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The development of a shape factor instability index to guide
severe weather forecasts for aviation safety
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ABSTRACT: An instability index, called the shape factor (SF), for weather forecasting was proposed using temperature
profiles from a NASA/LaRC-hosted web-page featuring NOAA Rapid Update Cycle (RUC) radiosonde data used for
short-term weather predictions. The index of instability was predicated on the sign and magnitude of the gradient of the
equivalent potential temperature. A training data set of temperature profiles was obtained for both clear and severe weather
conditions and the SF index was computed. The data showed marked differences in the magnitudes of the shape factors
for the two weather conditions. Calculations of SF were compared with the several well-established instability indices and
there appeared marked agreement between the SF and these other metrics. It is being proposed that this new index could
be used as a parameter for input to statistical weather forecasting models to enhance overall aviation safety and air traffic
management efficiency. Of particular relevance is the fact that more comprehensive results can be garnered since the SF
index is calculated from the entire temperature profile and not just from selected temperatures as is the case for other
indices of instability. Copyright  2008 Royal Meteorological Society
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1. Introduction

The occurrence of severe weather unfavourably impacts
the capability of air traffic management systems to con-
trol the safe air travel of passengers as well as their
ability to ensure the punctuality of arrival and depar-
ture flight times. A recent report issued by the Depart-
ment of Transportation (OAEP, 2008) documented that
in 2007 one in four flights were delayed with a sig-
nificant amount being due to bad weather. Also it has
been reported (Salottolo, 1994) that 41% of air traffic
delays were attributable to bad weather and that this was
responsible for $4.1 billion dollars in direct costs to the
airline industry. Severe weather involving high amounts
of rain and thunderstorms can contribute to adverse con-
ditions such as microbursts, low visibility and unsafe
runways. The formation of thunderstorms is a particu-
larly important meteorological event that has major rele-
vance to aviation safety. The first stage of thunderstorm
formation is the ascent of large quantities of warm air
due to atmospheric instability. When condensation com-
mences, heat is released in the cloud causing it to rise
forming towering cumulus clouds. Subsequently, the liq-
uid water in the upper region of the cloud begins to
fall, resulting in downdrafts. These fast moving down-
drafts are responsible for inducing electrical potential in
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the cloud resulting in thunderstorms and possibly light-
ning. For the purposes of forecasting severe weather, it
is useful to predict the initial stage when atmospheric
instability produces significant convection (Chrysoulakis
et al., 2003). Much effort in the aviation community has
been devoted to numerical weather prediction (NWP)
models to more accurately forecast severe weather. Two
of the more persistent challenges have been the lack
of temporal and spatial resolutions of atmospheric data
and the overall unsatisfactory responsiveness of the data
retrieval system to provide adequate and timely situa-
tional awareness to air traffic managers. For some time
now, microwave data from remote sensing have been
used to obtain information about local atmospheric condi-
tions such as temperature profiles. Selected spectral bands
from remotely sensed radiometric data can be used to
approximate the temperature profile through an inversion
process, whereby temperatures at selected pressure lev-
els are processed to produce a profile with greater spatial
resolution. Several multivariate regression models have
been used to analyse spectroradiometric data for the infer-
ence of atmospheric temperature profiles. These include
principal components regression (PCR), canonical corre-
lation regression (CCR), maximum redundancy (MR) as
well as the maximum-likelihood physics-based inversion
models (Hernandez-Baquero, 2001). These temperature
profiles contain valuable information that can be used
to provide parameters for Model Output Statistic (MOS)
products (Hughes, 2004), which give the probability of
the occurrence of thunderstorms. Earlier investigations
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(Queralt et al., 2007) have identified different instabil-
ity indices such as the potential vorticity anomaly (PV)
and the Total Totals (TT) index (Miller, 1967). The for-
mer is used to monitor stratospheric intrusions into the
troposphere, which directly relates to atmospheric insta-
bility. In one study (Queralt et al., 2007) the researchers
were able to represent dynamically stable scenarios by
determining if the TT index was above or below specific
threshold percentiles. The study by Schmit et al. (2001)
validated retrievals from the Geostationary Operational
Environmental Satellite (GOES) using 18 infrared (IR)
spectral bands to calculate profiles of temperature and
moisture. Forecasters responded that these temperature
profiles were very useful in producing stability indices
such as Lifted Index (LI), convective available potential
energy (CAPE) and the total precipitable water vapour
(TPW). One of the important factors that drives local
meteorological phenomena is the instability-induced ver-
tical transport of water vapour from the Earth’s surface to
higher layers within the troposphere. These rising ther-
mals containing water vapour continue to ascend until
they reach the level of neutral buoyancy (LNB). Previous
researchers have examined the role that instabilities play
as a harbinger of impending weather conditions. In one
study (Stackpole, 1967) numerical methods were imple-
mented to calculate the pseudo-adiabatic characteristics
of saturated air parcels. This process was then used to
perform analyses of soundings to obtain the lifted con-
densation level (LCL), the level of free convection (LFC)
and the convective condensation level (CCL). Stackpole
(1967) devised an algorithm to be used on a high-speed
computer to calculate meteorological data found on Skew
T-log p graphs. The development of this mathematical-
computational tool allowed the user to traverse curves of
the pseudo-adiabatic lapse rate or to move from one curve
to an adjacent curve to derive indices of atmospheric
instability. Chrysoulakis et al. (2003) used data generated
from the Moderate Resolution Imaging Spectroradiameter
(MODIS) to assess atmospheric instability. Three well-
known indices were computed based on radiosonde data
and satellite derived atmospheric products, namely the
K-Index (KI), the Boyden Index (BI) and (LI) (Huntrieser
et al., 1996). In another study by Ma et al. (1999), the
LI was calculated from entire temperature and humidity
profiles which were determined from selected measured
brightness temperatures by using an inversion process.
Cho et al. (2003) conducted an experiment where mea-
surements were obtained from an aircraft to record mete-
orological data to characterize stability and tropospheric
turbulence. In order to formulate a complete model for
weather forecasting one must account for not only the
thermodynamic factors affecting atmospheric instability
but the dynamical effects of wind circulation and the
location of available moisture as well (Dai, 1999; Queralt
et al., 2007). In one study (Guo et al., 2002), a substantial
correlation was established between large moisture trans-
ports from the Bay of Bengal to the Yangtze River and the
resulting amount of precipitation there. This underscores
the multitude of parameters that must be incorporated

into a complete model for precipitation. The current study
focuses exclusively on the thermodynamic factors affect-
ing either clear or severe weather conditions.

It is the intention of the authors to use this study as a
pre-operational initiative to augment the body of knowl-
edge pertaining to weather forecasting, particularly as
applied to aviation safety. This paper proposes a method
for calculating an instability metric called a Shape Factor
(SF) that can be used as a metric for forecasting local
weather conditions. Once the SF has become perfected
as a suitable instability index it can serve as one of sev-
eral inputs into a neural network computational model to
more adequately warn aviation authorities of hazardous
severe storms (Chauvin and Rumelhart, 1995; Venkatesan
et al., 1997). Other possible inputs can come from verti-
cal wind shear data (Ahrens, 1982) or from radars, lidars,
surface mesonet stations, soundings and rapid scanning
satellites (Wilson, 2004).

2. Data and methodology

The severity of the atmospheric instability is dependent
upon the shape of the vertical gradient of the equiva-
lent potential temperature (EPT), that is, whether sizable
arc lengths of the gradient curve are negative over the
entire profile. It is for this reason that the index has been
called a shape factor. The data set used in this study
originated from the website (http://enso.larc.nasa.gov/)
hosted by NASA Langley, which contained RUC sound-
ing meteorological profile data comprised of the local
pressure in millibars, height in kilometres, absolute tem-
perature, the absolute dew point temperature and the
relative humidity. These data were extracted from tar-
gets with latitudes and longitudes that were collocated
with data from the National Weather Service (NWS) at
corresponding times. The NWS maintains a web-page
(http://www.weather.gov/) that provides a dataset con-
taining information about the local weather conditions
and uses descriptions such as no precipitation, light rain,
fog, very heavy rain and thunderstorms to give qualita-
tive information. Data used in this analysis were for cases
with either no precipitation or for severe weather with
very large heavy rain, accompanied by thunderstorms.
Within this report, the latter weather condition will be
tagged as severe weather for the sake of brevity. The
meteorological data along the vertical profile were used to
calculate the EPT, which was used as the primary quan-
tity to compute the SF index. This was done because its
derivative serves an indicator of atmospheric instability,
which relates to the level of saturation and precipitation
in a vertical column of air. A numerical integration was
performed in the direction of increasing height from the
surface involving the EPT to compute the SF index. This
result represents the cumulative or integrated effect of
the atmospheric instability along the vertical profile. The
index SF was calculated at selected geographical regions
for profiles that corresponded to rain-free conditions and
for conditions corresponding to severe weather. The data
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show a significant difference in the SF between the data
sets representing either clear or severe weather.

The data included in this study corresponded to various
local times from the Middle Atlantic to the south-eastern
United States. The period for the data set presented in this
investigation was from September to November 2007.
An assemblage of 15 data sets was constructed for both
rain-free and severe weather conditions, where each data
set consisted of 20 temperature soundings. Thus, there
was a total of 300 temperature soundings associated with
each weather condition. The authors felt that this was a
large enough data set to satisfy requirements for statisti-
cal significance. An algorithm was developed to process
the data by calculating the EPT and its gradient at each
vertical node point and then average the results over the
20 profiles contained in each of the 15 data sets.

To calculate values of SF it was first necessary to com-
pute the EPT, which is generally a more realistic starting
point than the dry adiabatic potential temperature (PT).
The former quantity allows for the presence of water
vapour. As an air parcel ascends into the atmosphere it
cools, which results in the formation of condensation and
the gradual elimination of water vapour. Eventually, as
the parcel continues to rise it will become dry and the
resulting potential temperature, which remains constant,
is representative of the entire process. It is this limiting
value of the PT that is called the EPT and is shown in
Equation (1) (Byers, 1974):

θE = T (
1000

p
)R/mCP exp(

Lw

CPT
) (1)

The variable T is the absolute temperature, p is
the pressure in hPa, R is the gas constant for dry
air (0.287 J g−1), m is the mass of the air parcel in
kilograms, Cp is the specific heat at constant pressure
(1.004 J g−1. K−1), w is the mixing ratio (g g−1) and L

(J g−1) is the latent heat. The latent heat was found by
using the well-known steam table for air. At each vertical
location in the profile, the temperature was bounded
by an upper and lower temperature in the steam table
(Potter and Somerton, 1995). The latent heat, which is the
change in enthalpy between the thermodynamic states of
liquid and gaseous saturation, was calculated by linearly
interpolating between the two latent heats at the upper
and lower temperatures from the table. The specific heat
was also determined by using linear interpolation from a
table of published data. At each vertical location in the
profile, the mixing ratio was found using Equation (2)
(Byers, 1974):

w = 0.622
rh × es

p(100)
(2)

In this equation, rh is the relative humidity expressed
as a percentage and es is the saturation vapour pressure in
hPa. The saturation vapour pressure was found using the
Clasius–Clapeyron equation, which is derived in many
sources on thermodynamics (Salby, 1996).

The formula for the water saturation vapour pressure
for a specific temperature is then calculated as shown in
Equation (3) (Salby, 1996):

es = 1013 × exp(13.1869 − 4918.7432

T
) (3)

In this formula the water vapour pressure is in hPa.
Once the EPT has been calculated using Equation (1) for
each vertical position in the profile a spline fit was applied
to the data. The first derivative was then computed for
the spline fit using a five-point differencing numerical
scheme. The second derivative was also numerically cal-
culated using central differencing. In order to determine
the SF index the first derivative of the EPT at each node
point was multiplied by the differential arc-length along
the curve of the gradient of the EPT versus Z, the geopo-
tential altitude in kilometres. The result of the integration
is then normalized to remove any effects of scale and is
shown in Equation (4). The non-dimensional SF index
was obtained by performing the integration numerically
using the trapezoidal rule from numerical analysis. This
procedure was repeated for a total of 15 data sets for
both weather categories, where each data set contained
the average of 20 temperature soundings. A more neg-
ative value of SF is indicative of greater atmospheric
instability, which is associated with the occurrence of
severe weather systems. The SF index is calculated as
shown in Equation (4):

SF =
∣∣∣∣ 1

TF − To

∣∣∣∣
∫ ZF

Z0

dθE

dz

√
1 + (αβ

d2θE

dz2 )2dz (4)

where TF and T0 are the absolute temperatures at the
highest point in the profile and at the surface of the
Earth, respectively, α and β are scaling factors shown
in Equations (5) and (6), respectively, and θE is the EPT.

α = ZF − Z0 (5)

β = ZF − Z0

TF − T0
(6)

The product of α and β multiplied by the second
derivative of the EPT in Equation (4) non-dimension-
alizes the expression beneath the radical sign.

The findings from this study were compared with the
metric KI, which is a well established index for instability
(George, 1960). The calculation of KI measures the
thunderstorm potential as a function of the vertical
temperature lapse rate at a temperature corresponding to
a pressure of 850 hPa, and a temperature at 500 hPa, the
dew point absolute temperature corresponding to a low
level moisture content at 850 hPa and the depth of the
moist layer at 700 hPa. The formula for KI is shown in
Equation (7):

KI = (T 850 − T 500) + Td
850 − (T 700 − Td

700) (7)
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Table I. Relation between K-Index and thunderstorm potential.

K-Index Thunderstorm potential

0–15 0%
16–19 20% unlikely
20–25 35% isolated thunderstorm
26–29 50% widely scattered thunderstorms
30–35 85% numerous thunderstorms
>36 100% chance for thunderstorms

The range for KI corresponding to the probability of
thunderstorms is represented in Table I (Chrysoulakis
et al., 2003).

The literature is replete with instability indices that
various researchers have developed with some mea-
sure of success (Showalter, 1953; Galway, 1956; Rack-
liff, 1962; Boyden, 1963). In some studies, inter-
comparisons were made between the various instability
indices (Michalopoulou and Jacovides, 1987; Dalezios
and Papamanolis, 1991). However, one unsolved chal-
lenge is that the reliability of these various instability
indices is linked to geographical region and season. It
would be helpful if an instability index could be devel-
oped with universal applicability.

Another commonly used indicator of convective insta-
bility is the BI (Boyden, 1963), which is defined as shown
in Equation (8):

BI = Z700–1000 − T 700 − 200 (8)

where, Z is the difference in geopotential height between
the two atmospheric layers at 700 hPa and at 1000 hPa
in decametres, T 700 is the atmospheric temperature at
700 hPa in°C, and 200 is the constant subtracted to scale
the index to be within a conventionally accepted range
(Boyden, 1963). For the BI the threshold value indicative
of severe weather activity is 94, where values greater than
this benchmark suggest the presence of thunderstorms
(Chrysoulakis et al., 2003).

An instability metric which has demonstrated a high
degree of success is the Total Totals (TT) index as
described by Huntrieser et al. (1996), and which is
defined as shown in Equation (9):

T T = 2(T 850 − T 500) − T 850 + Td
850 (9)

This index uses the atmospheric absolute temperature
difference between the layers at 850 hPa and at 500 hPa
along with the absolute temperature corresponding to
850 hPa and the dew point absolute temperature at
850 hPa. The thunderstorm threshold for TT varies
from 45 to 50, which is geographically and seasonally
dependent as was demonstrated by Marinaki et al. (2006).
Higher values for TT are associated with a greater
probability of thunderstorms.

The final instability index that was used to compare
with the SF was the Humidity Index (HI) (Equation (10)):

HI = (T 850 − Td
850) + (T 700 − Td

700) + (T 500 − Td
500)

(10)

The value of HI depends on the differences between the
atmospheric temperature and dew point temperature for
pressure levels corresponding to 850, 700 and 500 hPa
and was described with added detail by Huntrieser et al.
(1996). There exist many more indices for weather fore-
casting that have been widely investigated and described
in the meteorological literature (Bidner, 1970; Andersson
et al., 1989; Collier, 1994). The most important objec-
tive is to classify and ultimately rank the many indices
regarding their applicability to various geographical and
seasonal domains. This database would be invaluable
to the many users of weather forecasting information,
including the members of the aviation industry.

Another approach to weather forecasting is to under-
stand the dynamics associated with convective instability
by examining the differential equation that governs the
ascent and descent of air parcels in the troposphere. If
thermal stability exists, then the air parcel will be dis-
placed vertically upward, but then will cool as it ascends,
causing it to ultimately descend. After it descends for
a certain distance its temperature will increase, which
will cause it to rise again. The motion of the air parcel
under thermal stability will behave as a harmonic oscil-
lator that is displaced periodically at a frequency equal
to its natural frequency. This is contrasted with thermal
instability which is characterized by the continuous verti-
cal displacement of air parcels because of their buoyancy
due to lower densities and higher temperatures relative
to the ambient lapse rate of 1 °C per 100 m. If a large
volume of moist unstable air is perturbed by disturbances
in the wind field, a convective current will be initiated,
which establishes the conditions for precipitation. After
condensation has begun, latent heat is released which
increases the amount of buoyancy (Batten, 1984). It is
common practice to model the physics of rising thermals
as a second order system with a restoring force simu-
lating a spring in accordance with Hooke’s Law (Salby,
1996). The governing differential equation is shown in
Equation (11):

d2z′

dt2 + N2z′ = 0 (11)

where z′ is the displacement of the air parcel about
an equilibrium position and N2 is the square of the
natural frequency of oscillation. The parameter N is
called the Brunt–Väisäillä Frequency (BVF) that reflects
the ‘stiffness’ of the buoyancy spring. Values of N2 >

0 are directly proportional to the ‘stiffness’ of the
buoyancy spring, signifying that the rising thermals are
characterized by stability. The formula for calculating N2

is shown in Equation (12) (Salby, 1996):

N2 = g
d ln θ

dz
(12)
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The constant g is the acceleration due to gravity, i.e.
0.0098 km s−2. This square of the BVF was computed
in this study and subsequently used as a parameter to
validate the reliability of the SF. The solution to Equa-
tion (11) contains sinusoidal terms that give way to oscil-
lations. For the case where N2 < 0, the resulting solution
contains a linear combination of exponential terms that
theoretically amplify unbounded as the time increases
and is shown in Equation (13) and can be derived from
any fundamental book of Ordinary Differential Equations
(Nagle and Saff, 1993; Zill, 2000). For small displace-
ments of air parcels they tend to grow, even overcoming
the retarding effects of friction between adjacent layers:

z′ = AeNt + Be−Nt (13)

From this equation it can be clearly seen that as t

increases, the leftmost exponential term dominates and
grows unbounded. The magnitude and particularly the
sign of N2 can therefore be used as some measure of
thermal stability.

3. Results and discussion

Figure 1 shows the profiles of EPT for both weather
categories. Since a negative gradient is indicative of ther-
mal instability, both weather categories demonstrate some
pre-convective activity. However, the more negative gra-
dient is shown for the cases when severe weather activity
occurred. The data show the marked drop near 5 km,
which would accounted for the more negative value of
SF since it represents an integrated effect over the entire
profile. Figure 2 shows the profiles of the mixing ratio for
water vapour. As expected, the data show the presence of
significantly higher concentrations of water vapour below
a height of 6 km. These results indicate that at the times
of the recorded data, the water vapour had not yet pre-
cipitated out of the atmosphere. The values of SF as

Figure 1. Vertical gradient of EPT (K km−1) versus geopotential
altitude (km) for rain-free weather (plus signs) and a highly convective

event with severe weather activity (dots).

described above represent mathematically the line inte-
gral of the gradient of the EPT along the curve itself.
Therefore, preliminary results suggest that SF can be used
as a benchmark indicator of local weather conditions.

The typical temperature profiles for both weather
conditions considered in this study are shown in Figure 3.
Notice that the temperature values in the case for severe
weather are slightly higher at several altitude locations
in the profile. This is due to the release of sensible heat
associated with the condensation of water vapour.

Three examples showing the profiles for the moisture
level depths (MLD) for both weather conditions are dis-
played in Figure 4. The MLD is the difference between
the temperature and the dew point temperature. The dew
point temperature is the temperature of the air parcel
for a specific air pressure at which condensation com-
mences. The smaller the MLD the closer the air parcel
is to becoming saturated, and the closer the atmosphere
is to being unstable, initiating the conditions for weather
with precipitation. Other important factors contributing to

Figure 2. Water vapour mixing ratio (g g−1) versus geopotential
altitude (km) for rain-free weather (plus signs) and a highly convective

event with severe weather activity (dots).

Figure 3. Typical tropospheric temperature (K) versus geopotential
altitude (km) for rain-free weather (plus signs) and a highly convective

event with severe weather activity (dots).
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Figure 4. (a)–(c)Three typical profiles of moisture level depth (K) versus geopotential altitude (km) for rain-free weather conditions (plus signs)
and highly convective events with severe weather (dots).

instability include the lapse rate and the vertical structure
of moisture.

One notable and consistent feature shown in Figure 4
is that the lowest value of MLD for the case of severe
weather occurs at an altitude near 5 km, which is the
same altitude associated with the prominent negative
value of the gradient of the equivalent potential tempera-
ture as shown in Figure 1. Another interesting character-
istic of the data is the appearance of two distinguishable
peaks of the MLD for the case of no rain. The reason for
this phenomenon is unclear to the authors.

Calculations of SF used temperature profiles from
weather reporting stations in the Mid-Atlantic and south-
east Atlantic coast of the United States. The weather
and time were determined by obtaining information from
the NWS. In order to define the training set (a set of
data to determine SF values critical for the occurrence of
severe weather) for this methodology, values of SF were
computed only for conditions that were either completely
rain-free (neither fog nor light rain) and for cases when
there was severe weather. The sample consisted of
15 datasets, each with an average of 20 profiles and
the SF was computed based on the averages of the
first and second derivatives of EPT using Equation (5).
The data for both weather conditions were accumulated
and plotted in the form of histograms. These plots are
shown in Figures 5 and 6. The data demonstrated a
marked difference between the data corresponding to no
precipitation and the data that was for severe weather
conditions. For the case of clear weather, there was a
peak centred on an SF of −20. For the heavy precipitation
data the peak occurred at −40 and another less prominent
peak at −120. A threshold value distinguishing the two
opposite weather conditions was at an SF of −30. These
results suggest that SF can be used as predictor of severe
weather with thunderstorms.

Based on the information displayed in Figures 5 and
6, the thresholds of SF for clear weather and severe
weather were for values that were greater than or equal
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Figure 5. Distribution of shape factor calculations for rain-free weather.
Histogram results are based on 15 datasets, where each dataset

contained an average of 20 temperature profiles.
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Figure 6. Distribution of shape factor calculations for severe weather.
Histogram results are based on 15 datasets, where each dataset

contained an average of 20 temperature profiles.

to −30 and less than −30, respectively. The average and
standard deviation for the case of no rain were −11.2586
and 7.702, respectively. For the case of severe weather,
the average was −57.5742 and the standard deviation
was 32.645. Although it would be advantageous if the
standard deviations could have been smaller with greater
sample sizes, this study was intended to be exploratory
and the results from this investigation can assuredly lay
the foundation for further studies. Nevertheless, these
results still have significant merit since they definitely
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establish a clear and decisive threshold for identifying
temperature profiles that correlated well with either clear
or severe weather. For the case of clear weather, the
next to the last data entry for SF in Table III indicates
one value which is inconsistent with the other results.
Presently, the reason for this aberrant value for SF is
unknown.

Each value of SF shown in Table II represents an aver-
age that was computed for the severe weather category
using 20 temperature profiles. Comparisons were made
between the values of SF with several conventional insta-
bility indices using corresponding data. Similar data are
shown in Table III for the category of weather marked by
no precipitation. The calculations of the different indices
in each row of both tables corresponded to the identical
dataset.

The data for both weather categories show overall
agreement between the results based on SF values

Table II. Comparison between shape factor and various insta-
bility indices for severe weather.

SF KI TT BI HI

−49.5 32.2 43.6 97.7 21.0
−36.2 27.4 40.8 95.0 22.4
−38.5 11.9 32.5 94.4 37.0
−59.0 29.5 46.2 95.4 20.1
−48.0 26.0 43.4 95.5 17.1
−65.8 25.5 42.1 95.2 20.5
−30.1 33.0 44.1 96.4 15.4
−19.3 30.0 43.2 98.0 21.2
−2.4 18.6 44.0 94.7 32.8

−71.1 33.8 44.8 96.0 11.1
−63.3 31.6 45.8 94.9 8.4

−112.5 32.8 44.6 94.6 5.4
−49.7 33.2 46.0 96.1 11.1

−106.0 32.7 45.0 95.3 4.8
−112.1 32.9 44.0 94.7 4.5

Table III. Comparison between shape factor and various insta-
bility indices for clear weather.

SF KI TT BI HI

−21.3 2.2 33.2 93.5 52.3
−21.3 14.1 39.5 92.8 29.9
−13.1 13.2 35.8 94.8 39.6
−18.2 15.1 39.8 95.1 43.6
−15.4 5.8 36.3 92.4 43.1
−2.0 −13.5 24.7 92.2 71.3
−8.9 −3.4 31.9 90.6 51.0

−17.8 14.6 34.4 94.2 36.5
−18.6 5.4 32.2 93.3 45.8
−12.6 11.5 38.9 94.5 39.5
−9.3 12.7 39.8 93.2 31.4
−2.3 −5.9 26.0 92.9 66.3
−5.1 −10.9 22.8 91.9 64.3
4.1 −5.8 24.7 90.2 52.3

−7.2 −11.3 25.3 92.2 70.9

compared with the KI. For nearly every instance that
the SF predicted either clear weather or severe weather
the computed value for KI rendered the same result.
Future research may provide more reliable population
distributions of SF so that statistical forecasting can be
obtained with further refinement of the training datasets
for clear and severe weather conditions.

The TT index also compared well with SF for both
categories of weather. Generally, values of TT greater
than or equal to 40 were indicative of thunderstorms
or high convective instability. Marinaki et al. (2006)
investigated the TT index for various regions in Greece
during the time period from April to October. Their
radiosonde data were obtained from observations made
during the period from 1981 to 2003 and indicated that
values of TT greater than or equal to 45 corresponded to
thunderstorms.

General agreement is also seen from comparisons
between SF and the values of BI. Thunderstorm activity
was indicated by values of BI that were greater than
or equal to 95 (Marinaki et al., 2006). In that same
study the BI was fairly constant over all four seasons.
The reliability of the BI to predict thunderstorms is well
established, which helps to validate the SF.

The last index that was used for comparison was
HI. This index generally demonstrated the same degree
of consistency as was exhibited by the other indices,
including the SF. However, the HI might be more
sensitive to both geographical and seasonal domains.
An earlier study (Marinaki et al., 2006) showed that HI
indicated marked variability for a given weather category
over a 3-month period. Other indices in that same study
were more consistent with regards to weather category.

The square of the Brunt–Väisäillä Frequency, N2,
was calculated for both weather conditions investigated
in this study using Equation (10). Figure 7 shows the
profiles of this parameter for six typical soundings, where
three were for rain-free weather conditions and the other
three were for weather conditions marked by severe
weather. A large negative spike was exhibited for all three
soundings corresponding to highly convective activity.
These results were compared with calculated values of
SF for further validation of this new instability index.
Using the same data shown in Figure 7(a), the calculated
values of SF for the cases of rain-free weather and severe
weather were −21.2925 and −105.95 respectively. For
the data shown in Figure 7(b) these same values for
SF were −15.3638 and −65.7823. Finally, for the data
shown in Figure 7(c), these same calculated values for
SF were −2.2940 and −36.1958. These results indicate
that the SF index demonstrates good agreement with N2

as a marker for highly convective weather systems. It
is noteworthy that for the severe weather condition the
large negative spike in the Brunt–Väisäillä Frequency
occurs around 5 km, which is indicative of instability.
This corresponded to roughly the same altitude where
the MDL was the lowest for the severe weather data
as shown in Figure 4. Another important trend is that
there appears to be a direct correlation between the
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Figure 7. (a)–(c) Three typical profiles of the Brunt–Väisäillä Frequency squared (K s−2) versus geopotential altitude (km) for rain-free weather
conditions (plus signs) and highly convective events with severe weather (dots).

level of the negative spike for N2 and the SF. When
the SF was the most negative (−105.95) the value of
N2 was −2.1 × 10−3. For SF values of −65.7823 and
− 36.1958 the values for N2 were −1.5 × 10−3 and
−1.1 × 10−3, respectively. For the rain-free weather data
in Figure 7, the preponderance of the values for N2 were
positive, even though in Figure 7(a) the most negative
value for clear weather is −0.75 × 10−3. The data for
severe weather even exhibits values for N2 that are
positive for certain intervals of altitude. Although the
well-established stability indices and the Brunt–Väisäillä
Frequency are good indicators of weather conditions, the
SF demonstrates greater sensitivity to minute variations
of the temperature profile. It is for this reason that
once this methodology has been refined it holds the
potential of being highly discriminatory with respect to
distinguishing different classes of weather conditions.
Eventually, a large enough training set can be generated
so that a meteorological model can be developed to not
only determine clear and stormy weather, but also for
gradations of weather between these two extremes.

4. Conclusions and future plans

The results from this study suggest that the SF index
can be used as a predictor of adverse impending weather
conditions. One advantage to this approach is that the SF
provides a more comprehensive index since it is based
on the entire temperature profile and not on just selected
portions as is the case for some indices. This index is
predicated on pre-convective weather systems being char-
acterized by a negative gradient of the EPT. A total of
15 average values of SF were calculated over 20 tem-
perature profiles for both clear and severe weather condi-
tions. Comparisons between the SF and well-established
instability indices demonstrated significant similarity in
their usefulness as indicators of thermal instability in the
atmosphere. Favourable comparisons were also obtained

with the Brunt–Väisäillä Frequency and the MLD. These
results further demonstrated the applicability of the SF
index as a potential parameter for input to statistical
models to forecast weather. The next task is to apply
this methodology to temperature profiles over successive
days to acquire a time series of the SF values to dis-
cern any trends for reliably forecasting of severe weather.
As has already stated, in this study a total of 20 pro-
files were used to compute the values of SF. A desirable
data product would be a statistical model that would per-
mit forecasting with fewer profiles. This would greatly
reduce the analysis time, which is desirable for improving
aviation related weather forecasting. Including a stabil-
ity parameter in physical and/or statistical modelling can
improve local severe storm predictions. This work will be
extended to develop new algorithms to fit the data into
appropriate statistical distribution to enable us to con-
struct stochastic and numerical models such as neural
networks. These models will then be used to produce
more accurate forecasts of the local weather at shorter
time scales (1–24 h). This will in turn enable us to warn
the public and local authorities so that they will have
greater situational awareness and are able to make more
timely decisions. Finally, because the results presented in
this study were for the eastern and south-eastern United
States, more analysis needs to be done over different
geographical and seasonal domains to obtain a more gen-
eralized index.
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