estimation retrievals. 

  
Figure 1 Schematic of inverse problem of retrieving profiles from observations. 

The 1D-VAR retrievals presented here are similar to the Integrated Profiling Technique [Löhnert et 
al., 2004], but takes its background from an NWP model instead of radiosondes and uses different 
control variables to concentrate on retrieving profiles of atmospheric temperature and humidity. 
 
The 1D-VAR retrieval is performed by adjusting the atmospheric state vector, x, from the 
background state, xb, to minimize a cost function of the form Rodgers [2000]: 

 

( ) ( ) ( )− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
1 1T T

J H Hb bx x x B x x y x R y x  (1) 

 
where B and R are the error covariance matrices of the background, xb, and observation vector, y, 
respectively, H(x) is the forward model operator and T and -1 are the matrix transpose and inverse, 
respectively, using the standard notation of Ide et al. [1997]. 

a) Background Data and State Vector 

The mesoscale version of the Met Office Unified Model is used to provide background data for the 
retrievals in the form of profiles of temperature, humidity and liquid water. The model grid points 
are interpolated to the position of the observations. This model is initiated every six hours, 
including data from radiosonde stations. A short-range forecast (T+3 to T+9 hr) is used for the 
background, as would be available to operational assimilation schemes. This is independent of any 
radiosondes launched at observation time, which may be used to validate the retrievals.  

Variational 
Retrieval 

State Vector, xa  
Analysis Error, A 

z 

T/Td 

Observation Vector, y 
Observation Error, R 

Tb

ν 

Background Data, xb

Background Error, B 

Forward Model, H (x) 
Jacobian, H=∂y/∂x 
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The state vector, x, used in the retrievals is defined as the temperature and total water on the 
lowest 28 model levels. These extend up to 14 km, but are concentrated near the surface, where 
most of the radiometer’s information is. 
 
In this study the humidity components of the state vector are defined as the natural logarithm of 
total water, lnqt. (q is the specific humidity.) This control variable is a modified version of that 
suggested by DeBlonde and English [2003], with a smooth transfer function between water vapor 
for qt /qsat < 90% and liquid water for qt /qsat >110% (where qsat is q at saturation.) The condensed 
part of the total water is further partitioned between liquid and ice fractions as a linear function of 
temperature, producing pure ice at -40°C. The choice of total water has the advantages of 
reducing the dimension of the state vector, enforcing an implicit super-saturation constraint and 
correlation between humidity and liquid water. The logarithm creates error characteristics that are 
more closely Gaussian and prevents unphysical retrieval of negative humidity. 
  
The background error covariance, B, describes the expected variance at each level between the 
forecast and true state vector and the correlations between them. In this work, B was taken from 
that used to assimilate data from satellite instruments operationally at the Met Office. The diagonal 
components of B are shown for reference in Fig. 4. 

b) Observations 

This study uses observations from the Radiometrics TP/WVP-3000 microwave radiometer. This 
has 12 channels: seven in the oxygen band 51-59 GHz, which provide information primarily on the 
temperature profile and five between 22-30 GHz near a water vapor line, which provide humidity 
and cloud information. This radiometer includes sensors to measure pressure, temperature and 
humidity at ~1 m above the surface. The pressure is taken as a reference from which geopotential 
height is calculated at other pressure levels via the hydrostatic equation. The instrument’s integral 
rain sensor is used to reject periods which may be contaminated by scattering from precipitation, 
as this is not included in the forward model and emission from raindrops on the radome, which may 
bias the calibration. This instrument incorporates an optional zenith-viewing infrared radiometer 
(9.6-11.5 µm) to provide information on the cloud base temperature. 
 
In this study the observation vector, y, is defined as a vector of the zenith brightness temperatures 
(Tb) measured by the radiometer’s 12 channels, with additional elements for the surface 
temperature (TAMB) and humidity (converted to lnqAMB) and the infrared brightness temperature (Tir): 
 

[ ]= 1 2 12, ,..., , ,ln ,b b b AMB AMB irT T T T q Ty  (2) 

 
The observation error covariance, R, has contributions from the radiometric noise (E), forward 
model (F) and representativeness (M) errors ( R = E + F + M ). These terms were evaluated by 
Hewison [2006]. 

c) Forward Model and its Jacobian 

A forward model, H(x), is needed to transform from state space to observation space. For the 
microwave radiometer, each channel’s Tb is calculated at an equivalent monochromatic frequency 
[Cimini et al., 2006] using the radiative transfer equation to integrate down-welling emissions from 
each atmospheric layer between model levels using a standard absorption model [Rosenkranz, 
1998], which was found to have small biases in these channels [Hewison et al., 2006]. The forward 
model for the surface temperature and humidity sensors is trivial – a 1:1 translation to the lowest 
level of the state vector, x. A simple forward model defines Tir as the temperature of the lowest 
level with any cloud. A more sophisticated radiative transfer model is used here to calculate Tir 
which accounts for extinction by atmospheric water vapor and liquid water cloud, assigning 
extinction coefficients of 0.02 Np/km.(kg/kg)-1 and  33.3 Np/km.(kg/m3)-1 respectively. This model 
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gives more Gaussian error characteristics, due to having less abrupt transitions at cloud 
boundaries. Examples of the forward model and its Jacobian are shown in Figure 2 and Figure 3. 
 
The Jacobian is the matrix of the sensitivity of the observation vector, y, to perturbations of each 
element of the state vector, x, ( )′= = ∇H xH x y . It is needed to minimize the cost function (see 
section e)). In this study, H is calculated by brute force – each level of the state vector, x, is 
perturbed by 1 K in temperature or 0.001 in lnqt. The magnitude of these perturbations was 
selected to ensure linearity of H, while preventing numerical errors due to truncation. 

 

Figure 2 Atmospheric absorption spectrum for typical surface conditions: T=288.15 K, 
p=1013.25 hPa, RH=100%, L=0.2 g/m3 following Rosenkranz [1998]. Lines show total absorption 

coefficient and contribution from oxygen, water vapour and cloud, coloured according to the legend. 
Grey vertical bars show centre frequencies of the Radiometrics TP/WVP-3000 microwave radiometer. 

 

 
Figure 3 Jacobian’s temperature component of 51-59 GHz channels (left) and humidity component 

for 22-51 GHz channels of Radiometrics TP/WVP-3000 (right), scaled by model layer thickness, ∆z:  

H/∆z =(∂y/∂x)/∆z. Calculated for clear US standard atmosphere. 
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d) Error Analysis 

An estimate of the uncertainty on the retrieved profile can be derived by assuming the errors are 
normally distributed about the solution and that the problem is only moderately non-linear. In this 
case, the error covariance matrix of the analysis, A, is given Rodgers [2000] by: 

( )−1T
i i

-1 -1A = H R H + B  (3) 
where Hi is evaluated at the solution (or final iteration). 
 
Although the vertical resolution can be defined from A, this is a somewhat arbitrary definition and 
not particularly helpful. Instead, it is better to express the observations’ information content with 
respect to the background as the Degrees of Freedom for Signal, DFS. This represents the 
number of layers in the profile which are retrieved independently. It can be calculated [Rabier et al., 
2002] as: 

( )−= − 1TrDFS I AB  (4) 
where I is the identity matrix and Tr( ) is the trace operator. 
 
A has been evaluated for different combinations of instruments for a clear US standard 
atmosphere in Fig. 4, although it depends on the reference state through Hi. This shows error in 
the temperature profile retrieved from the radiometer is expected to approach 0.1 K near the 
surface, but increases with height, to exceed 1 K above 5 km and includes 2.8 degrees of freedom. 
For the humidity profile, A varies greatly with x. In this example the retrieval’s lnq error increases 
from 0.05 (~5%RH) near the surface to 0.4 (~40%RH) by 3 km and includes 1.8 degrees of 
freedom, increasing by ~1.0 in cloudy conditions. This presents a substantial improvement on the 
background and the surface sensors alone, which only influence the lowest 500 m. However, 
above ~1 km it falls short of the radiosonde’s accuracy, which is also shown in Fig. 4. However, the 
radiometer provides much more frequent observations than radiosondes can, reducing errors of 
representativeness applying their data to analysis at arbitrary times. 
 

 

Fig. 4 Background error covariance from mesoscale model, √diag(B), (black) and analysis error 

covariances, √diag(A)¸ with surface sensors only (green), radiometers and surface sensors (red), and 

radiosonde only (blue). Plotted as square root of the matrices’ diagonal components for the lowest 
5 km of temperature [K] and humidity (lnq) [dimensionless]. 
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e) Minimization of Cost Function 

Variational retrievals are performed by selecting the state vector that minimizes a cost function in 
the form of (1). For linear problems, where H is independent of x, this can be solved analytically. 
However, the retrieval of temperature profiles above ~1 km and humidity profiles is moderately 
non-linear, so the minimization must be conducted numerically. This has been achieved using the 
Levenberg-Marquardt method [Rodgers, 2000] (which was found to improve the convergence rate 
in cloudy conditions compared to the classic Gauss-Newton method) by applying the following 
analysis increments iteratively: 
 

( )( ) ( ) ( )γ+
⎡ ⎤+ ⎣ ⎦1 1i i i i i i iH

-1-1 T -1 T -1 -1 bx = x + B + H R H H R y - (x ) - B x - x  (5) 

 
where xi and xi+1 are the state vector before and after iteration i, and Hi is the Jacobian matrix at 
iteration, i. 
 
This minimisation typically requires several iterations and is computationally expensive as Hi must 
be evaluated at each iteration. For many practical applications this necessitates the development 
of a fast forward model, often as a parameterization of a more accurate model with full physics, 
such as a line-by-line radiative transfer model. 

f) Information Content Trade-offs 

The concept of the Degrees of Freedom for Signal (DFS) from Equation (4) can be used to quantify 
how much the information available from the observations can improve the NWP background. DFS 
can be used to compare the benefits of different observing strategies.  
 
For example, Hewison [2006] showed that observing 4 different elevation angles with a microwave 
radiometer and averaging these observations over 5 minute periods increased the DFS for 
temperature to ≈5 (from ≈3 for instantaneous zenith observations only). This would improve the 
accuracy of temperature profiles retrieved from the observations as well as their vertical resolution. 
Results of the DFS analysis for different combinations of radiometer elevation angles and 
averaging periods are given in Table 2. 
 

Table 2 Degrees of Freedom for Signal in temperature (DFSt) and humidity (DFSq) available from 
Radiometrics TP/WVP-3000 in different configurations with/out averaging 55-59 GHz channels. 

Clear Cloudy  Instrument 
Combination 

Averaging 
Period DFSt DFSq DFSt DFSq 

(a) Radiosonde 
 

 8.6 7.1 8.6 7.1 

(b) Surface sensors only 
 

 1.0 1.0 1.0 1.0 

(c) (b) + Radiometrics 
TP/WVP-3000 

Instantaneous 
Zenith obs. only 

2.8 1.8 2.9 3.0 

(d) (b) + Radiometrics 
TP/WVP-3000 

Averaging obs. 
over 300 s 

3.2 2.0 3.3 3.0 

(e) (c) at 4 elevation angles 
+zenith IR 

Averaging obs. 
over 300 s 

4.4 2.7 4.4 5.0 

 
 
In a similar way, DFS could be used to evaluate the relative benefits of different instruments to the 
retrieval of particular state vectors, such as temperature, humidity and/or cloud profiles. However, 
the results also depend on the assumed accuracy of the NWP background information (B). This 
could be exploited in the evaluation of different network densities and their distribution by adjusting 
B, following [Löhnert et al., 2006]. 
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3. POSSIBLE COMPONENTS OF INTEGRATED PROFILING STATION 
The variational method allows different instruments to be combined and can provide a basis for the 
development of Integrated Profiling Systems, which have the potential to improve the profiles 
retrieved from the microwave radiometer alone. This have been demonstrated by a simple 
example in this paper. Although the inclusion of surface temperature and humidity sensors in the 
observation vector was trivial (they provide a direct observation of two elements of the state vector), 
the infrared radiance needed a more complex forward model to describe its sensitivity to the 
humidity profile as well as the cloud-base temperature. For each new observation type a forward 
model operator is required, together with estimates of the observation error covariance. In future 
the 1D-VAR retrievals will be further extended to include observations from other instruments, 
described below. These are expected to improve the vertical resolution of the retrievals.  
 

a) Ceilometer 

Ceilometers (or laser cloud base recorders) are simple backscatter LIDAR (Light Detection and 
Ranging) systems that form part of the operational network of observations, commonly deployed at 
airports to provide measurements of the cloud-base height. They work by transmitting laser pulses 
near vertical and measuring the backscattered signal in a range of discrete gates. Although they 
typically operate in the near infrared (e.g. 905 nm), they are capable of penetrating thin cloud and 
able to measure the height of up to 3 distinct cloud layers. Ceilometers are typically configured to 
report cloud bases up to 8 km every 30 s. In fact, they are capable of providing much more 
information in the form of full backscatter profiles, which can indicate the height of inversions that 
trap aerosol layers near the surface. However, this is not currently exploited operationally due to 
difficulties interpreting their signal, which is a complex function of aerosol content, type and 
humidity. The signal can also be adversely affected by the sun when it is high in the sky. 
 
The height of the lowest cloud base could be used in the 1D-VAR retrieval in a similar way to the 
infrared brightness temperature. It could either be used as a cloud classification indicator and the 
retrieval’s first guess modified to ensure that it is cloud free below the cloud base, but saturated at 
that level – or by constructing a simple forward model for the cloud-base height and including this 
in the observation vector. The latter approach is likely to cause convergence problems of the type 
encountered with the infrared radiometer due to its non-Gaussian error characteristics (i.e. on/off). 
The ceilometer backscatter signal is generally more sensitive to cloud than the thermal infrared 
radiance and it will detect cloud layers that are transparent at microwave frequencies. For these 
reasons, it is unlikely that the ceilometer alone will have a large impact on the retrievals when an 
infrared radiometer is also available, although it remains attractive in principle, as this combination 
would provide both the height and temperature of the cloud base, and thus fix a point in the profile. 
 
It may also be possible in future to use time-series of ceilometer observations to estimate profiles 
of fractional cloud occurrence in situations with broken cloud. This could be used to complement 
the time-series of retrievals from microwave radiometer observations with high time resolution. 
 

b) Cloud Radar  

Cloud radars typically operate in the designated bands at 35 GHz and 94 GHz, where backscatter 
is dominated by liquid and ice drops, for which signal is proportional to their number density and 
the 6th moment of the drop size distribution [Westwater et al., 2005]. This results in a much greater 
sensitivity to large cloud droplets, especially precipitation and insects, while clouds comprising of 
small droplets, such as small cumulus and fog may go undetected. It also makes the relationship 
between backscatter and liquid water content a nonlinear function of the drop size distribution. 
Cloud radars operate in window regions, where absorption is dominated by the water vapour 
continuum, which becomes significant at higher frequencies and must be accounted for in 
quantitative interpretation of the signal. 
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In their simplest form, observations from a cloud radar can be used to define cloud boundaries, 
which can then be combined with microwave radiometer data by methods similar to those 
suggested above for ceilometers. A more sophisticated approach is to define a relationship 
between the backscatter and the liquid water content (LWC) and use this as a forward model to 
include the backscatter profile in the observation vector. This approach was adopted in the 
Integrated Profiling Technique [Löhnert et al., 2004] for pure liquid water cloud. Cloud radar and 
ceilometer data have been combined to classify cloud conditions over a profile as either clear, pure 
liquid water, pure ice or mixed phase cloud or drizzling cloud [Hogan and O’Connor, 2004]. These 
classifications may be used to improve the accuracy of the relationship between backscatter and 
LWC. 
 

c) Integrated Water Vapour column from GPS 

Data from high precision GPS (Global Positioning System) receivers at fixed positions can be used 
to estimate the Integrated Water Vapour (IWV) by measuring the phase delay of signals 
transmitted from multiple GPS satellites [Bevis et al., 1992]. This information is also available from 
microwave radiometer observations at two or more channels in the 20-40 GHz band with 
comparable accuracy, so the integration of the two systems does not seem to offer much potential 
for improving the retrievals. However, GPS sensors may allow a reduction in the number of 
channels needed for a microwave radiometer to retrieve temperature profiles accurately above 
1 km or provide a calibration reference for water vapour channels [Hewison, 2006]. 
 

d) Wind profiling radar signal 

A wind profiler is a ground-based Doppler radar with 3 or more beams which measures signals 
backscattered from refractive index fluctuations associated with turbulence. The Doppler 
components of the beams from different directions are used operationally to estimate profiles of the 
wind vector, assuming the wind field to be homogeneous over their projected area. Typically wind 
profilers operate in the UHF band for profiling the boundary layer, while VHF systems can be used 
to profile most of the troposphere. In addition to measuring the wind vector, the signal to noise ratio 
from wind profiler radars is sensitive to the magnitude of the gradients in the refractive index. 
These provide indications of the height of temperature inversions (for VHF systems in the upper 
troposphere) and hydrolapses (for UHF systems in the lower troposphere), which can be used to 
monitor the height of the top of the boundary layer. This information could improve profiles 
retrieved from microwave radiometer data.  
 
The first guess profiles could be modified from the backgrounds available from NWP models so the 
height of any temperature inversions or hydrolapses are consistent with the profile of signal to 
noise ratio observed by a co-located wind profiler. However, attempts to modify the first guess in a 
similar way did not improve the retrieval of an inversion that was present at the wrong height in the 
NWP model background. So it is unlikely that this technique alone would be more successful when 
applied to wind profiler data, without additional modifications to the assumed background error 
covariance. A slightly different approach is to use only the height of the wind profiler’s peak signal 
strength by including an additional term in the cost function to constrain this to coincide the 
corresponding features in the state vector. 
 
A more sophisticated approach would be to construct a reliable forward model to predict the wind 
profiler’s signal to noise ratio from the NWP model fields, together with estimates of its error 
characteristics. This may be reliably modelled from the elements used in the state vector of the 
retrievals described here – i.e. temperature and humidity. However, a more accurate model may 
need additional terms in the state vector to account for turbulence. A thorough review of this topic 
was performed by Gaffard and Nash [2006]. 



Hewison and Gaffard      Combining Microwave Radiometer and other Instruments             TECO-2006 

10 

4. ASSIMILATION INTO NWP MODELS 
 

a) Providing Data to NWP Models 

There are different methods by which observations from different instruments may be combined in 
future Integrated Profiling Systems and supplied for assimilation in NWP models: 
 

1. Provide a live data feed of radiances and error estimates with forward model operators and 
their gradients as well as any constraints imposed by physics or derived from other 
instrumentation. Scientific documentation would need to supplied in sufficient detail to allow 
the coding of an assimilation scheme. The forward model could be supplied either as an 
independent fast model or by modifying RTTOV [Saunders et al., 1999].  
 
In this option there is flexibility in the distribution of instruments in the network: 

a. Assimilation of data from different instruments at the same site simultaneously. 
b. Assimilation of data from different instruments at different sites simultaneously. 

 
2. Provide a live data feed of profiles (with error estimates) retrieved by a ‘stand-alone’ 

algorithm. This could be either: 
 

a. A 1D-VAR retrieval combining observations from different instruments with an NWP 
background. These retrievals would then be assimilated into NWP as 3- or 4D-VAR. 
 

b. Provide a live data feed of profiles (with error estimates) retrieved by a ‘stand-alone’ 
neural network or other regression technique.  

 
Further development is needed to determine which of these options to pursue, taking into account 
the implications for further development of the technique and integration of observations from other 
instruments.  
 
In addition, to address the question of which method of assimilation is preferable, different 
techniques will be compared including statistical regression, neural network and 1D-VAR. These 
are described in the next section. If only the radiometer data is available, several studies have 
shown that it is better to supply the data as radiances for assimilation into NWP. However, if we 
can also use the signal from the wind profiler, it may be better to supply a retrieved profile for 
assimilation, ultimately by 4D-VAR. This would allow the retrieval of small scale vertical structures, 
which otherwise could be lost by assimilation into an NWP model with coarser vertical resolution. 
This approach would also be useful for nowcasting applications. 
 
To decide between these fundamental approaches, we need to know if we can quantify the 
humidity gradient from the wind profiler signal reliably. If this is possible, it will also be necessary to 
investigate the optimal background to use for the retrievals – climatology has the advantage of 
independence from NWP, while NWP should provide a more accurate background in most cases. 
 
In addition to the above error budgets and experiments, further work is needed to establish 
whether it is possible to retrieve vertical humidity gradients from wind profiling radars. The ongoing 
review of factors affecting the signal to noise ratio of the wind profilers should be continued, and 
recommendations made for any hardware modifications needed to fully exploit these data. 
Algorithms for determination of boundary layer and/or tropopause height should also be assessed, 
as these may give more limited, but useful, information to improve the retrieval from microwave 
radiometers. 
 
 
 



Hewison and Gaffard      Combining Microwave Radiometer and other Instruments             TECO-2006 

11 

b) Exploiting Observations’ High Time-Resolution  

One of the greatest potential benefits of ground-based observations is their high temporal 
resolution. However, to fully exploit their high time-resolution requires a 4-Dimensional assimilation 
scheme, such as 4D-VAR. This has the potential to correct gross errors in the timing of (for 
example) fronts passing the observation location, and this has knock-on effects on much larger 
scales. As well as direct assimilation of observations in 4D-VAR, it is also possible to use it 
assimilate profiles retrieved by 1D-VAR [Marécal and Mahfouf, 2003]. 4D-VAR is computationally 
expensive. So, although it is now operational in global models at the Met Office and other centres, 
it is not expected to be implemented in operational convective scale NWP models for several years 
– and it is in these high-resolution models that ground-based observations are expected to have 
most impact. Meanwhile, other methods of exploiting the observations’ high time resolution 
suggested in the following paragraphs could be investigated. 
 
One of the basic assumptions about the potential benefit of observations from ground-based 
instruments is that their high temporal resolution can be used a proxy for horizontal resolution in 
the direction of atmospheric advection. In 3D-VAR, their data is assimilated at nominal observation 
times with relatively short windows every few hours. In practice, most operational 3D-VAR 
schemes use the First Guess at Appropriate Time (FGAT) method, comparing the observation with 
the background at the observation time. 
 
The next step up in the evolution of assimilation methods is 2D-VAR using a single column NWP 
model, as demonstrated by Lopez et al. [2006]. They set up this unconventional system to 
investigate the problems of assimilating observations from a co-located microwave radiometer, 
cloud radar, GPS and rain gauge. This assimilation aims to find initial temperature and humidity 
profiles that give the best fit between a priori information from the model and the observations over 
a 12 h time window at a given geographical location. They assimilated radiometer and GPS 
observations at 30 minute time resolution, although the cloud radar data needed to be time 
averaged to achieve convergence. The obvious limitations of this method are that it only produces 
increments of temperature and humidity co-located with observations and has no feedback from 
the 3D dynamics (unlike 4D-VAR) and that it cannot modify the forcing – e.g. convergence in 2D.  
 
A relatively simple scheme has been demonstrated that uses the variability seen by the 
observations to calculate the representativeness errors dynamically in real-time [Hewison, 2006]. 
Although this showed little reduction in the variance of the retrieved profiles compared to co-
located radiosondes, the errors in this comparison were limited by those of the radiosondes and 
the background, which was assumed to be fixed. Similar limitations were found when averaging 
retrieved profiles over a short period prior to validating them against radiosonde. However, this 
method is expected to produce an average profile which is closer to the average of the NWP 
model’s grid box.  
 
It is also possible to use observations at high time-resolution to estimate the sub-gridscale 
variability within each model box and relate this to other quantities in the model. For example, the 
variance could be calculated as well as the mean of a series of profiles retrieved by 1D-VAR, or 
these could be used to estimate the cloud fractional occurrence within a model grid box. The 
variance could be empirically correlated to other model parameters as indicators of convective 
activity. However, while the background error covariance remains constant, it will be difficult for this 
method to improve the accuracy of 1D-VAR retrievals. Alternatively, cloud fraction could be added 
as a control variable in retrievals using a time-series of observations.  
 
It is also possible to use profiles retrieved from a time-series of observations, taking the analysis of 
one 1D-VAR retrieval as the background for the next and take its analysis error covariance as the 
background error covariance for the next. This makes the reasonable assumption that the 
observation errors are independent between successive retrievals. However, it also assumes that 
the errors introduced at different stages in the successive retrievals are independent, which is 
more dangerous as it could result in the reinforcement of retrievals that converge on erroneous 
minima. 
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c) Observing System Synthesis Experiments  

The choice of possible distribution of observing systems within national or international networks is 
difficult to evaluate quantitatively. Inevitably, there will practical restrictions constraining the 
network’s design – e.g. it may be prohibitively expensive to relocate existing systems or there may 
be other user requirements which effectively limit their redeployment or retirement. These factors 
must be taken into account when designing different options for network configurations. The impact 
of each configuration can be tested using Observing System Synthesis Experiments (OSSEs). In 
these trials forecasts are repeated based on analyses derived from different sets of synthetic 
observations. This requires the development of the a forward model for the observations and its 
adjoint, as well as the full assimilation scheme. Although this represents a substantial investment, 
OSSE results are not always conclusive. However, they are the only practical method to compare 
the benefits of different network configurations on forecast accuracy. 

 

d) Demonstrating Observations’ Impact on NWP 

1D-VAR retrievals have demonstrated that the microwave radiometer can improve the temperature 
and humidity profiles in the NWP background up to ~3 km. However, there is still a requirement to 
demonstrate that these observations will improve the accuracy of NWP forecasts. The later is a 
more complex question involving a thorough understanding of the model physics and 
parameterizations, although generally it is expected that more accurate analyses lead to more 
accurate forecasts. 
 
The best way to demonstrate the impact an observation has on NWP is to conduct parallel trials – 
with and without the assimilation of the observation. However, this requires a considerable 
investment in terms of developing the assimilation suite for that instrument. Before investing in this 
development, it is necessary to demonstrate that the observation will have an impact. This is the 
fundamental chicken and egg problem facing those making the decision to invest in the 
assimilation of data from new instruments. 
 
A simpler way to demonstrate an impact on the analysis would be to set-up an offline 1D-VAR, 
based on NWP model background fields. Experiments will then be conducted to assess whether 
the observations can help: 

a) Add absent features to a background profile (e.g. temperature inversion, hydrolapses), 
b) Suppress erroneous features, 
c) Correct vertically displaced features. 

 
This experiment should include an independent data source as truth – for example, radiosondes 
that have not been assimilated. This allows the demonstration of which model parameters are 
improved by the use of data from the radiometer. It should also provide case studies showing the 
impact of timing errors. The establishment of the Integrated Profiling Station  would provide such a 
dataset. We could also exploit data from existing datasets, including the Convective Storms 
Initiation Project (CSIP). This has already been done for the radiometer alone and in combination 
with surface and infrared sensors. Follow-on work should extend this analysis to include 
observations from other systems. 
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5. CONCLUSIONS 
 
A 1-D variational retrieval has been developed to allow observations from ground-based 
microwave and infrared radiometers and surface sensors to be combined with a background from 
an NWP model in an optimal way, which accounts for their error characteristics. This has been 
used to retrieve profiles of temperature, humidity and cloud using a novel total water control 
variable. This has been shown to be advantageous over methods taking their background from 
statistical climatology [Cimini et al., 2006].  
 
The 1D-VAR retrievals also have the advantage of providing an estimate of the error on the 
retrieved profile. Error analysis has shown the microwave radiometer improves the NWP 
background up to 4 km, retrieving temperature profiles with <1 K uncertainty and 2.8 Degrees of 
Freedom for Signal (DFS) and humidity with <40% uncertainty and 1.8 DFS. Most of the 
radiometer’s information is concentrated in the boundary layer: in the lowest 1 km, the accuracy of 
the temperature and humidity profiles is <0.5 K and <20%, respectively. These results depend on 
the background error covariance. However, the vertical resolution of the retrieved profiles is poor 
and degrades with height. Furthermore, the retrievals were not able to move a misplaced feature in 
the background profile. 
 
The variational method allows different instruments to be combined if their observations’ forward 
model operator and error estimates are available. This provides a basis for the development of 
Integrated Profiling Stations. In the future the 1D-VAR retrievals will be extended to include 
observations from other instruments, such as the cloud base height from a ceilometer, cloud 
base/top from cloud radar and refractive index gradient from a wind profiler. 
 
The variational framework allows observations from any instruments to be combined if: 

1. They are sensitive to a parameter of the state space of the retrieved profile. 
2. A forward model can be defined to transform from state to observation space. 
3. This function can be differentiated to yield the adjoint. 
4. Error bars can be defined for the observation. 

 
This integration allows the strengths of different observing systems to be combined and its 
development requires liaison between data assimilation scientists and instrument engineers. 

 
Assimilation of these observations could improve mesoscale Numerical Weather Prediction (NWP), 
especially boundary layer and cloud properties. There is an open question of whether this 
integration is best done by a stand-alone retrieval or within the framework of an NWP model by 
assimilating the observations directly. However, to fully exploit the high time resolution available 
from ground-based instruments will require a 4-Dimensional assimilation method, such as 4D-VAR. 
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