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This paper introduces a prototype of ground-based atmospheric microwave sounder

that operates in K-band from 22 to 31 GHz and V-band from 51 to 59 GHz. Different

from the MP3000A and RPG, the sounder adopts independent dual-band reflectors

instead of sharing a dual-band reflector. The direct detect type receiver is applied, which

is of smaller size, higher sensitivity, efficient data observing and lower nonlinear error

than the widely used superheterodyne receiver. The observing brightness temperatures

from this prototype agree well with the simulated brightness temperatures according to

the ground-based radiative transfer theory. We use the artificial neural network (ANN)

algorithm to retrieve temperature profiles, which has higher spatial resolution

especially in the capping inversion when compared with the linear regression

algorithm. The temperature retrievals are comparable with the retrievals from RPG

and MP3000A retrieval models and have a smaller bias in some certain regions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Atmospheric temperature is one of the most important
meteorological parameters. There are two traditional
sounding instruments to retrieve temperature profiles:
radiosonde (radar) working on the ground and remote
sensing satellite working on a high spatial orbit. The former
one is bulky and costly perplexing to install and operate,
and has lower spatial and temporal resolution. The latter
one has higher spatial resolution and wider coverage.
However, due to the shelter and strong absorption of cloud,
as well as atmospheric opacity for electromagnetic wave in
the millimeter-wave band, satellite instrument with
limitation of remote sensing technology has a lower
vertical resolution at the bottom of troposphere.
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In recent years, ground-based atmospheric microwave
sounder has been operated widely to retrieve temperature
profiles and other parameters. Compared with radiosonde
(radar), ground-based atmospheric microwave radiometer
can be operated in a long-term unattended mode under
almost all weather conditions with reliable results and has a
low maintenance cost. Compared with remote sensing
satellite, ground-based atmospheric microwave radiometer
has a high resolution at the bottom of lower troposphere.
With the long-term development of theory and laboratory
measurements, it has been used in meteorological observa-
tions and forecasting, communications, geodesy and long-
baseline interferometry, satellite validation, climate and
fundamental molecular physics.

Currently, MP3000A of USA and RPG of Germany are
the main ground-based atmospheric microwave sounders
to sound temperature profiles and related parameters
[1,2]. Both of them have mature techniques and have
been used in many regions. Also, they have complete
data-processing software to retrieve temperature profiles
and other important parameters.
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Table 1
Comparison of specifications between the prototype and MP3000A.

Specification Prototype of

design

MP3000A

Calibration resolution 1.5k 0.2+0.002*9TkBB�Tsky9
Long-term stability o1.0k/year o1.0k/year

BT resolution 0.1–1k 0.1–1k

BT coverage 0–400K 0–400K

Antenna resolution and

side lobe

22–30 GHz 4.9–6.31

�24 dB

4.9–6.31 �24 dB

51–59 GHz 2.4–2.51

�27 dB

2.4–2.51 �27 dB

International time 0.01–2.5 s 0.01–2.5 s

Water vapor channel 22–30 GHz

(47 channels)

22–30 GHz

(21 channels)

Oxygen channel 51–59 GHz

(47 channels)

51–59 GHz

(14 channels)

Bandwidth 300M 300M
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With the development of retrieval techniques, there are
mainly two algorithms. (1) Linear regression algorithm,
which is simple and has clear representation of physical
parameters, stable levels of results and high accuracy.
Guiraud gave the regression equation to retrieve water
vapor density in 1998 [3]. F.D. Frate used microwave
radiometer of 7 channels to improve the accuracy of
temperature and humidity profiles [4]. (2) Nonlinear
regression algorithm, such as artificial neural network,
which has been widely used in the retrievals of microwave
radiometers. Churnside et al. [5] in 1994 successfully
retrieved the temperature profiles using artificial neural
network (ANN) with 3 layers. Fredrick Solheim et al. used
artificial neural network and other retrieval methods to
retrieve temperature profiles and humidity profiles suc-
cessfully in 1998 [6]. Yao et al. [7] in 2005 demonstrated
back propagation artificial neural networks can signifi-
cantly improve the temperature retrievals in all the
weather conditions comparing with the IAPP model,
especially at the lower levels. RPG-HATPRO and
MP3000A series also constructed retrieval models using
neural network algorithm to derive temperature and
humidity profiles with high accuracy [1,8,9].

The Advanced Microwave Sounding Unit-A (AMSU-A)
is the latest microwave temperature sounder of the new
generation polar orbiting satellite operated by the
National Ocean and Atmospheric Administration (NOAA).
The first AMSU-A sounder aboard the NOAA-15 satellite
was launched on May 13, 1998. In the following years,
more and more researchers used different retrieval
algorithms with AMSU-A datasets from different NOAA
satellites. Yao et al. [7] used back propagation artificial
neural networks to retrieve atmospheric temperature
profiles from NOAA-16 Advanced Microwave Sounding
Unit-A (AMSU-A) measurements over East Asia.

In this paper, we mainly introduce a prototype of
advanced ground-based atmospheric sounder with improve-
ments. In this prototype, the receiver system adopts direct
detect type rather than superheterodyne type, which is used
in almost all the microwave radiometers recently. For the
reflector configuration, it adopts two independent reflectors
in each band rather than sharing one reflector in dual band.
Also we construct retrieval models of temperature profiles
using artificial neural network and linear regression algo-
rithm. By comparing the algorithms between linear regres-
sion and artificial neural network, we can choose the better
retrieval algorithm. Compared to the retrieval experiments
using artificial neural network like RPG-HATPRO [7,8] and
MICCY [10], the results show that the retrieval model is
correct and has better retrieval accuracy in some regions
partly. Experimental results on several datasets from different
regions and different seasons demonstrate that the instru-
ment can be operated commonly in different regions and
climates and achieve high quality temperature profiles.
2. Advanced techniques of prototype

Referred to MP3000A, we propose an advanced proto-
type of atmospheric microwave sounder with similar
specifications (shown in Table 1) in the aspects of
calibration resolution, stability, brightness temperature
range, antenna resolution and side lobe, integral time,
water vapor and oxygen channels and bandwidth.
However, compared with the MP3000A, our prototype
has several improved techniques mainly in the receiver
and reflector configuration as follows.

2.1. Radiometer receiver

With current techniques, the receiver of ground-based
atmospheric microwave sounder mainly has two types:
superheterodyne type with mixer and RF direct detect
type without mixer. Their schematic diagrams are shown
in Figs. 1 and 2, respectively.

In Fig. 1, the former system of receiver is used in
MP3000A. The antenna and feedback unit accepts micro-
wave radiation of atmosphere and internal calibration
source. Then the receiver amplifies RF signal and completes
the down-conversion from RF signal to IF, and then the IF
signals are amplified, detected and integrated. Finally the
signal is quantified and processed in the digital control unit.

On the other hand, in Fig. 2, the receiver operates in direct
detect type, which is adopted by the present prototype.
Microwave radiometer receiver with direct detect type
mainly consists of directional coupler, RF amplifier, power
divider, band-pass filter, square law detector, integrator and
video frequency amplifier. The signal accepted by the
antenna is amplified and distributed into several RF channels
without mixers. It uses the band-pass filter to decide the
frequency for each channel. Here the bandwidths in different
channels can be different. In the system, the number of
sounding-channel depends on power divider network.
Different from the superheterodyne type, it is easy to control
and operate without mixer and frequency synthesizer.

In our study center, in order to prove the advancements
of direct detecting receiver, we have designed a direct detect
type receiver whose frequencies are 18.7 and 36.5 GHz. For a
valuable comparison, a superheterodyne type receiver whose
frequencies are 19.35 and 37 GHz is also designed by our
center. They have similar specifications and are comparable
in many aspects as shown in Table 2.
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Fig. 1. Superheterodyne type receiver. In the microwave sounder of MP3000A, the receiver adopted this mode.
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Fig. 2. Direct detect type receiver. In the present prototype of ground-based atmospheric microwave sounder, the receiver adopts this mode.
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So obviously the receivers in direct detect type have
the following advantages:
(1)
 no mixer sideband filtering requirements and LO drifts;

(2)
 no frequency down conversion, so reducing the

interference of external signals;

(3)
 simultaneous measurements of all frequency chan-

nels and high temporal resolution;

(4)
 small size and weight and low loss.
Based on a similar principle, we designed the proto-
type of ground-based microwave atmospheric sounder
with a direct detecting receiver, and compared to
MP3000A, it has the above advantages, too. The character-
istics of direct detect type and superheterodyne receivers
are listed in Table 3.
In addition to these common advantages, the receiver
of direct detect type has an effect on retrieving tempera-
ture profiles. Because the receiver of this type has an
efficient observation that can observe all channels syn-
chronously, the prototype has a high system resolution.
Using brightness temperature measurements from this
prototype, this paper retrieves atmospheric profiles with
high accuracy with little influence of temporal and spatial
difference. Therefore the retrievals from this prototype are
in good agreement with the radiosonde datasets.
2.2. Configuration

The configuration of MP3000A has a sharing reflector
and the configuration mode is shown in Fig. 3. Based on the
deployment of FY-3 microwave humidity sounder [11], the



Table 2
Comparison between two types.

Indicators System

Superheterodyne Direct detect/H/VS

Frequency/GHzS 19.35 37 18.7 36.5

Bandwidth/MHzS 400 500 500 600

Integral time/msS 200 200 200 200

Resolution/kS 0.13 0.2 0.17/0.18 0.12/0.16

Linearity 0.99979 0.99984 0.99969/0.9996 0.99989/0.99970

Nonlinear error 0.2 0.25K 0.3/0.25 0.1/0.2

Power consumption (W) 3.0 3.0 2.5 2.8

Weight/kgS 1.4 1.1 0.85 0.70

Size/mm3S 180�100�40 170�86�37 120�70�45 108�70�42

Table 3
Respective characters of two types of receivers.

Content Direct detecting type Superheterodyne type

Components Filter bank+multi-

channels detecting

LO+single RF+IF+LF

Structure Simple Complex with mixer and

LO

Number of

channels

Smaller, realized by

power divider

Fixed, realized by LO

frequency-splitter

Configuration

of channels

Fixed, depend on number

of filters and detectors

Flexible, depend on the

number of splitter times

Efficiency of

measurement

High, measure multi-

channels simultaneously

Low, measure one

channel at each time
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prototype of ground-based atmospheric microwave
sounder adopts independent antenna and feedback in
K- and V-band, respectively, so in each band there is a
reflector and the configuration mode is shown in Fig. 4.

The type of sharing a reflector needs additional space
for mounting a polarized grid. Also it has a larger height
value and has a width nearly equal to that of the second
mode, which has independent reflectors. Therefore it has
a larger size than the second mode. However, adopting
independent reflectors, we can design and optimize them
independently and also make the width of antenna as
small as possible. With a smaller height value and a
similar width value, we can decrease the whole size and
whole device expense.

The real size of MP3000A is 500�280�760 mm3 and
the power consumption is 400 W, while in the prototype,
the size is 400�350�880 mm3 and the power consump-
tion is 800 W. In additional to the smaller size, the two
independent reflectors configuration mode actually avoids
the problems caused by the polarized grid as follows:
(1)
 processing difficulty and high cost;

(2)
 system consumption and difficulty in improving

sensitivity;

(3)
 improving accuracy difficulty, because the antenna

reflector has to balance the difference between high
and low frequencies;
(4)
 having strict specification restriction, because the
radome and calibration blackbody have to balance
dual-band frequencies.
To overcome the disadvantages above, the prototype
adopts two independent reflectors. In this configuration
mode, we can easily release the low sidelode and design
the antenna in dual band independently without fre-
quency segregation. The prototype has high calibration
accuracy because it uses independent blackbody in each
band and need not consider the dual band requirements.
Furthermore, it decreases the wave loss through radome
and has high expansibility to release multi-polarization
measurements.
3. Sounding principle

Ice, cloud, rain snow, etc. play an important role in
attenuation in the atmosphere sounding of microwave
radiometer. All of them are caused by atmospheric
temperature and humidity. So the brightness temperature
is related to atmospheric temperature and humidity, and
given the brightness temperature we can retrieve the
vertical distribution of atmospheric temperature profiles
and other parameters.

The principle of atmospheric temperature sounding is
to measure the atmospheric (oxygen and water vapor)
molecular rotating absorbing spectrum and its wings, all
of which are pressure broadened. The oxygen molecular
absorbing spectrum at about 50–60 GHz can be used for
retrieving temperature profiles and water molecular
absorbing spectrum at about 20–30 GHz for retrieving
humidity profiles. Given the brightness temperature from
the observations or radiative transfer equation, we can
complete the retrieval of temperature and humidity
profiles.

Fig. 5 shows the high opacity of atmosphere microwave
attenuation coefficients (oxygen and water vapor) using the
US standard atmospheric profile. Both of them play an
important role in calculating brightness temperature,
especially the oxygen absorption coefficients in sounding
atmospheric temperature profiles. This paper considers the
influence of both factors. In the band of 0–200 GHz, there
are two lines of oxygen (detecting atmospheric temperature
profiles) and water vapor (detecting atmospheric humidity
profiles). The energy spectrum enhances gradually as the
frequency becomes higher and higher. The oxygen lines are
at 50–60 GHz (usually measures space-borne vertical
distribution of atmospheric oxygen) and 118 GHz. The
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Fig. 4. Configuration mode with independent reflectors, which is adopted by the present prototype.
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Fig. 5. Opacity of atmosphere microwave transmission, which is calculated using the Ulaby’s coefficients and US standard atmosphere.
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Fig. 6. Schematic diagram of a three-layer back-propagation neural

network, including one input layer, one hidden layer and one output

layer, L, M and N denote the number of their neurons, respectively.
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water vapor lines are at 22.235 and 183.31 GHz. The former
line has low atmosphere attenuation and is partly
transparent, which can be used to measure water vapor
content, and the latter one can be used for measuring
vertical distribution of space-borne high-altitude atmos-
pheric water vapor profiles [12].

Having the same principle as and referring to
MP3000A, the ground-based atmospheric microwave
radiometer operates at K-band (22–31 GHz) and V-band
(51–59 GHz), and retrieves the atmospheric temperature
profiles, humidity profiles and other related parameters
like liquid water vapor, flux, delay, etc.

Using radiative transfer equation and atmospheric
absorption model [13], according to Eqs. (1)–(5), we can
derive weighting functions of temperature profiles. Based
on radiosonde datasets, we can calculate the brightness
temperature of different channels at different frequencies.

The Fredholm integral equation of the first kind is as
follows:

Tb ¼

Z 1
0

T 0ðsÞaðsÞe�tð0,sÞdsþTb0e�tð0,1Þ ð1Þ

T 0ðsÞ ¼ TðsÞ=R½TðsÞ� ð2Þ

RðTÞ ¼
kT

hv
ðehv=kT�1Þ ð3Þ

Optical thickness : tðs1,s2Þ ¼

Z s2

s1

aðs0Þds0 ð4Þ

Weighting function: WT ðsÞ ¼ aðsÞexp �

Z s

0
aðs0Þds0

� �
ð5Þ

where Tb denotes brightness temperature at the top of
atmosphere, T denotes the temperature profiles, a(s)

denotes the atmospheric attenuation coefficients, Tb0

denotes surface temperature, h is Plank’s constant,
k Boltzmann’s constant, and s denotes the height of
different atmospheric layer.
4. Retrieval algorithms

4.1. Artificial neural network

In recent years, back propagation artificial neural
network (ANN) has been used widely, which has retrieved
temperature profiles with high accuracy [14,15]. ANN is
essentially a nonlinear statistical regression between a set
of predictors—in this case the observation vectors X, and a
set of predictands—in this case profiles of atmospheric
temperature Z. The structure of ANN is shown in Fig. 6.
The layers 1–3 represent the input layer, the hidden layer
and the output layer, respectively. The neurons of the
input layer are represented by vector Xi (X1, X2, X3, y ,XL),
where L is the number of input neurons. The neurons
of the middle layer are represented by vector Yi

(Y1, Y2, Y3, y, YM), where M is the number of hidden
neurons. The neurons of the output layer are represented
by vector Zi (Z1, Z2, Z3, y, ZN), where N is the number of
output neurons.
For the jth node in the hidden layer, this can be
expressed as

Yj ¼ S
XL

i ¼ 1

wijxiþbj

 !
ð6Þ

where S denotes the sigmoid function:

SðaÞ ¼ 1

1þexpð�aÞ
ð7Þ

Here wij is the weighting of the connection between
the jth hidden neuron and the ith input neuron and bj

denotes the bias in the jth neuron of the hidden layer. The
Purelin linear function is applied between the output
layer and the hidden layer. As a result, the output values
can be arbitrary in the range [0,1]. The neuron of the
output layer can be expressed as

Zk ¼
XM
j ¼ 1

wjkYjþbk ð8Þ

where wjk is the weight of the connection between the
jth hidden neuron and the kth output neuron; bk is the
bias in the kth neuron of the output layer.

4.2. Linear regression algorithm

According to the radiative transfer equation, the
forward model can be expressed as

y¼ FðxÞ ð9Þ

where y denotes the observation vector, and x denotes
the atmospheric parameter vector. Then x can be retrieved
using the following equation:

x̂¼ RðyþeÞ ð10Þ

Using the radiosonde datasets, we construct the linear
regression model [16]

x¼ aþbY ð11Þ

where x and Y denote the temperature profile and
known parameters, respectively. Suppose there are n

layers in the atmosphere; then x is an n� 1 vector and Y is
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an m� 1 dimensional vector. Then

X ¼ AY ð12Þ

where X is the regression matrix in the linear
regression of radiosonde datasets.

In the experiment, X denotes the temperature profile
distributed at 50 height values of atmosphere, and Y

denotes the brightness temperatures of 7 sounding
channels and surface temperature, humidity and pressure.
Using the radiosonde datasets we can derive the regres-
sion matrix A, and then retrieve the temperature profiles
in different regions and at different times.

5. Retrieval datasets and retrieval results

According to the description of introduction, the
algorithm of ANN has to decide the number of neurons
in input layer, hidden layer and output layer. In this paper,
the input has 10 neurons including 7 brightness tempera-
tures of 7 different channels with different frequencies,
surface temperature, surface pressure and surface
humidity. We choose 10 neurons in hidden layers and
50 neurons in output layers including 50 temperatures in
different pressure values. So the output values can define
the temperature profiles [17].

Due to the different absorption coefficients of oxygen
and water vapor at different pressures and heights, during
the retrieval process of physical parameters, the distribu-
tion of weighting function is variable and critical. In the
simulation experiment of clear air, the weighting function
is as shown in Fig. 7.

The neural network to be tested here was trained on a
set of 1 year (2008) of radiosonde profiles from Beijing
(54511, 116.281 in longitude and 39.931 in latitude) and
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RJAO station (47971, 142.181 in longitude and 27.081 in
latitude) at 00z and 12z. For the radiosonde datasets, they
provide the profiles of temperature, mixer ratio of water
vapor, pressure, height and relative humidity. Then these
profiles are processed at discrete levels every 200 m up to
10 km. Although the number of independent measure-
ments is only 50 levels output, this sampling ensures the
retrieval profiles can be accurately represented on the
fixed levels. The profiles are then put into the radiative
transfer model to synthesize the brightness temperatures
as simulated values and derive the temperature weighting
functions of different channels in the zenith position. We
calculate the oxygen absorption and water vapor absorp-
tion coefficients according to the MPM 93 model. Also, the
absorbing coefficients can be calculated from Rosenkranz
[18] in K-band, and Liebe [19] in K- and V-bands. Here, the
surface temperature, surface pressure and relative hu-
midity are also directly connected. Gaussian noises of 0.5k
are added in the temperature profiles. This extends the
training datasets slightly and reduces the sensitivity of
the network to noise in the data and can represent all the
errors affecting the observations.

According to Eq. (5) and radiosonde parameters from
the datasets we choose, the temperature weighting
functions of different channels can be simulated. Fig. 7
shows the relationship between weighting functions and
height, which is significant in calculating brightness
temperatures of different channels.

Due to the constraint of atmospheric layers of radio-
sonde datasets and other influent factors like region,
climate and weather, the temperature weighting func-
tions have large variability. First, excluding the cloudy,
rainy and other extreme weathers, in clear air, using
the artificial neural network retrieval model, which is
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constructed successfully, we retrieve the temperature
profiles in 50 isothermal layers in the stations 47971 and
54511. The results are shown in Figs. 8 and 9. Fig. 8 shows
a comparison between temperature profiles from artificial
neural network model and radiosonde datasets, which can
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Second, using the same datasets used in the artificial
neural network model, we retrieve temperature profiles
using linear regression algorithm as described in Section 4,
and the results are shown in Figs. 10 and 11. Fig. 10 shows
the comparison between retrieval temperatures using
linear regression algorithm and radiosonde profiles and
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shows the temperature bias of retrievals using the linear
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retrievals and radiosonde datasets.
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algorithms can retrieve atmospheric temperature profiles
with accessible biases. In some conditions, the results
using linear regression algorithm are better than those
from artificial neural network, like the comparison shown
in Figs. 9 and 11. But in other conditions, this conclusion
may not be correct. Fig. 12 shows an example of this
condition. It shows comparison of retrievals among
radiosonde, ANN and linear regression algorithm shows
that in the capping inversion, the temperature profiles
using neural network algorithm agree well with the
radiosonde profiles rather than those of the linear
regression algorithm. Given sufficient training datasets
include all test conditions and sufficient training time, the
results show that neural network is better than linear
regression. So in the actual work we must consider all the
conditions and choose a suitable algorithm to retrieve the
atmospheric temperature profiles.
6. Conclusions

The primary design of an advanced ground-based
atmospheric microwave sounder has similar specifica-
tions as those of MP3000A. But according to the experi-
ments and measurements, it has the advantages of small
size and weight, low cost, low maintenance cost, proces-
sing data easily, high efficiency and high sensitivity due to
the adoption of a direct detect type receiver and two
independent reflectors in dual band. Compared with
linear regression method, artificial neural network is slow
in training, but it is very fast in performing retrievals.
However, as with any nonlinear regression methods,
neural networks are prone to generate erroneous results
if applied outside the range of the training datasets. After
completing training process, the model can successfully
retrieve accurate temperature profiles stably and effi-
ciently and has a smaller bias, especially in the capping
inversion. Due to the characteristic of nonlinear relation-
ship, output results from the ANN model are closer to the
actual atmospheric condition. Compared to the tempera-
ture retrieval with PRG-HATPRO data using neural net-
work algorithm [7,8], the prototype has a comparable
ability to derive temperature profiles. Furthermore in the
stations 47971 and 54511, the bias is smaller in the
simulation model and has an improvement of a fraction of
Kelvin. Compared with the temperature retrieval with
AMSU-A data using neural network algorithm, the present
prototype can retrieve temperatures with higher accuracy
in the low altitude, especially at the bottom of the
troposphere with an improvement of a fraction of Kelvin.
So this paper demonstrates that the prototype can be
operated successfully and efficiently in aspects of meteor-
ology, astronomy, geodesy, communication, traffic, agri-
culture, and so on. In future, we will continue to improve
the retrieval algorithm to derive temperature profiles
with higher resolution and combine the satellite-based
and ground-based instruments to retrieve more accurate
temperature profiles.
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