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ABSTRACT

The information content of radiation measurements used in inferring profiles is defined as a reduction in
uncertainty in the estimation of a profile after the measurements are introduced. The information is shown
to depend directly on the kernel of the equation of radiative transfer, the covariance matrix of experimental
error, and the covariance matrix of the ¢ prioré statistical information. Calculations based on the minimum
rms inversion method are applied to the indirect probing of the vertical temperature distribution by micro-
wave measurements of oxygen thermal emission. Choice of optimum location of measurements is discussed
and comparison of the proposed method with that of Twomey is given.

1. Introduction

The information content of radiation measurements
has been studied previously by Twomey (1965, 1966)
and Mateer (1965). These studies have shown that the
information obtainable from indirect soundings is
severely limited by the interdependence of the measure-
ments themselves. In a loose sense, the “number of
independent pieces of information” was taken to be the
number of eigenvalues of a kernel-determined matrix
which were greater than some assigned noise level.
However, the information content of a signal should be
judged by the new information that it adds to informa-
tion already known. In many problems of indirect
sensing, statistical information about the profile is
known before any radiation measurements are made.
This @ priori knowledge is embodied in the mean and
the covariance matrix, both of which can be estimated
from past data (usually taken by direct measurements).
Such data are currently being used in remote sensing
problems in the construction of empirical orthogonal
functions (Wark and Fleming, 1966; Alishouse et al.,
1967). The use of such data to assess the usefulness of
radiation measurements in reducing the statistical
variance of the unknown function is not well known.

In Section 2, we summarize recently developed in-
version techniques (Strand and Westwater, 1968a, b),
which lead quite naturally to a definition of information
content. Applications of this quantity to remote probing
of tropospheric temperature structure by the microwave
emission lines of oxygen are given in Section 3. The
choice of optimum frequencies is discussed, and our

method of choice is compared with that of Twomey
(1966).

1 Research své)pported by the U. §. Army Electronics Command
under Project Order 67-95892,

2. The minimum rms inversion method and its
relation to information content

Let f(y) be a continuous random function on the
interval [a,6]. If X (x,y) is a continuous function of x
and y and if

b
f K (2,) (5)dy=g(2), @

then g(x) is also a continuous random function. In
indirect-sensing problems, it is wished to infer f(y) by
measuring g{x) at a set of values of », say x,, i=1,
2, -+, n. Introducing a suitable quadrature approxi-
mation to (1) gives the matrix equation

Af=g, (2)

where

A=(4y), i=1, 2, coymy j=1,2, -, m,
m is the number of quadrature abscissas,
# is the number of observations of g(x),
Ay=wiK (%,55),
y5=quadrature abscissas,
x¢=values of x for which g(x) is observed,
w;=quadrature weight associated with y;,
Ji=f(y),
gi=g(x:),
f=[fife: - fn]® is the column vector of unknown
functional values (the superscript T denotes
matrix transposition), and
8=[g1g2- * - ga]" is the column vector of values of g(x).

Assume that the mean vector E(f)=£ and the
covariance matrix, S,=E[ (f—fo) (f—f,)7] are known.
[E( ) denotes the expected value operator and S, de-
notes the covariance matrix of any vector v]. In prac-
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tice, f, and S; may be estimated from the past history
of the function f. By the linearity E and the propagation
rule for covariance matrices (Deutsch, 1965), we have
E(g)=g, and S,=AS;AT. In the problem of interest
here, g is a vector of measurements subject to error.
Thus, one observes

g=g+e 3)

instead of g. In addition to the above assumptions, we
assume 1) the errors ¢; are independent of f, and hence
are independent of g; 2) the errors ¢; have a multivariate
distribution with mean zero and known covariance S.;
3) the errors introduced by the quadrature approxima-
tion of Egs. (1) and (2) are negligible with respect to
e; and, 4) S, and S; are both nonsingular with dimen-
sions #X# and mXm, respectively.

Much of the previous work in the field has emphasized
the importance of representing the solution by means
of a suitable basis (Wark and Fleming, 1966; Alishouse
et al., 1967). This representation was necessary because
previous inversion methods solved for a fixed number
of parameters (usually small), the number being deter-
mined by the degree of independence of the measure-
ments and the measurement noise level. The usual bases
chosen in these methods were the eigenvectors of Sy,
arranged in decreasing order of eigenvalues. However,
it was shown by Strand and Westwater (1968b) that
with the minimum rms inversion method the introduc-
tion of a basis matrix to represent the solution (other
than the identity in m dimensions) is neither necessary
nor desirable. The computational difficulties which
occur in determining the eigenvectors and eigenvalues
of a large matrix may be circumvented by this method.
Hence, in the following, the only desired representation
of the unknown function will be its values at the m
quadrature points. The following will summarize the
results of Strand and Westwater (1968b).

Let w=1f—fy, h=g—gy=A(f—f;)=A» and let the re-
duced observed data (with respect to the mean) be h,,
where

h,=An+-e. 4)

The estimate of n, %, is determined as a linear com-
bination of the data

#=Bh,, &)

where B is an m X% matrix to be determined. The
matrix B is uniquely determined by requiring that the
fit to i be the best on the average in the mean-square
sense, i.e., that E{(f#—»)"(§—n)} is minimized with
respect to B. Here, the expected value is taken over the
joint probability distribution of f and e. This require-
ment leads to the optimum linear unbiased estimate of

1 as
#=S,ATH h,, (6a)

where

H=S.4AS,AT,
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or alternatively
'i] = X—IATS e_lhe, (6b)

where

X=S,1+ATSA.

The equivalence of (6a) and (6b) follows from the
identity

ATS ~H=XS AT, 0

which relates the » X # matrix H to the X # matrix X.
Similar results have been obtained by C. D. Rodgers?
of Oxford University. The covariance matrix of the
solution, S;—,, is given by

Sp,=X. )

A convenient overall quality criterion is the sum of the
diagonal elements of S, i.e., Tr(S;—,) where Tr( )
denotes the trace. Thus,

Tr{S;_,} = TrX-L. (9)

It can be shown that the trace of S;_, is m times the
expected mean-square error.

The statistical information added by the radiation
measurements may be determined by comparison of (9)
with the trace of S;. In the absence of any measure-
ments the best estimate of f i1s f=£3(p=0) with an
overall variance TrS;. Adding measurements modifies
the estimate to (6), reduces the overall variance to
TrX—,, and reduces the variance by Tr(S,—X).
Useful quantities for judging the information are

R=Tr(S,~X-1), (10)
Tr(S;,—X1)
= (11
TI‘S/
TrX—1\}
o-( ). (12)
m

where R is the total reduction in variance, F is the
fractional reduction, and U is the standard deviation
per point. From this point of view, the maximum
reduction in variance yielded by  independent error-
less measurements would be TrS;. The information
contained in #(<m) independent errorless measure-
ments is easily obtained by letting S0 in (6), (7),
and (8) as

R= TI'{S]-— SfAT(ASfAT)—lASf}. (13)

In any practical remote-sensing experiment, informa-
tion is limited in two ways: 1) the number of indepen-
dent measurements that can be taken is small, and
2) measurement errors are always present. The useful-
ness of the experiment can be judged by determining

% Dr. Rodgers has graciously shown us his results for comparison
of inversion methods.
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R, F and U as functions of Sy, Sc and A. If F is used, the
theoretical maximum achievable information is F=1
and occurs when n=m and S.=0.

The quantity R(or F) may also be used to study the
optimum placement of measurements. The optimum
placement is achieved, given that the number # is fixed,
when the function R(or F) achieves its maximum over
the range of . The optimum set derived in this way
can differ considerably from the set as chosen by the
method of Twomey (1966). This is shown in the follow-
ing section by a physically-reasonable numerical
_example. Since R depends on Sy, the optimum set also
depends on S;. This implies that large seasonal or
geographic variations could influence the optimum
choice.

3. Application to indirect temperature sensing

The possibilities of inferring the vertical temperature
profile from measurements of microwave thermal
emission by oxygen are well known. Meeks and Lilley
(1963) discussed the determination of the gross tem-
perature profile from 40 km to sea level by satellite
observations; Westwater (1965) discussed determining
the tropospheric temperature profile by ground-based
techniques. The calculations reported here are intended
to illustrate the usefulness of the quality criteria given
in Section 2 in planning indirect-sensing experiments
and to indicate the accuracy that oxygen thermal
emission measurements can yield.

Microwave radiometric measurements are usually
expressed as an equivalent emission temperature or
effective antenna temperature (Shklovsky, 1960). This
effective temperature is both the frequency average
over the bandwidth of the receiver and the weighted
directional average over the radiometer’s antenna
pattern of radiation received from all frequencies and
directions. The uni-directional, monochromatic radia-
tion from any infinitesimal solid angle is expressed as
the brightness temperature 7', (») at frequency ». Thus,

TaBLE 1. Mean temperature and pressure for Denver, February
(k is height above surface in km).

Downward Upward
s=10—h T(s) P(s) h T (k) P
(km)  (K)  (mb) (km) (°K)  (mb)
0.060 217.315 201.659" 0.000 267.956 831.423
0:314 217.666 209.799 0.140 269.781 816.770
0.759 218.282 224.897 0416 269.474 788.533
1.378 219.138 247.703 0.723 268.102 758.244
2.145 222.138 278.691 0.943  266.806 737.167
3.029 * 226.598 318.933 1.094 265.866 722.982
3.994 232.577 368.134 1.462 263.574 689.408
5.000 239.914 425.960 2.000 260.161 642.664
6.006 247.069 490.838 2.538 256.857 598.547 -
6.971 253.704 560.410 2906 254.517 569.811
7.855 259.270 630.462 3.328 251.729 538.201
8.622 264.095 696.903 4615 242.720 450.398
9.241 267.891 754.769 6.500 228.973 342.680
9.686 269.588 798.907 8.385 219.466 257.053
9.940 268.740 825.097 9.672 217.686 210.282
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the brightness temperature may be regarded as the
antenna temperature of an idealized radiometer which
only accepts radiation from a single direction and
frequency. The brightness temperature observed look-
ing vertically through an atmosphere of thickness H
is given by

To(v)=T:(v) exp[—,(0,H)]

+ [ T expl—r02ah, (19

where
h
2 (0)= / w (D),
0

a, (k) is the absorption per unit length, T'(k) tempera-
ture, /4 the distance from radiometer, and T:°(») the
unattenuated brightness temperature from external
sources.

The microwave absorption coefficient «, is due to
water vapor and oxygen. At frequencies near 60 GHz,
the fractional contribution due to water vapor is small
and will be neglected here. For humid locations the
introduction of a model atmosphere to account for the
wet component might be justified (Dutton and Bean,
1965). The absorption due to oxygen can be calculated
as a function of temperature and pressure from the
Van Vleck equation (Van Vleck, 1947). The major
uncertainty in these calculations is the pressure depen-
dence of the oxygen line widths (Meeks and Lilley,
1963). The calculations here are based on a quadratic
expansion of line width as a function of pressure, with
constants derived from a least-squares fit to the data
of Artman (1953); the line widths are assumed to have
a temperature dependence of 7°:35, The details of the
line width analysis are given by Westwater and Strand
(1967). In the height region of interest here (0— 10 km)
Doppler and Zeeman broadening are negligible.

The temperature mean and covariance matrices were
obtained by averaging 5 years of February radiosonde
data (163 soundings) taken at Denver, Colo. If we
denote the mean temperature at the quadrature point
ki by T(h;) and the i, j element of the covariance
matrix by (Sr):= Sr(k:,k;), then

1w
T(hi)=’— Z Tp(hi);

(15)
LV p=1
and
1 w _
Sr(hihy)=——2 [T,(h:)—T(h:)]
N—1p=1
X[T,(h)—T ()], (16)

where N is the number of pieces of data and p is an index
for each member of the sample. Table 1 gives the mean
T and P at the Gauss-Legendre quadrature heights
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TaBLE 2. Temperature covariance matrix for downward inversion for Denver, February.
(S1)i;=Sr(s;,s;) [°K2] and s; are the quadrature distances (km) given in Table 1.

35.50 33.10 26.59 1506 0.00 —1324 —1891 —21.80
3249 2703 1614 144 —11.60 —1749 —20.67

2570 1742 459 — 713 —12.89 -16.34

16.18  8.58 28 — 463 — 1.74

12.19 11.30 8.98 6.65

21.24 22.25 20.76

27.55 28.25

32.12

(S)is= (S1)s:

—2254 —2276 —2480 —26.39 —27.44 —25.87 —1546
—21.20 —-2125 —23.12 —2463 —2533 —23.74 —14.07
—16.64 —16.72 —18.27 —19.78 —2024 —18.65 —11.42
— 823 — 844 — 941 -—-1055 —10.82 — 921 — 579
5.83 5.29 4.89 4.61 4.55 4.96 2.25
19.82 19.16 20.08 2047 20.34 19.35 12.21
27.75 27.09 27.77 28.36 28.34 27.02 18.41
31.93 31.00 31.28 32.10 32.42 30.78 21.07
33.85 33.54 33.54 34.04 34.38 32.48 22.81
35.22 3547 35.75 36.19 34.27 24.80

39.46 4049 -4093 38.76 28.29

45.62 47.43 44.77 31.98

51.39 49.17 35.14

50.98 36.61

36.07

used in the downward inversion and at the three-
interval Gauss-Radau quadrature heights for the up-
ward inversion. The covariance matrix for downward
inversion is given in Table 2. These matrix elements
are associated with height as

(S1):7=Sr(s:,5;)=Sr(10~k;, 10—h;)),

where sy is the distance from the radiometer.

For many ground-based probing schemes, the value
of the unknown f at the surface can usually be measured
directly. This constrained point can be used to modify
the statistical estimation and its uncertainty as follows.
First, the constraint can be incorporated directly into
the integral equation by using a quadrature formula
(such as Gauss-Radau), which uses the value fi of the
function at 0, directly, i.e.,

/ K@5)/0)dy=5 wk ) /(09

=w11<<x,o>fl+§'f2 WK @) f). (17

By subtracting w:K (x,0) f1 from the reduced measured
quantity 4., a matrix equation to be solved for the
(m—1) components of the function f is obtained.

Second, knowing f; reduces the uncertainty in all the
other functional values. The new covariance matrix
S;9, of dimension (m—1)X (m—1), has elements

Slislj

Sii(c)=sif_— ] i; ]=2> 3: cre, M,
11

where

SfE (S,’j) and Sf(c)= (S{j(c)). (18)

For convenience, the matrix S;(9 will be referred to in
the following as the constrained covariance matrix.
Furthermore, instead of the mean f, as the best @ priori
estimate of {, the effect of knowing the first value f1

modifies this optimum @ priori estimate to f, where
St .
fi= f0i+S—(f1—f01), 1=2,3, -+, m. (19)
11

Eqgs. (18) and (19) may be derived from linear regres-
sions of the (m—1) functional values f, f3, -+ fm as
functions of the surface value f; (Westwater and
Strand, 1967).

The unconstrained and constrained “upward” co-
variance matrices for the Denver February temperature
structure are shown in Tables 3 and 4, respectively.

TasLE 3. Temperature covariance matrix for upward unconstrained inversion for Denver, February.
(S7)i;=Sr(h;,h;) [°K?] and ; are the quadrature heights (km) given in Table 1.

3549 3636 3551 3439 33.56 32.89 3085 2841 2515 2389 2343 2025 1514  —274 —12.39
46.54 4624 4450 4330 4238 30.66 3611 31.85 3047 3022 27.30 2090 —394 —19.63
5074 4992 48.80 47.83 4482 4065 35.67 34.13 3391 3091 2371 —495 —23.01

51.19 5033 4946 4649 4217 3705 3554 3539 3210 2457 —6.00 —2412

4994 4919 4655 4234 37.28 3578 3559 3229 2493 —594 —24.04

4859 4618 4213 37.14 3561 3542 3215 2497 —597 —23.99

(Sr)is= (Sr)s 4477 4153 3693 3536 3517 3197 2488 —592 —23.64
4034 3670 3516 3493 31.56 24.65 —532 —22.79

3541 3439 3416 3037 2339 —4.52 —2087

3411 3420 3049 2329 —4.15 —20.34

34.82 3128 2368 —401 —20.23

3159 2437 —312 —20.09

2447 138 —14.57

1296 1121

31.85
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TasiLe 4. Temperature covariance matrix for upward constrained inversion for Denver, February.
(8¢5 =81 (hiy1,;41) [°K*] and k; are the quadrature heights (km) given in Table 1.
9.29 9.86 9.27 8.92 8.68 8.05 7.00 6.08 5.99 6.22 6.55 539 —113 — 694
1521 1551 1522 1492 1395 1222 10.51 10.23 1047  10.65 85 -221 —10.61
17.87  17.81  17.59  16.60 1464 12.68 1239 1260 1248 990 334 —12.11
18.21 18.09 1738 1547 1350 13.19 1343 1314 1061 —335 —12.32
18.11  17.59 1580 13.83 1347 1371 1338 1094 343 —12.51
1795 1683 1507 1459 1480 1437 11.72 354 —12.87
(879);;= (Sr9) ;4 17.60 1657 16.04 16.17 1535 1253 —-3.13 1287
17.59 1746 17.56 1602 12.66 -—2.58 —12.09
18.03 1843 16.86 13.10 231 —12.00
1935 1791 1368 220 —12.05
2004 1573 156 —13.02
18.01 255 — 9.28
12.75 10.25
27.52

Here (Sr)s=Sr(hih;) and (Sr¢)i=8r (hiyy, ki),
where the %, are the quadrature heights given in Table
1. The surface constraint reduces the matrix elements
describing the lower atmosphere but has little effect on
the upper levels. The trace is reduced from 572.81 (°K)?
to 247.52 (°K)z.

To study the information added by oxygen emission
measurements, calculations were made for five fre-
quencies and several choices of measurement error for
both upward and downward inversion over the 10-km
height interval. The kernel was determined from the
mean temperature and pressure data given in Table 1.
Since the kernel is temperature-dependent, an in-
version scheme based on the linear methods given here
would necessarily be iterative (Westwater,1965). The
brightness temperatures and optical depths for the
mean profile are given in Table 5. In the upward

TaBLe 5. Calculated brightness temperature, T's and optical
depths 7, for Denver, February, mean profile; To=267.956K.

calculations, the emission above 10 km is neglected; in
the downward case, the ground is assumed to be a
blackbody radiating at the surface temperature Ty, An
example of a solution covariance matrix is given in
Table 6 for the downward inversion with each of the
five measurements having an assumed rms error of
0.1K in the brightness temperature. This matrix is to
be compared with Table 2 to show the reduction in
uncertainty of the profile estimation by the introduction
of the five measurements.

The meaning of a 15X15 covariance matrix is
difficult to present in simple form. A rough estimate of
the standard deviation to be expected at each quadra-
ture height is given by the square root of the corre-
sponding diagonal element of the covariance matrix.
These quantities are plotted as functions of height in
Figs. 1-3. In all cases shown, the measurement error
covariance matrix is scalar, S.=¢2l, where ¢, is the
standard deviation in °K and I is the #»X# identity
matrix. The reduction of the total error in the tempera-
ture profile by various choices of ¢, is given in Table 7.

Upward Downward For example, in the case of upward constrained inversion
¥ I Lo Tl with brightness temperature errors of 1K in each of the
(GHz) (°K) T (°K) (°K) . .
) 00,690 0514 95665 259,461 five measurements, the variance is reduced by R
. . s . K — o 2 . : _

333 105022 1.448 184798 248,055 =178.13 .( .K) , the fr?‘ctlonal red}lctlon .F =0.72, an.d
55.0 260.669  4.668 226.924  229.459 the remaining uncertainty per point U is 2.1K. It is
57.3 268.089  14.674 219516 219.516 apparent that many experimental possibilities can be

61.193059 268.633  20.677 218.731 218.731 lnvestigated with the preceding methods.

TABLE 6. Solution covariance matrix for downward inversion for Denver, February.
ae=0.1K; X;;71=X"1(s;,5;) [°K?]; and s; are the quadrature distances (km) given in Table 1.

170 041 -0.76 -0.81 -0.11 0.32 0.42 0.43 007 -011 -017 -0.10 —-036 —043 -—0.23
0.57 —-032 —-061 —-0.16 0.26 0.28 0.21 004 —-003 —0.10 -0.09 -013 —-024 -0.10
0.81 013 -033 —-021 -—0.03 -—-0.01 0.19 0.17 009 —009 —-006 -—0.14 -0.24
1.38 0.19 —-0.60 -—0.57 —-0.26 0.01 0.14 0.17 0.06 0.14 0.45 0.54
126 —-005 -052 —-056 -044¢ —-020 —0.04 0.40 0.68 0.77 0.19
1.47 038 -—0.72 —099 —0.79 0.12 0.64 0.71 0.30 0.32
1.87 028 —-0.18 —-034 —-023 -013 —-023 -—-0.16 0.22
1.65 0.93 0.10 —0.66 —0.84 -—-0.87 -—-0.78 —0.67
1.84 121 —-027 —124 —-156 -—1.69 —1.28
(X1);= (XD 215 047 —119 —176 —194 —119
1.87 028 —-0.75 —119 -—0.67
2.08 1.95 1.01 —0.08
3.64 3.08 1.14
6.37 3.59

10.74
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TaBLE 7. Solution error vs error in brightness temperature for five frequencies of Table 5.
S.=cll [°K2. All values in (°K)2.
TrX™!
TSy o.=0 ae=0.01 e=0.1 g.=0.5 ge=1.0 ge=1.5 =20
Downward 495.56 19.68 21.63 38.39 66.61 91.45 114.10 138.23
Upward 572.81 21.83 27.54 44.17 63.68 78.63 91.98 104.07
Upward constrained 247.52 18.27 23.19 37.85 55.54 69.29 81.53 92.79
10
| I l [ I | I I l
9— —]
x
o
81— —]

SQ. ROOT OF DIAGONAL ELEMENT OF
SOLUTION COVARIANCE MATRIX IN

O-e=|.O°K /O;=00| °K
1A /Oe=0.1°K a
0e=0.0 °K
0 | | | | [ |

0 1 2 3 4 H] 6 1 8 § 10
DISTANCE BELOW 10 km LEVEL IN km

F16. 1. Square root of diagonal element of solution covariance matrix (°K) vs distance below
10-km level for various values of o.. Downward inversion, five frequencies, Denver, February.

10 T | I | T T

| | f

°K

SQ. ROOT OF D!AGONAL ELEMENT OF
SOLUTION COVARIANCE MATRIX IN

N
Oe=00I °K
Oe=00°K €

0 | | x | | [ | | |
0 1 2 3 4 5 § T ) y 10
HEIGHT ABOVE SURFACE IN km

F16. 2. Same as Fig. 1 except for height above surface and unconstrained
upward inversion.
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SQ. ROOT OF DIAGONAL ELEMENT OF
SOLUTION COVARIANCE MATRIX IN °K

! | 1

\ - o
0e=001°K ]
Oc=00°K ¢

| ] ! | |

0 1 2 3 4

5 6 7 8 9 10

HEIGHT ABOVE SURFACE IN km

Fi6. 3. Same as Fig. 2 except for constrained upward inversion.

4. Interdependence and optimum location of
measurements

Twomey (1966) has given an explicit procedure for
determining the optimum location of measurements.
This method orders a set of measurements by syste-
matically eliminating the most redundant of the set

and is based entirely on the properties of the kernel.
However, when the information contained in the @ priori
statistics, S;, is introduced, an additional correlation
between radiation measurements and S; occurs. Thus,
if we define the optimum subset of a large set of mea-
surements as the subset which yields a minimum TrX™!
(i.e., minimum expected mean-square error), the order-

TaBLE 8. Solution variance TrX~! [°K2?] resulting from successive introduction of measurements for Denver, February. TrSy(D)
=495.56 (°K)?, TrS§, (U =572.81 (°K)?, TrS;{UC)=247.52 (°K)? where D is downward, UU upward unconstrained, UC upward con-

strained ; frequency 1s in GHz and o is the rms measurement error.

0.0 ae()(‘1K) 1.0 Twomey’s downward
frequency ranking (GHz)
1 Freq (1) 61.193059
(6Y)] D 292.01 292.11 294.51 301.66 (2) 35.0
Uu 136.26 136.36 138.74 146.01 3) 53.3
UucC 119.31 119.47 123.09 133.20 4) 57.3
) 512
2 Freq Twomey’s upward uncon-
1,2) D 109.63 110.03 119.39 145.33 strained frequency ranking (GHz)
Uu 65.50 65.89 74.18 92.93 (1) 61.193059
UcC - 58.78 59.31 69.10 85.28 (2) 533
3 57.3
3 Freq . 4) 55.0
1,2,3) D 47.15 48.94 73.13 100.77 (5) 512
UU 50.10 53.57 7111 88.90
ucC 40.51 42.82 58.76 73.28 Twomey’s upward con-
strained frequency ranking (GHz)
4 Freq (1) 61.193059
1,2,3,49 D 32.40 . 41.68 71.89 97.93 (2) 355.0
uu 36.18 46.28 65.62 80.89 (3) 353.3
UcC 29.07 39.98 57.45 71.54 4) 573
(5 3512
5 Freq
1,2,3,45 D 19.68 38.39 66.61 91.45
Uu 21.83 4.17 63.68 78.63
UcC 18.27 37.85 55.54 69.29
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ing of sets will differ, in general from that obtained by
Twomey’s method. In addition, the dependence of
observations is described differently here. Instead of an
effective ‘“number of independent pieces of informa-
tion,” all measurements will reduce the variance of the
solution and are considered as information. The depen-
dence of measurements is seen as a law of diminishing
returns and adding additional dependent measurements
reduces the variance very little. However, if one is
willing to pay the cost, the variance can be reduced to
any arbitrarily small level by proper selection of a large
number of observations.

The effect of dependence of measurements was studied
for the microwave inversion problem as follows. Kernels
corresponding to the five frequencies of Table 5 were
ranked in the order of decreasing strength by the
method of Twomey. The solution variance was calcu-
lated for a number of assumed experimental errors as
each of these observations was successively added.
These results are shown in Table 8. In the errorless
cases, each successive measurement reduces the variance
by substantial amounts; when errors are introduced,
the reduction of variance after the first two or three
measurements are added is small. The non-optimality
of Twomey’s method of measurement ranking is
evident since cases occur when the addition of a channel
reduces the variance more than its predecessor.

The optimum subset of a large number of possible
measurements will depend on the kernel and the
covariance matrices of the statistics and experimental
error. In general, the optimum will also depend on the
number of elements in the subset. The rankings of the
five frequencies for one-frequency and two-frequency
optimums are shown in Tables 9 and 10, respectively,
for the upward constrained case. Note that the ranking
changes for different choices of experimental error, and
that all rankings differ from those based from Twomey’s
scheme which is based only on the kernel.

The determination of an optimum set of frequencies
from an ensemble large enough to adequately cover the
entire oxygen band would be a large computational
chore. If NV frequencies suffice to cover the band and
one wishes to determine an optimum M of them, then
N!/(N—M)!M! trace computations must be compared

TasLE 9. One-frequency expected mean-square errors TrX—!
[°K?] for Denver, February; upward constrained inversion.
Ranking according to minimum trace criterion is enclosed in
parentheses. TrS;=274.52 (°K)? and o, is the rms measurement
error.

a.(°K)

Twomey’s Frequency

ranking (GHz) 0.0 0.5 1.0
1 61.193059 119.31 (5) 123.09 (5) 133.20 (4)
2 55.0 78.09 (2) 81.70 (2) 91.68 (1)
3 53.3 7430 (1) 80.73 (1) 9743 (2)
4 57.3 105.45 (4) 109.03 (4) 118.78 (3)
5 51.2 79.44 (3) 101.46 (3) 142.66 (5)
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TasrLeE 10. Two-frequency expected mean-square errors TrX!
[°K27] for Denver, February; upward constrained inversion.
Ranking according to minimum; trace criterion is enclosed in
parentheses. TrS;=247.52 (°K)? and ¢, is the rms measurement
error,

a.(°K)
Twomey’s Frequency
ranking  (GHz) 0.0 0.5 1.0
1 61.193059 58.78 (9) 69.10 (4) 85.28 (4)
2 55.0
1 61.193059 56.40 (7) 65.14 (2) 82.61 (3)
3 53.3
1 6;.193059 75.89 (10) 106.30 (10) 116.63 (10)
4 57.3
1 61.193059 58.58 (8) 77.66 (8) 103.86 (9)
5 51.2
2 55.0 50.54 (2) 66.23 (3) 7995 (1)
3 53.3
2 55.0 5548 (5) 69.53 (5) 85.77 (6)
4 57.3
2 55.0 51,12 (3) 69.99 (6) 85.3¢ (5)
5 51.2
3 53.3 5401 (4) 63.54 (1) 80.69 (2)
4 57.3
3 53.3 4938 (1) 78.62 (9) 93.53 (1)
5 51.2
4 57.3 55.79 (6) 7430 (7) 97.39 (8)
S 51.2

to determine a minimum. In view of the high cost of
microwave radiometers, however, such calculations
might be in order.

5. Conclusion

It was shown that the information content of radia-
tion measurements used for remote probing can be
defined with reference to @ priori information. Com-
parison of the solution quality criterion, TrX—' (m
times the mean-square error), with the trace of the
a priori covariance matrix, TrSy, can be used to judge
the information content. An optimum set of measure-
ments can be defined as the set which minimizes TrX—1,
and is shown to depend on the ¢ priori knowledge, the
measurement covariance matrix, the kernel of the
equation, and the order (number of elements) of the set.

Calculations of information obtainable from micro-
wave measurements of oxygen thermal emission were
carried out for a radiometer measuring upwelling and
downwelling radiation from a 10-km height interval in
the troposphere. Out of an initial choice of five ire-
quencies a one-frequency and two-frequency optimum
set was obtained, and comparisons were made with the
optimum set obtained by the method of Twomey. The
two methods differ considerably in optimum ranking.
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