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Abstract A one-dimensional variational (1DVAR) algorithm was developed, which combines
measurements taken by the ground-based microwave radiometer profiler (MWRP) with the Rapid Refresh
(RAP) model to retrieve a more accurate temperature and humidity profiles under clear sky. The passive and
active microwave-vector radiative transfer model was used to simulate brightness temperatures and
calculate weighting functions for 22 channels of the MWRP. As MWRP measurements are mainly weighted in
the lower atmosphere, a measurement adjustment is performed to reduce the contribution from above
10 km. The results of the 1DVAR algorithm have been compared with the MWRP built-in neural network (NN)
retrievals and radiosonde observations, which show that the 1DVAR method outperforms the NN retrieval
both in temperature and water vapor. Our statistical study further shows that the water vapor profiles from
RAP are biased higher than the radiosonde observations, while the 1DVAR-retrieved humidity values show
significant improvements throughout the entire 10-km range. The improvements in temperature profiles
occur mainly within the lowest 4-km atmosphere, while upper level retrievals are mostly influenced by initial
values. This is consistent with the characteristics of the Jacobian matrix and the background error covariance
matrix. The outcomes of 44 clear-sky cases show that the maximum mean retrieval error of the 1DVAR
algorithm is less than 0.2 K for temperature below 4 km and less than 0.15 g/m3 in water vapor density. These
results are shown to be significantly better than the NN retrieval (3.0 K and 1.25 g/m3) and also superior to the
RAP reanalysis (0.3 K and 0.5 g/m3).

1. Introduction

High-quality measurements of upper atmospheric conditions such as temperature, humidity, and pressure
are crucial for accurate weather forecasting. Therefore, it is necessary to develop numerical weather predic-
tion models capable of producing high-resolution upper atmospheric profiles. Radiosonde observations
(RAOBs) take direct measurements of temperature, moisture, and pressure with a high degree of accuracy
up to an altitude of roughly 30 km. However, RAOB measurements are only taken twice daily at selected
locations (New York State [NYS] has three sites totaling in only six sounding profiles per day). In order to
improve the temporal and spatial resolutions of sounding data, various approaches based on passive
infrared or microwave spectral radiation measurements and active lidar measurements have been pro-
posed and implemented. Such systems are cost-effective and able to rapidly retrieve atmospheric profiles
throughout a given 24-hr period (Blumstein et al., 2004; Boukabara et al., 2011; Jang et al., 2017; Sanò
et al., 2015).

The microwave radiometer (MWR), which operates in the range of 20–60 GHz, possesses the potential to
provide continuous retrievals of temperature and water vapor profiles with a relatively high temporal
resolution. The statistical inversion methods, such as regression (Westwater, 1993), Bayesian maximum
probability (Keihm & Marsh, 1996), and neural network (NN, Cadeddu et al., 2009), had been applied in
the past to derive such profiles. These methods combined the measurements of MWR with radiosonde
climatology near the observation site or with various model outputs. Solheim et al. (1998) compared the
advantages and disadvantages of these statistical inversion methods in detail. Overall, these methods have
great limitations on solving nonlinear problems and their successful operation relies on a large number of
training samples.

The one-dimensional variational (1DVAR) approach is a physical inversionmethod which utilizes a precise for-
ward radiative transfer model and iterations to search for an optimal solution while simultaneously minimiz-
ing the cost function. Several studies have shown that this method achieves better inversion accuracy than
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traditional statistical methods (Cimini et al., 2010; Duncan & Kummerow, 2016; Hewison, 2007). The accuracy
of the first guess is an important factor affecting retrievals of the 1DVAR method. Most studies adopted the
results of numerical forecast model outputs as the initial values of the 1DVAR algorithm. The European Centre
for Medium-scale Weather Forecast and the National Center for Environmental Prediction’s (NCEP) global
forecasts are two of the most commonly used a priori information. Both satellite-based and ground-based
MWRs can be applied to retrieve atmospheric profiles using the 1DVAR method by combining the results
of numerical forecasting models. Liu and Weng (2005) used the 1DVAR algorithm to derive the atmospheric
vertical profiles of temperature, humidity, and liquid water from instrument measurements of the advanced
microwave sounding units. Hewison (2007) introduced the 1DVAR retrieval of temperature, water vapor, and
cloud profiles from a 12-channel ground-basedMWR. In the abovemethods, the a priori information adopted
by the researchers is mostly 6 or 12-hr numerical forecast model outputs; such methods provide limited fore-
cast accuracy (Benjamin et al., 2016). To improve retrieval results, Cimini et al. (2011) adopted the U.S.
National Oceanic and Atmospheric Administration Local Analysis and Prediction System’s hourly analysis
as the background information in their 1DVAR retrieval for the 2010 Winter Olympics. Martinet et al. (2017)
introduced temperature profile retrievals in an Alpine valley by merging brightness temperature measure-
ments from the ground-based MWR with 1-hr forecasts from the convective scale model. Recently, NCEP
has developed a new operational hourly updated numerical weather prediction system, the Rapid Refresh
(RAP), covering all of North America (Benjamin et al., 2016) which allows for more accurate a priori informa-
tion on the current atmospheric state.

The State University of New York, University at Albany, in partnership with the Federal Emergency
Management Agency, the NYS Division of Homeland Security and Emergency Services, and the National
Weather Service, has developed an advanced statewide Mesonet equipped with sophisticated instrumenta-
tion to detect high-impact weather phenomena. The NYS Mesonet consists of a 126-station network across
the state, with an average spacing of about 25 km. Each Mesonet site provides a “standard” suite of measure-
ments including surface temperature, relative humidity, wind speed and direction, precipitation, solar radia-
tion, atmospheric pressure, and soil moisture and temperature at three depths. Of the 126 sites, 17 sites are
“enhanced” or outfitted with additional, specialized instrumentation including an environmental sky imager-
radiometer (eSIR) that measures accurate spectral solar radiation distribution, cloud cover distribution and
motion, a Doppler lidar measuring 3-D winds in the vertical up to 1–2 km aboveground level, and a MWR
profiler (MWRP) providing vertical profiles of temperature and moisture up to 10 km aboveground level.
The retrieval results of MWRP are based on its built-in NN model, which can only provide limited retrieval
accuracy. Improving the NN configuration (Blackwell, 2005) is a feasible option to enhance the instrument’s
inversion ability. However, the NN algorithm has its limitations, including ambiguous physical meanings and
the need for large amounts of historical sounding data to train network parameters. To utilize MWRP mea-
surements for vertical profiles of temperature and moisture, a new 1DVAR method has been developed
which combines observations from the ground-based MWRP with the forecasted profiles (reanalysis) of
the RAP. The ground-based MWRP and the RAP data are introduced in section 2. Section 3 presents the basic
concept of the 1DVAR retrieval method. Section 4 describes the results of the 1DVAR retrieval algorithm
developed for the NYS Mesonet in detail. The conclusions and suggestions for future research are discussed
in section 5.

2. Instrument and Data

Microwave radiometer profilers used in the NYS Mesonet observe absolute microwave radiances (or bright-
ness temperatures) at 22 frequencies. Channels 1–8 are in the range of 22–30 GHz, and the remaining 14
channels fall within the 51–60 GHz range. The center frequencies of the first eight channels are 22.234,
22.500, 23.034, 23.834, 25.000, 26.234, 28.000, and 30.000 GHz, most of which are sensitive to atmospheric
water vapor and are used to derive the humidity profile. The remaining 14 channels are located within oxy-
gen absorption bands and their center frequencies are 51.248, 51.760, 52.280, 52.804, 53.336, 53.848, 54.400,
54.940, 55.500, 56.020, 56.660, 57.288, 57.964, and 58.800 GHz. An MWRP has been installed on the roof of the
Atmospheric Sciences Research Center (ASRC; 42.6921°N, 73.8326°W, 95 m above the sea level) since the end
of 2016. The MWRP can measure the brightness temperatures at any zenith angle every few minutes. During
the MWRP observations, operational radiosonde balloons were launched routinely at UTC 00:00 and 12:00
from the ASRC site. Equipped about 10 m away from the MWRP is an eSIR developed by scientists at
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University at Albany to obtain real-time images of the sky and spectral solar radiation which can be used to
determine current sky condition by automatic cloud detection algorithms (Yang et al., 2016, 2017).

The atmospheric state vectors retrieved in this study are profiles of water vapor density (g/m3) and tempera-
ture under clear-sky conditions. We divide the atmosphere (at 0–10 km height range) into 40 layers, each with
a depth of 250 m. After proper calibration, the MWRP equipment located on the roof of the ASRC has pro-
vided stable atmospheric radiation data at 22 microwave channels since April 2017. Its radiation output in
the zenith direction are used as our measurements. The initial atmospheric state vectors extracted from the
NCEP developed RAP are a continental-scale operational, hourly renewed analysis/modeling system. The RAP
assimilatesmultiple data sources such as surface observation, radar data, satellite data, balloon data, and aircraft
weather data to generate hourly forecasts of up to 18 hr in advance. The horizontal resolution of each grid point
is 13 km, and its vertical direction is divided into 50 layers extending from the surface to a height of 10 hPa.
Profile data can be extracted from the RAP using a bilinear interpolation algorithm by inputting the latitude
and longitude of the ASRC site. The extracted profile includes air pressure, temperature, and specific humidity
(kg/kg) at 50 different hybrid layers. To get the RAP parameters on the same 40 layers as the inversion, we use
atmospheric pressure matching to calculate the position of 40 pressure layers in RAP, and then the linear
interpolation algorithm is adopted to get the temperature and specific humidity of each layer. By converting
specific humidity to water vapor density, we can derive water vapor initial values at each of the 40 layers.
The clear-sky samples are determined by combining the eSIR measured sky images with sounding
observations. A total of 44 clear-sky cases between April and June 2017 are used to evaluate the inversion
accuracy of the 1DVAR algorithm in this study.

3. 1DVAR Retrieval Algorithm

The 1DVAR retrieval method consists of two key components: One is the accurate forward radiative transfer
model to simulate radiation brightness temperatures and calculate weighting functions (or Jacobian matrix);
the other is a method to minimize a cost function, which represents the total errors of the observation field
and background information.

The forward model adopted in this study is the passive and active microwave-vector radiative transfer (PAM-
VRT) model (Yang &Min, 2015), which is composed of five components: gas absorption, hydrometeor particle
properties, surface emissivity, microwave vector radiative transfer of successive order of scattering, and pas-
sive and active microwave sensor simulators. The gaseous absorption module in the PAM-VRT can simulate
optical depth and brightness temperature for any frequency within the microwave range by adopting either
a line-by-line physical model or several fast models such as Liebe’s atmospheric millimeter wave propagation
models (Abbreviated as Liebe89 and Liebe93, respectively; Liebe, 1989; Liebe et al., 1993) and Rosenkranz’s
updated models (abbreviated as Rosen98 and Rosen02; Rosenkranz, 1998).

To evaluate the gas absorption models, we simulated brightness temperatures of the MWRP 22 channels
within the lowest 30-km atmosphere for all 44 clear-sky cases. Based on MWRP specifications, the accuracy
of brightness temperature for each channel should be within 0.3 K after an exceptionally accurate calibration
(Liljegren, 2000). However, as shown in the left panel of Figure 1, the average biases of the observations
minus the simulations range from 2.0 to 3.0 K for all five gas absorption models, especially in the water vapor
bands and low frequencies of the oxygen bands. It is clear that the differences between gas absorption mod-
els are less than 1 K. Hence, the main reason for these biases may be due to the uncertainty of the instrument
calibration or some other errors (Cimini et al., 2011). We also calculated the average deviations of the five gas
absorption models in all channels. The results show that the Liebe89 model possesses a relatively superior
simulation capability; similar conclusions can be found at Rosenkranz (1998) and Lin et al. (2001). The mean
deviation between the simulation values of Liebe89 and the MWRP measurements is only �0.0911 K,
although the maximum bias of a certain channel still reaches ±2 K. Therefore, we chose Liebe89 as the for-
ward gas absorption model in the 1DVAR retrieval algorithm. Using this model, we simulated atmospheric
radiations within the lowest 30 and 10 km, respectively. The radiation differences between 30 and 10-km
atmospheres for each channel are shown as the red line in the right panel of Figure 1, which indicates that
the differences are between 0.4 and 0.6 K in the water vapor bands, between 0.1 and 7.5 K in the first nine
oxygen bands (low frequencies), and very close to zero in the remaining five oxygen channels. The difference
between simulated radiations within the lowest 10 km and observations is represented with the black line in
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the right panel of Figure 1. The new (background removed) observations represent the radiations below
10 km and can be obtained by subtracting the integrated difference from the original observations. Next,
the new observations will serve as our observation field while considering only the radiations below 10 km
in the forward simulation.

The weighting function, which represents the sensitivity of a component at different heights for each wave-
length (Araki et al., 2015), can be computed in the PAM-VRT model for temperature sensitive channels and
water vapor absorption bands, respectively. By setting a slight change in the temperature (ΔT) of each layer,
the perturbation variance of brightness temperature (ΔF) can be simulated using the PAM-VRT model. The
ratio, ΔF/ΔT, is called the Jacobian matrix of the temperature profile. The same method can be applied to
calculate the Jacobian matrix of the water vapor density profile. The difference is that we compute the
change of the water vapor density in natural logarithm form (Δ ln ρv; Cimini et al., 2011). Figure 2 shows
the Jacobian matrices for the water vapor and temperature channels, respectively. In calculating the
Jacobian matrices, the increment of each layer is the initial value multiplied by 1% for temperature and
0.01 in lnρv.

The background error covariancematrices B can be estimated using the RAP reanalysis data which represents
the error between the background state vector and the average atmospheric state. Based on the RAP reana-
lysis data of 44 clear-sky cases, a 44-by-40 background matrix can be constructed, and the covariance of the
matrix is the estimated background error covariance matrix B with a size of 40-by-40. Figure 3 shows the
background error covariance matrices for all 44 cases. The temperature error covariance matrix has a large
error at lower levels, especially below 4 km, while the maximum error appears at midlevels in the water vapor
error covariance matrix. This is mainly a result of the logarithmic processing of water vapor which will serve to
increase high-level error while reducing low-level error.

Based on the atmospheric profile of the background or a priori information, the simulated downward radia-
tions or brightness temperatures can be obtained using the forward Liebe89model for the specified frequen-
cies. Combined with measurements of brightness temperature from a ground-based MWRP, the 1DVAR
retrieval method can return the most likely atmospheric state. Assuming that both errors in observation
and background have a typical Gaussian distribution (Desportes et al., 2010; Liu & Weng, 2005), the optimal
estimation of the atmospheric profile is equivalent to solving the minimum value of the cost function, J(X),
which can be written as

J Xð Þ ¼ 1
2

X � X0ð ÞTB�1 X � X0ð Þ þ 1
2

Y � Y Xð Þð ÞTR�1 Y � Y Xð Þð Þ (1)

Here B is the error covariance matrix of the background or a priori profile X0 and R represents the total errors
associated with sensor noise as well as in the covariance matrix of the forward model. Y denotes the observed
brightness temperatures, and Y(X) is the simulated brightness temperatures for the specified frequencies of
the state profile, X. Superscripts �1 and T represent inverse and transpose, respectively.

Figure 1. The biases between models and observations. (left) Average biases of the observations minus the simulations in
each channel using five different gas absorption models. (right) Bias between observations and Liebe89 model which only
adopts the lowest 10-km atmosphere.
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There are two different variational iterations which solve the minimization of J(X) (Rodgers, 1976),

Xnþ1 ¼ X0 þ BKn
T KnBKn

T þ R
� ��1

Y � Y Xnð Þð Þ þ Kn Xn � X0ð Þ½ � (2)

Xnþ1 ¼ X0 þ B�1 þ Kn
TR�1Kn

� ��1
Kn

TR�1 Y � Y Xnð Þð Þ þ Kn Xn � X0ð Þ½ � (3)

where Xn represents the nth estimate of the atmospheric state; K is the Jacobian matrix, which is the deriva-
tive of the observation vector Y with respect to the state vector X.

When the number of profile elements is larger than that of observation channels (that is to say, the Rmatrix is
smaller than the B matrix), equation (2) should be used (Liu & Weng, 2005). Contrarily, if there are more
measurements than the unknown profile elements, equation (3) should be considered for atmospheric
profile retrieval. Equation (3) can be solved using the Levenberg-Marquardt formula with fast convergence
(Culverwell et al., 2015; Rodgers, 2000). However, both 14 channels for retrieving temperature profile and 8
channels for inversion of water vapor profile are much smaller than the number of the atmospheric
profile layers, so the iteration equation (2) is used to solve the minimization of J(X) in this study. The

Figure 2. Jacobian matrices for the Rapid Refresh state profiles at UTC 12:00, 1 June 2017. (left) Fourteen temperature
channels and (right) 8 water vapor channels.

Figure 3. Estimated background error covariance matrices for all 44 cases. (left) Temperature error covariance and (right)
water vapor error covariance.
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convergence iteration terminates when the change of cost function is very small or when it reaches the max-
imum iteration setting.

To evaluate and validate the 1DVAR algorithm, we performed an inversion test for the case at UTC 12:00, 1
June 2017. In this test, the average atmospheric state of the 44 cases was used as the initial value (or first
guess) of the 1DVAR algorithm. Although there is a large deviation between the first guess and the true
values (RAOBs) for both temperature and water vapor profiles, the inversion results of the 1DVAR algorithm
are satisfactory (see Figure 4). In particular, the temperature profile of the inversion has a good agreement
with the RAOB in lower layers, and the retrieval water vapor profile has been greatly improved both in the
lower and upper layers. The results of the inversion are in agreement with the characteristics of the weighting
functions and the estimated background error covariance matrices. For the Jacobian matrix of the oxygen
channels, their weights reach peak values near the surface and then decrease rapidly within a few

Figure 4. The inversion test with the average atmospheric state as the first guess for the case of UTC 12:00, 1 June 2017.
(top row) Temperature retrieval and its inversion error and (bottom row) inversion of water vapor density and its retrie-
val error.
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kilometers. In the background error covariance matrix of the temperature profiles, the low-level error is also
significantly larger than the upper level. Unlike that of the temperature profile, the Jacobian matrix of the
humidity profile has a certain sensitivity to changes in humidity at different heights. The inversion results
are optimized for the initial humidity profile in most of the altitude levels.

4. Results

Based on the information of the observation field, the above inversion test shows that our 1DVAR algorithm is
feasible and that the retrieval algorithm continuously adjusts the initial field. In practice, we will use the cor-
responding RAP reanalysis/forecast data as the initial field. Figure 5 shows the inversion results with the RAP
reanalysis as the first guess for the same case as shown in Figure 4. As the first guess from RAP reanalysis is
very close to the profile of the RAOB, it is difficult to determine whether the high inversion accuracy is caused
by the good initial value or by the accurate 1DVAR algorithm. To better illustrate the effectiveness of the
1DVAR algorithm, we randomly subtract 1–2 K from the original RAP temperature profile and use it as the
initial value to retrieve temperature. The inversion result shows that the temperature profile at the lower level
still yields a good inversion accuracy, indicating that the retrieval is insensitive to the initial guess where infor-
mation of MWRP measurements prevails. Unlike the temperature profile, there is a relatively large deviation
between the water vapor profiles of the RAP reanalysis and the RAOB, especially within lower levels. For the
inversion of water vapor density, the 1DVAR algorithm converges to a solution close to the RAOB profile (see
right panel of Figure 5).

For all following discussion on 1DVAR temperature profile inversion, we used two different initial values to
evaluate the performance of the proposed algorithm. The first one used the original RAP reanalysis as the first
guess, and its retrieval result is expressed as 1DVAR 1. The second initial value has a greater deviation from
the RAOB profile than that of the first, which is equal to the RAP temperature profile minus 1–2 K, randomly,
at each height level. This retrieval result is represented as 1DVAR 2. Furthermore, we also included the ven-
dor’s statistical retrievals of NN for comparison. The initial temperature profile is very close to the true profile
when RAP reanalysis is adopted as the initial guess. The inversion can be considered as a relative linear adjust-
ment with almost all cases converging after 1 to 2 iterations. For water vapor inversion, the linearity between
the initial value and the true value is relatively poor. Most of the cases need 4 to 5 iterations to converge.

From the temperature inversion results of several cases (see top row of Figure 6), the NN retrievals have a
large deviation from the RAOBs, which are significantly lower than the true values at almost all height levels.
Both the 1DVAR 1 and 1DVAR 2 inversions obtained a high level of inversion precision within low levels.
Meanwhile, as a result of more accurate initial values, the 1DVAR 1 retrieval obtained a higher degree of accu-
racy within the upper levels than that of the 1DVAR 2. Similar to the temperature inversion, the NN retrievals
for water vapor density also have a large deviation from the RAOBs. The difference is that at lower levels the

Figure 5. The inversion results with the Rapid Refresh (RAP) reanalysis as the first guess for the case of UTC 12:00, 1 June
2017. (left) Temperature retrieval, (middle) temperature retrieval but with initial values randomly 1–2 K smaller than the
RAP reanalysis, and (right) inversion of water vapor density.
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results of the NN algorithm are significantly smaller than those of the RAOB, while at upper levels the results
are greater than the RAOB. In contrast, the retrievals of the 1DVAR, which fully merged the accuracy of the
initial values with observations of MWRP, achieved better performance throughout the entirety of the
vertical height. It should be noted that the 1DVAR algorithm still missed some details such as the dramatic

Figure 6. Comparison of neural network and one-dimensional variational retrievals with respect to radiosonde observa-
tions for several cases. (top row) Temperature inversion and (bottom row) inversion of the water vapor density. (left
column) Case of UTC 12:00, 16 April 2017; (middle column) case of UTC 12:00, 11 May 2017; and (right column) case of UTC
12:00, 24 May 2017.

Figure 7. The statistical errors of the inversion results for all 44 cases. (left) Mean errors of temperature, (middle) mean and
rms errors of temperature, and (right) mean and rms errors of water vapor density.
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changes in humidity (see bottom row of Figure 6). This may be due to
the fact that the smooth weighting function has a very limited inver-
sion ability to resolve those turning points.

The statistical errors of the inversion results for 44 cases are summar-
ized in Figure 7. The maximum deviation between the original RAP
temperature profile and RAOB is about 0.3 K. The 1DVAR algorithm
achieves a better temperature inversion accuracy below 4 km with a
maximum mean error of less than 0.2 K. The temperature inversion
results of the NN have a greater deviation throughout nearly the entire

vertical height with a maximum error greater than 3 K. Themiddle panel of Figure 7 shows the mean and root
mean square (rms) errors for the RAP, NN, and 1DVAR, in which the temperature profiles of RAP, adopted as
the initial value in the 1DVAR algorithm, are reduced 1–2 K randomly at each layer for all cases. Although the
mean error of the initial value, in terms of the temperature inversion, is between 1 and 2 K, the mean error of
the 1DVAR inversion is less than 1 K at most levels. The rms error of the 1DVAR temperature profile has also
been greatly improved, especially below 4 km, which is consistent with the characteristics of the temperature
profile’s weight functions and background error covariance. The statistical errors for water vapor density are
shown in the right panel of Figure 7. Similar to the temperature profile retrievals, the NN retrieval has the
greatest error both for mean and rms. The mean error of the NN indicates that the result of its inversion is
lower than the RAOB below 2 km and higher than the RAOB above that level. The maximum deviation of
the NN occurs at about a height of 1 km with a maximummean error of 1.25 g/m3 and a maximum rms error
of 1.75 g/m3. The inversion errors of the 1DVAR algorithm are significantly improved compared with the RAP
profile at almost all height levels. The maximummean error and rms error are 0.15 and 0.7 g/m3, respectively.

To better evaluate the accuracy of the water vapor inversion, we integrated the water vapor density in the
range of 0–10 km and converted it to precipitable water vapor (PWV) for 44 cases based on the RAP, NN,
1DVAR, and RAOB, respectively. Taking the PWV of RAOB as the standard value, the differences between
the three methods (RAP, NN, and 1DVAR) and RAOB were calculated. Their statistical results are given in
Table 1, which shows that the MWRP built-in NN algorithm has the smallest average error with RAOB.
Several studies (Cadeddu et al., 2009; Mattioli et al., 2008) had also shown that the MWRP has a good inver-
sion capability for PWV. The mean error of the 1DVAR method is also small, and its rms error is still very small.
The RAP has both the biggest mean error and rms error among three methods, which indicates that the RAP
overestimates the PWV.

To further evaluate the 1DVAR algorithm, we performed a continuous inversion with a time resolution of
20 min using the MWRP observations on 22 June 2017. The total sky images per hour from UTC 9:00 to

Table 1
The Errors of Precipitable Water Vapor Between Three Methods and Radiosonde
Observations for 44 Cases (mm)

Maximum
error

Minimum
error

Mean
error

rms
error

Rapid Refresh 9.73 �1.54 1.92 2.69
Neural network 13.80 �3.09 �0.03 2.39
One-dimensional variational 1.07 �0.69 0.09 0.45

Figure 8. The total sky images on 22 June 2017. (top row) Images per hour from 9:00 to 12:00 and (bottom row) images per
hour from 13:00 to 16:00.
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UTC 16:00 of that day are shown in Figure 8, indicating that the sky varied from clear sky to cloudy. The con-
tinuous inversion results of the NN (middle column) and the 1DVAR (right column) are illustrated in Figure 9.
As a comparison, the original hourly refreshed RAP reanalysis is shown in the left column of Figure 9.
Compared with the high-precision RAP temperature profiles, the NN inversion results are significantly lower,
especially in the range of 2–8 km, which is consistent with the statistical error of the NN algorithm in Figure 7.
The 1DVAR results have a good agreement with the temperature profile of the RAP except for just below the
2-km height at about 16:00. One possible reason for this is that we only consider the clear sky without taking
into account the impacts of clouds on microwave radiation (the zenith is completely covered by cumulus
clouds at 16:00; see last image of Figure 8). The accuracy of various methods is depicted more clearly by com-
paring their temperature retrieval results with RAOB for the case of UTC 12:00 (see left panel of Figure 10).

From the inversion of the water vapor density in Figure 9, the NN results are lower than the 1DVAR and the
RAP below 2 km and slightly higher in the range of 2–6 km. Considering the RAP reanalysis profile itself has a

Figure 9. The continuous change of temperature and water vapor density on 22 June 2017. (left column) Rapid Refresh reanalysis, (middle column) neural network
retrieval, and (right column) one-dimensional variational inversion. (top row) Temperature changes and (bottom row) records the evolution of water vapor density.

Figure 10. Comparison of neural network, Rapid Refresh, and one-dimensional variational retrieval with respect to radio-
sonde observations for the case of UTC 12:00 and their precipitable water vapors (PWVs) for the continuous retrieval on 22
June 2017. (left) Temperature inversion, (middle) inversion for water vapor density, and (right) PWVs.
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certain deviation in the water vapor density, it is difficult to determine which retrieval algorithm is more accu-
rate when merely comparing profiles with the RAP. On the one hand, we compared the difference between
the inversion results of various methods with the RAOB (the middle panel of Figure 10). On the other hand,
we calculated PWVs of the three methods for the whole continuous inversion period and their results are dis-
played in the right panel of Figure 10. We have assessed the PWVs of the RAP, NN, and 1DVAR in Table 1,
which shows that the NN algorithm is reliable in the inversion of PWV. The PWVs of the NN and 1DVAR are
in relatively good agreement, which indicates that the PWVs from the integrated 1DVAR profile should be
credible. Contrarily, the PWVs of the RAP are, in most cases, significantly higher than those of the NN and
1DVAR. This indicates that the water vapor density profile of RAP is generally higher than the true value.
Although the NN algorithm may be feasible for PWV inversion, the NN inversion accuracy of the water vapor
density profile is poor, especially at low levels and high in the upper levels. In general, the accuracy of the
1DVAR profile inversion should be the most accurate among the three approaches.

5. Conclusions

There is an urgent need for accurate atmospheric vertical state information with a high temporal resolution
for numerical weather forecasting model initialization and validation. NYS Mesonet, with its 17 enhanced
instrument suites across NYS, has shown great promise in this regard. More specifically, NYS Mesonet
MWRPs provide a good opportunity for real-time continuous inversion of temperature and humidity profiles
in the lower atmosphere. However, the MWRP built-in NN algorithm has large retrieval errors both in
temperature and humidity profiles. To meet the requirements of NYS Mesonet, we developed a new
physics-based 1DVAR algorithm to retrieve the vertical distribution of temperature and water vapor density
by combining ground-based MWRP measurements with RAP reanalysis profiles. Specifically, the 1DVAR
algorithms based on an accurate PAM-VRT model as the forward radiation simulation and computed
weighting functions for all MWRP microwave channels. Based on statistical analyses of gas absorption line
models and MWRP calibration and observations, we concluded that the Liebe89 model is an accurate
absorption line model for all cases tested. Furthermore, as the retrieval kernel is weighted toward the lower
atmosphere, we only focused on profiles below 10 km. Consequently, we developed an integrated correction
scheme to remove the radiation contribution from the upper atmosphere (>10 km). Based on the
optimization theory (Rodgers, 1976), we constructed a retrieval algorithm that optimizes results between
observational information (and associated measurement errors) and background information and error
covariance. This physics-based 1DVAR algorithm has been further evaluated and validated for multiple
month observations from the roof of the ASRC.

Based on the case analysis and statistical comparison of the three methods (1DVAR retrievals, the MWRP
built-in NN retrievals, and RAP reanalysis) with RAOB, we concluded the following:

1. The maximum deviation between the RAP reanalysis temperature profile and RAOB is less than 0.3 K.
Using MWRP measurements, more accurate temperature profiles can be achieved with the 1DVAR algo-
rithm, particularly in the lower atmosphere (<4 km). The maximum deviation is less than 0.2 K; however,
the temperature profile retrieved from the NN algorithm had a greater deviation in almost all levels with a
maximum error greater than 3 K.

2. The water vapor density profiles of RAP reanalysis are generally higher than the true values. The inversion
errors of the 1DVAR algorithm for water vapor density are significantly improved over the RAP reanalysis
profile at almost all levels, and the maximummean error and rms error are down from 0.5 and 1.0 g/m3 to
0.15 and 0.7 g/m3, respectively. Similar to the temperature profile retrievals, the NN retrieval had the
greatest errors for bothmean and rms, with the maximum deviation of the NN occurring at about a height
of 1 km, a maximummean error of 1.25 g/m3, and a maximum rms error of 1.75 g/m3, respectively. In gen-
eral, the mean error of the NN indicates that the result of its inversion is lower than the RAOB below 2 km
and higher than the RAOB above 2 km.

3. PWVs from RAP reanalysis are higher than RAOB measurements. The PWV retrieved from 1DVAR and NN
algorithms are in relatively good agreement.

The results suggest that the 1DVAR retrievals, which combined both the MWRP observations and background
field information, are superior to the NN retrievals as well as the RAP reanalysis. The overestimation of water
vapor in RAP reanalysis compared with RAOB measurements, concluded from our statistical study, is also
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important for the weather and climate community. In general, the 1DVAR algorithm can improve the accu-
racy of humidity profiles within 10 km, while improvements within temperature profiles occur mainly in
the lower atmosphere (<4 km). This was determined by the properties of the Jacobian matrix and estimated
background error covariance. Due to large errors in both humidity and temperature profiles, all atmospheric
indices based on NN retrievals may contain substantial errors.

The background error covariance matrix B and the observation error covariance matrix R are very important
for a successful and accurate inversion of the 1DVAR algorithm. In this study, we simply adopted the same B
and R for all retrieval cases. For cases at different seasons, B and R should be dynamically adjusted to avoid
unsuccessful convergence or excessive errors. In addition, the proposed 1DVAR algorithm obtained satisfac-
tory inversion accuracy under clear skies; however, it was found that there will be large inversion errors when
clouds develop in the zenith direction (see Figure 9 for temperature inversion). The critical issue is the cloud
layer temperature. The inversion of atmospheric vertical parameters under cloudy sky conditions will require
further analysis in the near future.
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