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ABSTRACT

The impact of model microphysics on the retrieval of cloud properties based on passive microwave
observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simu-
late a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class
liquid and three-class ice parameterizations, were used to simulate storms with differing amounts of super-
cooled cloud water typical of both the tropical oceanic environment, in which there is little supercooled
cloud water, and midlatitude continental environments in which supercooled cloud water is more plentiful.
For convective surface-level rain rates, the uncertainty varied between 20% and 60% depending on which
combination of passive and active microwave observations was used in the retrieval. The uncertainty in
surface rain rate did not depend on the microphysical scheme or the parameter settings except for retrievals
over stratiform regions based on 85-GHz brightness temperatures TB alone or 85-GHz TB and radar
reflectivity combined. In contrast, systematic differences in the treatment of the production of cloud water,
cloud ice, and snow between the parameterization schemes coupled with the low correlation between those
properties and the passive microwave TB examined here led to significant differences in the uncertainty in
retrievals of those cloud properties and latent heating. The variability in uncertainty of hydrometeor
structure and latent heating associated with the different microphysical parameterizations exceeded the
inherent variability in TB–cloud property relations. This was true at the finescales of the cloud model as well
as at scales consistent with satellite footprints in which the inherent variability in TB–cloud property
relations are reduced by area averaging.

1. Introduction

Latent heating associated with tropical rainfall is
known to be an important part of the global energy
budget (e.g., Riehl and Malkus 1958; Malkus 1962;
Riehl and Simpson 1979). Moreover, large-scale circu-
lations have been shown to be sensitive to the vertical
profile of diabatic heating (Hartmann et al. 1984; De-
Maria 1985). The goal of the Tropical Rainfall Measur-
ing Mission (TRMM) is to estimate rainfall and its ver-
tical distribution of latent heating throughout the Trop-
ics (Simpson et al. 1988; Kummerow et al. 2000).

To retrieve rain and latent heating, the TRMM sat-
ellite relies on observations from a passive microwave
radiometer, the TRMM Microwave Imager (TMI), and

a 13.8-GHz precipitation radar (PR) (Kummerow et al.
1998). Measurements from these instruments are used
in conjunction with databases from cloud dynamical–
microphysical and radiative transfer models to obtain
rainfall and latent heating profiles that are consistent
with the satellite observations (e.g., Kummerow et al.
1996; Olson et al. 1996, 1999).

The accuracy of the retrieved cloud properties de-
pends, in part, on how representative the model mani-
fold of passive microwave brightness temperatures TB

are of the TB relations in naturally occurring storms
(Panegrossi et al. 1998). Panegrossi et al. (1998) empha-
sized the affect of environmental characteristics on the
manifolds (multidimensional relations) of simulated
passive microwave TB and also suggested that model
microphysical parameterizations could affect the TB

manifold.
To examine the sensitivity of TB–cloud property re-

lations on model microphysics, Biggerstaff et al. (2006,
hereinafter Part I) used a set of numerical simulations
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of a squall line taken from Hristova-Veleva (2000). She
tuned two microphysical schemes, each based on a
three-class ice and two-class water bulk parameteriza-
tion method, to generate storms that were consistent
with both a tropical oceanic regime in which accumu-
lations of supercooled cloud water are low and a mid-
latitude continental regime in which accumulations of
supercooled cloud water are more plentiful. This goal
was accomplished by adjusting the initial number of ice
crystals that were assumed to be activated at 0°C (the
so-called NCIO parameter). A low NCIO value al-
lowed supercooled cloud water to accumulate. A high
NCIO setting ensured that enough cloud ice was gen-
erated to use the available excess water vapor effec-
tively, leading to low concentrations of supercooled
cloud water.

In their numerical simulations, Adler et al. (1991)
found that supercooled cloud water masked the scat-
tering of high-frequency microwave energy by graupel
by absorbing the scattered energy and reemitting it.
This effect for the simulations conducted by Hristova-
Veleva (2000) was calculated in Part I, and, on average,
a warming of 15 K in 85-GHz TB over the convective
region of the low-NCIO simulations was found. This ef-
fect was sufficient to shift the model TB manifolds and
produce variability in the relations between cloud prop-
erties and passive microwave TB at TMI frequencies.
Moreover, in Part I it was shown that this effect de-
pended on which parameterization scheme was used in
the cloud model. This result led to the conclusion that
retrievals of latent heating and hydrometeor profiles
are sensitive to model microphysical parameterizations.

This study further quantifies the uncertainty of re-
trieved cloud properties and its sensitivity to model mi-
crophysics. We made use of the empirical orthogonal
function (EOF) framework developed in Part I to ex-
amine systematic differences in retrievals of cloud
properties associated with changes in the model micro-
physics. To test the significance of these findings, we
compared the variability associated with the different
microphysical schemes with the inherent variability be-
tween cloud properties and small changes in microwave
brightness temperatures. For the parameter space ex-
amined here, it was found that one microphysical
scheme exhibited differences in hydrometeor and latent
heating profile structure that significantly exceeded the
inherent variability in the TB–cloud property relations.
The other scheme did not. This was true at the fine-
scales of the cloud model as well as at scales typical of
satellite footprints for which the inherent variability in
TB–cloud property relations is reduced by area averag-
ing.

The results presented here suggest that, depending

on which microphysical parameterization is used in the
model, the impact of model microphysics on retrieved
hydrometeor and latent heating structure over satellite-
footprint scales can exceed the inherent uncertainty as-
sociated with nonuniqueness in TB–cloud property re-
lations. When considering the surface rain rate by itself,
however, the inherent variability in TB–rain rate rela-
tions was significantly greater than the variability
among the four microphysical parameterizations.

2. Data sources

a. Models in use

The data for this study were taken from simulations
of a mesoscale convective system conducted by Hris-
tova-Veleva (2000) and are described in Part I. The
microphysical parameterization schemes used in the
model are variants of Lin et al. (1983), taken from Tao
and Simpson (1993), and of Rutledge and Hobbs
(1984), taken from Keenan et al. (1994). These bulk
microphysical schemes employ parameterizations for
two classes of liquid water (cloud water and rain) and
three classes of ice (cloud ice, snow, and graupel).

Here we make use of the four simulations that have
temperature-independent collection efficiencies for
graupel collecting snow and snow collecting cloud ice.
They are referred to as AMeHi, AMeLi, BMeHi, and
BMeLi, where the first character indicates the particular
variant of the parameterization scheme [A for those
based on a graupel version of Tao and Simpson (1993)
and B for those based on the scheme used in Keenan et
al. (1994)]. The second character, with subscript “e,”
refers to the temperature-independent collection effi-
ciencies that were set equal in all four simulations used
here. The third character, with subscript “i,” denotes
the value of the assumed number of activated ice crys-
tals at 0°C (the NCIO parameter), with Li representing
a value of 10�2 m�3 and Hi representing values greater
than 107 m�3. As discussed in Part I, the first value was
chosen to represent environments that support accumu-
lation of supercooled cloud water, like midlatitudes
with high concentrations of cloud condensation nuclei,
where cloud water is distributed over a large number of
small particles that can be carried aloft in the convec-
tive updrafts. The latter value was set artificially high to
ensure that the condensed water vapor would be as-
signed to cloud ice rather than to cloud water in the
simulation. This approach was done to represent envi-
ronments that produce clouds with little supercooled
cloud water, like tropical oceanic regimes and the Ama-
zon (e.g., Stith et al. 2002). Hence, the comparisons of
AMeHi (BMeHi) versus AMeLi (BMeLi) allow for ex-
amination of the impact of supercooled cloud water on
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relationships between brightness temperatures and
cloud properties. In a similar way, the comparisons of
AMeHi (AMeLi) versus BMeHi (BMeLi) allow for ex-
amination of the sensitivity of the results to a particular
implementation of the microphysical parameteriza-
tions.

Microwave brightness temperatures were calculated
from the hydrometeor profiles produced in the cloud
model using a one-dimensional Eddington’s second-
approximation radiative transfer model (Weinman and
Davies 1978; Kummerow 1993), as described in Part I.
Brightness temperatures are calculated at 10, 19, 21, 37,
and 85 GHz, the same as the TMI channels, with nadir
viewing assumed for simplicity.

b. Simulations and model data

All model-generated variables, including microphysi-
cal mass contents in a unit volume (densities), latent
heat release, and vertical velocity, were archived. The
model output during the mature stage (Leary and
Houze 1979) of the simulated storm was sampled at 6 �
6 km2 horizontal resolution and 700-m vertical resolu-
tion with a temporal resolution of 5 min. All precipita-
tion points in the dataset were classified as either con-
vective or stratiform following the procedure of Tao
and Simpson (1993). About 10 000 vertical profiles
were taken through each convective and stratiform
cloud during the mature stage of each simulated storm
system to create the database used here.

3. Method

a. EOF framework

Passive microwave brightness temperatures associ-
ated with upwelling emission from the earth’s surface
are a function of hydrometeor content, surface emissiv-
ity and temperature, and atmospheric constituents and
temperature. Surface emissivity and precipitation-sized
hydrometeors are crucial in determining TB at TMI fre-
quencies. The other terms are negligible (e.g., Kum-
merow et al. 1991; Smith et al. 1992; Heymsfield and
Fulton 1988). Assuming a fairly uniform surface emis-
sivity, TB can be expressed as a function of the vertical
distribution and content of hydrometeors. As shown by
Part I, within about 80% of total variance, the vertical
profiles of hydrometeors in the model can be expressed
in terms of their first EOF and its coefficient. Thus, TB

can be expressed as

TB ≅ f�hc � acêc, hr � arêr, hi � aiêi, hs � asês, hg � agêg�,

�1�

where hj, aj, and êj denote the mean vertical profile, the
EOF coefficient (or amplitude), and the EOF, respec-

tively, of the jth hydrometeor. The subscripts c, r, i, s,
and g denote cloud water, rain, cloud ice, snow, and
graupel, respectively.

The quantities hj and êj are constant vectors deter-
mined from one of the four simulations. Note that in-
formation regarding the vertical structure of hydro-
meteors is contained in a zero-dimensional parameter,
the EOF coefficient. Hence, the only variables in (1)
are the coefficients aj. As a consequence, (1) can be
expressed in terms of the EOF coefficients:

TB ≅ g�ac, ar, ai, as, ag�. �2�

Equation (2) implies that a brightness temperature can
be determined from a combination of only the first
EOF coefficients of individual hydrometeor profiles.
The inverse is also true. The first EOF coefficient of a
hydrometeor can be determined from a set of bright-
ness temperatures. This approximation is generally
good over uniform or weakly varying surface emissivi-
ties when the first eigenvalue represents most of the
variance in the vertical structure of the hydrometeor
profiles.

The first EOF coefficient of a cloud model variable
based on (2) can be retrieved from a set of TB at TMI
frequencies using multivariate linear regression:

ãj � b0 � b1T1 � b2T2 � b3T3 � b4T4 � b5T5��b6aref�,

�3�

where ãj is the retrieved EOF coefficient of the jth
hydrometeor, Ti represents the TB at the ith microwave
frequency, bi is the regression coefficient associated
with the ith predictor (e.g., the ith TB frequency), and
aref denotes the first EOF coefficient of radar reflectiv-
ity from the model database that can be used as an
additional predictor to evaluate the benefit of the PR
data available on the TRMM satellite relative to just
the TMI data.

Because there is a strong relationship between the
vertical structure of hydrometeors and radar reflectiv-
ity, latent heating, and vertical motion, the TB can also
be used to retrieve the first EOF coefficient of those
model variables. It is obvious that, for the analysis con-
ducted here, inclusion of aref in (3) should lead to a
perfect result when retrieving the EOF coefficient of
radar reflectivity.

Although the microwave TB and the EOF coefficient
of radar reflectivity are used to retrieve a scalar quan-
tity, the EOF coefficient, a vertical profile of that vari-
able at an individual column can be reconstructed. The
reconstructed profile is the mean profile of that vari-
able from the model database added to the product of
the retrieved EOF coefficient and the first EOF of that
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variable. Hence, the vertical structure of hydrometeors
or reflectivity, latent heating, and vertical motion that is
consistent with a set of observed TB at a given point in
space can be retrieved using (3).

b. Coefficients of determination

Uncertainty in the multivariate linear regression can
be estimated based on the regression’s coefficient of
determination (Neter et al. 1996), which represents a
proportionate reduction of total variation associated
with the predictor variables. The coefficient of deter-
mination R2

j associated with retrieving the jth variable
is given by

Rj
2 � �

i
�ãi � a�2��i�ai � a�2, �4�

where ã is the retrieved EOF coefficient, a is the mean
EOF coefficient for that variable in the model data-
base, and ai is the true value of the EOF coefficient at
the ith point in the database. Because R2

j represents the
amount of variance explained by the multivariate linear
regression model, the uncertainty associated with this
retrieval can be defined as

Uãj
� 1 � Rj

2. �5�

4. Results

a. Uncertainty in retrieving EOF coefficients of
cloud properties

Figure 1 shows the coefficients of determination as-
sociated with retrievals of surface rainfall rate and the
first EOF coefficient for hydrometeor species, radar
reflectivity, vertical motion, and latent heating using
the most independent TMI channels (10 and 85 GHz)
separately, all TMI channels combined, 85 GHz plus
the profiles of radar reflectivity, and all TMI channels
plus the profiles of radar reflectivity. These choices
were made to illustrate the potential benefits of
complementary passive and active microwave data
sources and to provide insight to application over land
where only the 85-GHz channel provides useful infor-
mation because of the high, inhomogeneous surface
emissivity (cf. Kummerow et al. 2000).

1) SURFACE RAIN RATE

The primary goal of TRMM is to measure tropical
rainfall. In the model, surface precipitation rate (Pr) is
calculated from the rain mass at the lowest level com-
bined with the computed fall speeds and vertical mo-
tion of the air at that point. The set of TB associated
with the surface rain rate is computed from the entire

hydrometeor profile. Retrieval of surface rain rate is
performed directly from the multivariate linear regres-
sion using brightness temperatures. This is independent
from the retrieval of the EOF coefficient of the rain
profile. Both rain quantities are represented in Fig. 1.

(i) Convective region surface rain rate

All four simulations show that the uncertainty in re-
trieving surface rain rate over convective areas varies
between 20% and 60% depending on the type of infor-
mation used in the multivariate linear regression. The
uncertainty in retrieved surface rain rate over the con-
vective region did not depend on the microphysical
scheme or the parameter settings tested here. As ex-
pected, the lowest uncertainty in surface rain rate was
achieved using all of the available passive and active
microwave information. However, there was little dif-
ference between having all of the information and using
just the 10-GHz channel.

The greatest uncertainty occurred when the retrieval
was limited to just the 85-GHz channel. This result is
consistent with Part I in which it was noted that the
impact of microphysical parameterizations was most
evident when the rain profiles were sorted by 85-GHz
TB alone. The addition of radar reflectivity to 85-GHz
TB added skill to the retrieval but was still about 20%
more uncertain than using the combined TMI channels.
This result implies that retrievals over land, even with
reflectivity from the PR, will be considerably more un-
certain than retrievals over water for which the lower-
frequency channels are able to contribute information
on the underlying cloud structures.

(ii) Stratiform region

In contrast to convective regions, where the retrieval
of surface rain rate was independent of the microphysi-
cal parameterization scheme, the retrieval of surface
rain rate over stratiform regions showed considerable
variation among simulations. This variation was almost
entirely due to an overall reduction in the coefficient of
determination associated with retrievals using 85-GHz
TB by itself, or 85 GHz and radar reflectivity combined,
in the low-ice runs. This result is due to the influence of
snow on the surface rain rate in the stratiform region.
Snow accounts for about 30% of the surface rain rate in
the simulated stratiform regions and less than 10% in
the simulated convective regions. Both parameteriza-
tion schemes had lower correlations between snow and
85-GHz TB in the low-ice runs than in the high-ice runs,
with scheme B exhibiting the lowest correlation (Part
I). Hence, 85-GHz TB by itself is not sufficient for re-
trieving surface rain rate in the stratiform region, espe-
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FIG. 1. The coefficients of determination for the first EOF coefficients of vertical profiles of model variables using the predictors
indicated in the legend for the (a) BMeHi convective, (b) AMeHi convective, (c) BMeLi convective, (d) AMeLi convective, (e) BMeHi

stratiform, (f) AMeHi stratiform, (g) BMeLi stratiform, and (h) AMeLi stratiform regions. The axis labels dBZ, qr, qg, Pr, qs, qi, lh, w,
and qc refer to radar reflectivity, rain, graupel, surface precipitation rate, snow, cloud ice, latent heating, vertical motion, and cloud
water, respectively.

JULY 2006 S E O A N D B I G G E R S T A F F 959



cially for scheme B. Because radar reflectivity is af-
fected by snow, inclusion of reflectivity in the retrieval
had a measurable positive impact.

When the retrieval of surface rain rate is able to in-
clude 10-GHz TB, variability in the uncertainty of sur-
face rain rate no longer depends significantly on the
model microphysical parameterizations for the settings
examined here at high spatial resolution.

(iii) Rain profile versus surface rain rate

As noted by Smith et al. (1992), passive microwave
observations are better correlated with vertically inte-
grated hydrometeor mass than with surface precipita-
tion rate. In Part I it was shown that the magnitude of
the EOF coefficient may be used as a proxy for inte-
grated hydrometeor mass while preserving the vertical
structure of the hydrometeor profile. In agreement with
Smith et al. (1992), the coefficient for determination for
the first EOF coefficient of the rain profile (Fig. 1) is
higher than the coefficient of determination for the sur-
face rain rate. Indeed, using 10-GHz TB, or any com-
bination of passive and active microwave observations
with 10-GHz TB, led to an uncertainty in the retrieved
EOF coefficient of less than 10% over both convective
and stratiform regions. Based on the modeling work
analyzed here, the uncertainty in surface rain rate is
about 4 (2) times the uncertainty in retrieving the first
EOF coefficient of the rainwater profile over convec-
tive (stratiform) regions.

2) OTHER PRECIPITATION-SIZED HYDROMETEORS

Like rain, retrieval of the first EOF coefficient for
graupel over both convective and stratiform regions has
fairly low uncertainty when all the passive and active
microwave information is used (Fig. 1). However, the
graupel retrieval benefits more from the full range of
TMI channels. There is between 10% and 20% further
reduction in uncertainty using the full suite of TMI fre-
quencies relative to using the single best channel—85
GHz in this case. The improvement is greater for the
low-ice simulations in which supercooled cloud water
masks the 85-GHz TB scattering signature. In that re-
gard, model microphysical parameterizations have an
effect on the uncertainty in the retrieved EOF coeffi-
cients of graupel.

Retrievals of the EOF coefficient for snow (Fig. 1)
have significant uncertainty, 30%–60% in the convec-
tive region and 50%–80% in the stratiform region. Dif-
ferences in the microphysical parameterizations are
clearly evident, with scheme B showing the greatest
uncertainty in the retrieval. As noted in Hristova-
Veleva (2000), scheme A tended to have a vertically

layered hydrometeor structure in which higher concen-
trations of snow corresponded to higher concentrations
of graupel and rain. Scheme B had a more uniform
distribution of snow and cloud ice. TMI frequencies are
more sensitive to graupel and rain than snow (Part I).
Thus, in simulations using scheme A, the uncertainty in
retrieval of EOF coefficients for snow was reduced by
the strong correlations between mass contents of the
precipitation-sized particles. This result is particularly
well illustrated by the behavior of retrievals over con-
vective regions based on 85-GHz TB. In scheme B, 85-
GHz TB was a poor predictor of snow, even when com-
bined with radar reflectivity. In contrast, for scheme A,
85-GHz TB was a moderately good predictor or snow,
even when used by itself.

In naturally occurring leading-line trailing-stratiform
squall line systems, the stratiform region is often domi-
nated by snow and very little graupel exists (e.g., Willis
and Heymsfield 1989). Given the weak influence of
snow on TMI brightness temperatures, the uncertainty
in retrieving snow in natural cloud systems is likely
greater than the results indicated here.

3) CLOUD PARTICLES

Similar to snow, the uncertainty in retrieving the
EOF coefficient of cloud ice and cloud water depended
strongly on the microphysical parameterization used in
the cloud model and on whether the clouds were con-
vective or stratiform (Fig. 1). Of the hydrometeor
fields, retrieval of cloud water showed the greatest ben-
efit to including the full suite of TMI channels. This
situation is due to the positive correlation between
cloud water and 37-GHz TB in the convective region
(Part I). The 37-GHz channel is affected by both emis-
sion and scattering. Although warming of TB at 37 GHz
through emission from liquid water is quickly saturated
in the presence of rain, the simulated convective region
contained many developing clouds that had high cloud
water content but little rain. Thus, in convective regions
where cloud water contents are sufficiently high and
rain content is sufficiently low, retrievals of the EOF
coefficient for cloud water are less uncertain (50%)
than in stratiform regions (�90%) where cloud water
concentrations are simply too low.

4) VERTICAL MOTION AND LATENT HEATING

Passive microwave retrievals of latent heating from a
cloud model database represent the instantaneous heat-
ing associated with the phase changes of water over the
scale of the brightness temperature observation. Shige
et al. (2004) note that the average of the retrieved in-
stantaneous latent heating profiles can be interpreted
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as the mean large-scale latent heating associated with
the apparent heat source from the convective system
(Yanai et al. 1973; Johnson 1984) as long as the cloud-
resolving model adequately reproduces the life cycle
and statistics of the precipitation of the observed storm.
Here we are interested in differences in the retrievals
that arise from microphysical parameterizations that af-
fect the statistical representation of the precipitation in
the cloud model.

Retrievals of the EOF coefficients of cloud proper-
ties that are indirectly related to hydrometeor profiles,
such as vertical motion and latent heating (Fig. 1), il-
lustrate differences in the fundamental nature of con-
vective and stratiform precipitation. In convective re-
gions, microphysical processes are dominated by local
effects associated with small-scale vertical motions that
have magnitudes similar to or greater than the horizon-
tal flow. Thus, the vertical profile of latent heating and
vertical motion over the convective region should be
strongly related to the vertical profile of hydrometeors.

In contrast, microphysical processes in stratiform re-
gions are driven by advection of particles and momen-
tum from the convective region (Rutledge and Houze
1987; Biggerstaff and Listemaa 2000). Latent heating in
stratiform clouds depends more on easily advected hy-
drometeors such as cloud water, cloud ice, and low-den-
sity snow than does latent heating in convective clouds
(Tao et al. 1990). Moreover, vertical motion is consid-
erably weaker than horizontal motion in stratiform
clouds. Hence, growth of precipitation particles and the
associated release of latent heating occur over a more
horizontal trajectory in stratiform regions. As a conse-
quence, there is less connection between the vertical
profile of hydrometeors and vertical motion and latent
heating in stratiform clouds. This situation is clearly
illustrated by the near-zero coefficient of determination
for latent heating and vertical motion in stratiform re-
gions as compared with the moderate values of the co-
efficient of determination in convective regions of the
four simulations (Fig. 1).

It should be understood that the uncertainty in re-
trieving the EOF coefficient is not the same as the un-
certainty in retrieving the profile of a model variable.
For stratiform-region latent heating, the results simply
imply that the retrieval based on passive microwave
information at TMI frequencies cannot be improved
beyond knowing the mean profile.

b. Inherent variability in TB–cloud property
relations

To test whether differences in microphysical param-
eterizations are a significant source of uncertainty in
retrievals of hydrometeor and latent heating profiles, it

is necessary to examine the magnitude of those differ-
ences relative to the inherent variability in TB–cloud
property relations.

1) EXAMPLES OF VARIABILITY NEAR A GIVEN TB

VECTOR

(i) Definition of parameters

If we let a target TB vector Tj associated with an
individual hydrometeor profile have components cor-
responding to TB of 10, 19, 21, 37, and 85 GHz, then we
can define a difference 	T between the target vector
and another TB vector Tk associated with a different
hydrometeor profile within the database as

�T � �Tj � Tk�. �6�

The variability in TB–cloud property profiles can be
examined by plotting individual profiles from the
model database that are within a few kelvins from the
target vector (Fig. 2). It is important to note that the
profiles in Fig. 2 were taken directly from a search
through the model database and were not recon-
structed from an EOF retrieval.

To quantify differences between vertical profiles, a
structural difference parameter is defined. If we let qj

be the column vector associated with the reference ver-
tical profile of some model variable, then the structural
difference between the reference and another profile qk

can be expressed as

�q � �qj � qk���qj� � 100. �7�

To aid interpretation of the structural difference be-
tween two column vectors, several examples from ide-
alized profiles are provided in Fig. 3.

(ii) Cloud particles and snow

Even in the same simulation, there exist fluctuations
in the vertical structures of hydrometeors for small
changes from a given set of TB (Fig. 2). Consistent with
their lack of influence on and low correlation with TMI
TB, cloud water, cloud ice, and snow exhibited a high
degree of variability. The structural differences in these
parameters also depended significantly on the particu-
lar microphysical scheme used in the cloud model, with
profiles from scheme-B simulations having more vari-
ability than profiles from scheme-A simulations. Vari-
ability in cloud ice and cloud water for a given set of TB

also depended strongly on the choice of NCIO within
each parameterization scheme.

(iii) High-density precipitation particles and
radar reflectivity

Profiles of rain and graupel, which are strongly cor-
related with TB at TMI frequencies, exhibited consid-
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FIG. 2. Vertical profiles of microphysical variables whose TB vectors for the four microphysical schemes are within 3 (solid lines) or
3–6 (dotted lines) K from target TB vectors from AMeLi of (a) TB � (260.8, 216.1, 200.1, 132.8, 121.1 K) for a convective profile and
(b) TB � (177.3, 248.1, 257.3, 241.8, 197.0 K) for a stratiform profile. The panel labels qc, qr, qi, qs, qg, ref, w, and Hl denote cloud water,
rain, cloud ice, snow, graupel, radar reflectivity, vertical velocity, and latent heat release, respectively. Black, green, blue, and red lines
denote AMeLi, BMeLi, AMeHi, and BMeHi, respectively. Black solid lines denote the vertical profiles of microphysical variables
corresponding to the target vectors. Regular and boldface italic fonts inside panels denote averaged structural differences in percent
for 	T within 3 (solid lines) and 3–6 (dotted lines) K, respectively; “NA” indicates that no data point existed within a particular model
database for that range of 	T. The averaged structural differences within 	T of 4 K for all microphysical schemes are shown above the
panels.
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erably less variation across the four simulations than
did the profiles of cloud ice, cloud water, or snow. Nev-
ertheless, for both convective and stratiform clouds,
near-surface rainwater content varied by a factor of 2
with little impact on the brightness temperature vector.

The dichotomy in TB–hydrometeor relations be-
tween high-density and low-density precipitation par-
ticles contributed to strong variability in the upper-level
radar reflectivity profiles associated with small changes
in T. At altitudes above 10 km, where snow dominates
the reflectivity, differences on the order of 20–30 dB
were found. In contrast, at lower altitudes where rain
and graupel dominate reflectivity, the profiles were
within a few decibels of each other.

(iv) Latent heating and vertical motion

There were tremendous fluctuations in latent heating
profiles in the model database for just a few degrees of
change in the input brightness temperature vector, even
within the same microphysical scheme. Indeed, over the
convective region where latent heating was moderately
correlated to TB at TMI frequencies, the profiles of
latent heating varied from strong “convective like”
(Houze 1982) structures to strong “stratiform like”
structures.

The magnitude of the variability also depended on
the microphysical parameterizations used in the model,
with scheme-B simulations exhibiting more variability
than did scheme-A simulations. Profiles that exhibited

significantly higher cloud ice concentrations typically
had stronger latent heating at midlevels (red dotted
lines in Fig. 2a). Moreover, the simulations in which the
peak cloud ice concentrations were found at higher al-
titudes (BMeLi) also had latent heating maxima at
higher altitude than did the latent heating profiles as-
sociated with the target T.

Similar to latent heating, vertical velocity profiles
show a large degree of variability for small changes in
T. This is particularly true for the convective region, for
which vertical motions at mid- to upper levels varied
from 2 to more than 20 m s�1 within a target set of TB.

2) GENERATING STRUCTURAL DIFFERENCES FOR

A MODEL DATABASE

(i) Definition of parameters

To generalize the nonuniqueness in TB–cloud prop-
erty relations, the structural difference parameter is re-
defined to take into account all of the hydrometeors
simultaneously. A column vector Q, containing all hy-
drometeor contents, is defined as

Q � �
�cqc

�rqr

�iqi

�sqs

�gqg

�, �8�

FIG. 3. Structural differences (	Q) between selected idealized profiles. Note that the largest
structural differences occur for vertical displacements as opposed to differences in magnitude
between the profiles.
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where qj is a column vector representing a vertical pro-
file of the jth hydrometeor species. The subscripts c, r,
i, s, and g represent cloud water, rain, cloud ice, snow,
and graupel, respectively. The coefficient 
j is a weight
based on the average of the correlations between TB at
TMI channels and the first EOF coefficients of the jth
hydrometeor species determined from the four simula-
tions examined by Part I. The weighting factors are
given in Table 1.

Because each TMI channel is not equally sensitive to
individual hydrometeor species, the average-correla-
tion weighting treats the definition of vertical structure
of hydrometeor species more appropriately than does
uniform weighting for all of the hydrometeor species.
Thus, the definition given by (8) takes into account how
well the TMI channels detect the individual hydro-
meteor species. More weight is given to rain than to the
other hydrometeor species.

Generalizing the structural difference definition
given in Kummerow and Giglio (1994), the structural
difference in hydrometeor profiles (	Q), in percent,
between two different column vectors can be defined as

�Q � �Qj � Qk���Qj� � 100, �9�

where the subscripts j and k represent a reference vec-
tor and a compared vector, respectively. In a similar
way, the structural difference in latent heating pro-
files is

�H � �hj � hk���hj� � 100, �10�

where h represents a column vector for a latent heating
profile. The structural difference for radar reflectivity
profiles is

�Z � �zj � zk���zj� � 100, �11�

where z represents a column vector for a vertical profile
of radar reflectivity. The difference in surface precipi-
tation rates is defined as

�P � �pj � pk��pj � 100, �12�

where p represents a surface rain rate. All of the dif-
ferences in hydrometeor structure, radar reflectivity, la-
tent heating, and surface rain rate were sorted by the
magnitude of the difference in the input TB vector.

Based on the above definitions, the differences have
been computed between all possible pairs in both con-
vective and stratiform precipitation for the AMeLi

simulation. This simulation was chosen as a reference
because it exhibited characteristics consistent with the
other three simulations and represented the middle of
the range of variability found in the four simulations.
The results were further divided by surface rain rate
higher than 10 mm h�1 in convective clouds and 1 mm
h�1 in stratiform clouds. Limiting the convective region
to just the heavy precipitation cores allows for more
direct interpretation of the statistical analysis. For con-
vective clouds, there were about 11 million pairs avail-
able from the AMeLi simulation. For stratiform clouds,
there were about 6.6 million pairs available.

(ii) Hydrometeor structure and surface
precipitation rate

In taking into account all of the hydrometeors simul-
taneously, the average structural difference over con-
vective cores increased quickly for the first few degrees
of change in input TB before logarithmically approach-
ing 45% at 	T of 20 K (Fig. 4). In the stratiform region
the average structural difference increased more lin-
early with increasing 	T. In general, the variability of
the hydrometeor structure for the stratiform region was
greater than that for the convective cores.

To appreciate better the variability in individual hy-
drometeor profiles that are consistent with the average
structural differences shown in Fig. 4, we note that the
average structural difference for the target vector used
in Fig. 2a was 25% at 	T of 3 K, using all of the profiles
from the four simulations. The hydrometeor weighting
based on the correlations with TMI frequencies mini-
mized the impact of the cloud ice and snow, which had
larger individual structural differences. The value of
25% at 	T of 3 K agrees well with the overall mean
structural difference of about 20% in the convective
cores at 	T of 3 K (Fig. 4a). Hence, weighted-average
structural differences on the order of a few tens of per-
cent correspond to relatively large variability in the
structure of individual hydrometeor profiles.

The average variability of the surface rain rate was
about 25% for a few degrees in 	T over the convective

TABLE 1. Average of correlations between TMI TB and the first EOF coefficients of each hydrometeor species. Each row
represents a microphysical scheme. Regular and italic fonts represent convective and stratiform clouds, respectively.

Correlation Cloud water Rain Cloud ice Snow Graupel

BMeHi 0.37 0.03 0.70 0.84 0.50 0.32 0.47 0.37 0.57 0.73
AMeHi 0.34 0.03 0.64 0.87 0.50 0.68 0.53 0.51 0.55 0.82
BMeLi 0.35 0.33 0.58 0.84 0.46 0.48 0.49 0.36 0.51 0.78
AMeLi 0.40 0.30 0.58 0.81 0.34 0.14 0.33 0.09 0.49 0.70

964 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 45



FIG. 4. Relationship between hydrometeor structure 	Q (%) or input brightness temperature vector 	T (K) and (a), (d) surface rain
rate 	P (%) or (b), (e) radar reflectivity 	Z (%) or (c), (f) latent heating 	H (%) for surface precipitation rates (left) higher than 10
mm h�1 in convective clouds and (right) higher than 1 mm h�1 in stratiform clouds.
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cores and increased logarithmically with increasing 	T,
reaching a plateau of about 47% at 20 K. A similar
variation was found for stratiform surface rain rate, but
the uncertainty was greater by roughly a factor of 2.

(iii) Reflectivity and latent heating

The change in radar reflectivity structure is much
smaller than changes in either the hydrometeor struc-
ture 	Q or the surface rain rate 	P for a given 	T.
Reflectivity is an integrated quantity that is weighted
more by high-density precipitation-sized hydrometeors
than by low-density small particles. Because the TMI
frequencies are strongly correlated with rain and grau-
pel, the reflectivity structure is less variable than the
total hydrometeor structure, which also includes cloud
water, cloud ice, and snow. Hence, retrievals of radar
reflectivity profiles would be more certain than retriev-
als of either rain rate or total hydrometeor profiles.

The nonuniqueness between latent heating and TB

was illustrated by the example in Fig. 2a, which had an
average structural difference of 140% at 	T of 3 K. On
average, the structural differences in AMeLi were
somewhat less, with a value of about 90% at 	T of 3 K.
Similar values were found for the stratiform region.
The larger uncertainty for the example in Fig. 2a is a
result of taking profiles from other simulations. The
average structural differences are greater than the mag-
nitudes associated with profiles “1 and 2” and “1 and 3”
in Fig. 3. Those comparisons are for the same vertical
structure with one-half and one-fourth times the values
in profile 1. Hence, the magnitude of the structural dif-
ferences in latent heating profiles as a function of 	T
suggests that the profiles likely have their maxima at
different altitudes.

3) IMPACT OF DIFFERENT MODEL MICROPHYSICS

To test whether the impact of the different micro-
physical schemes exceeded the inherent variability in
TB–cloud property relations, comparisons were made
among the four microphysical schemes using AMeLi as
the reference set of profiles. For each profile in AMeLi,
the differences between that profile and all other pro-
files in AMeLi, BMeLi, AMeHi, and BMeHi were com-
puted and sorted by the magnitude of the change in the
brightness temperature vector.

Results for the hydrometeor structure, surface rain
rate, and latent heating profiles are shown in Fig. 5.
Here we made use of the entire convective region, de-
fined as convective clouds with surface rain rate in ex-
cess of 1 mm h�1, and the entire stratiform region, de-
fined as stratiform clouds with surface rain rate in ex-
cess of 0.1 mm h�1, to capture differences associated

with developing convective cells and weaker precipita-
tion regions.

(i) Structural differences

The impacts of model microphysical parameteriza-
tions are evident in comparing the average structural
difference in hydrometeor profile as a function of 	T
(Figs. 5a,d) for the high-ice and low-ice runs. In scheme
A, the variability in TB–hydrometeor relations did not
depend on the initial number of ice crystals assumed to
be activated at 0°C. In contrast, scheme B was very
sensitive to the NCIO parameter. The marked separa-
tion between BMeLi and BMeHi simulations demon-
strates that the impact of microphysical settings on re-
trievals of cloud properties from passive microwave ob-
servations depends significantly on the details of the
particular parameterization scheme used in the model.
The variation between the low-ice and high-ice versions
of scheme B was roughly 2 times the variability inher-
ent in the TB–hydrometeor relations for scheme A.
Even when the two microphysical parameterizations
have been tuned, as in the AMeLi and BMeLi simula-
tions (Hristova-Veleva 2000), philosophical choices
made in parameterization schemes can lead to signifi-
cant additional uncertainty in TB–cloud property rela-
tions for hydrometeor structure. These choices affected
both the convective and the stratiform TB–hydro-
meteor relations.

(ii) Surface rain rate

The impact of model microphysical parameteriza-
tions on surface rain rate–TB relations (Figs. 5b,e) was
considerably less than the impact on overall hydro-
meteor structure. Except for stratiform regions with
small changes in 	T, the additional variability associ-
ated with the different microphysical schemes was only
a small fraction of the inherent variability associated
with surface rain rate–TB relations. The correlation be-
tween TB at TMI frequencies and rain is strong enough
to limit the impact of model microphysics on the re-
trieval of surface rain rate.

(iii) Latent heating

The overarching goal of TRMM is to determine the
four-dimensional distribution of latent heating across
the Tropics for input to climate models (Simpson et al.
1988). An unfortunate fact is that the variability in TB–
latent heating relations associated with different micro-
physical schemes is nearly as large as the inherent un-
certainty in TB–latent heating relations (Figs. 5c,f). This
is true even though the two schemes are based on the
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same bulk three-class ice/two-class water paradigm.
Once again, scheme B showed the greatest range in
variability. This result was due to the difference in the
production of cloud ice, which affected both the hy-
drometeor structure as well as the vertical distribution
of latent heating.

5. Effect of resolution on variability in TB–cloud
property relations

So far, the analyses presented have been conducted
at high resolution, which allows for physical interpreta-

tion of the results relative to the dynamics and micro-
physics of individual cloud elements. Moreover, the
high-resolution analyses can be applied to individual
case studies based on data from airborne instruments
like the Advanced Microwave Precipitation Radiom-
eter (AMPR; Spencer et al. 1994). However, TRMM is
a satellite mission. The relative importance of model
microphysical parameterizations may depend on the
scale at which the brightness temperatures are mea-
sured.

To examine the effect of resolution on the relation-
ship between brightness temperature vectors and cloud

FIG. 5. Structural differences of (a) hydrometeor profiles, (b) surface precipitation rates, and (c) latent heating profiles for surface
precipitation rates greater than 1 mm h�1 in convective clouds and (d) hydrometeor profiles, (e) surface precipitation rates, and (f)
latent heating profiles for surface precipitation rates greater than 0.1 mm h�1 in stratiform clouds. Solid, dotted, dashed, and dot–dashed
lines represent AMeLi, BMeLi, BMeHi, and AMeHi, respectively.
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properties, all TB in the AMeLi simulation were con-
volved over TMI footprint sizes using TMI antenna
gain functions. All corresponding cloud properties were
averaged over a 18 � 18 km2 area, which approximates
the middle of the TMI resolutions at the different fre-
quencies.

As the resolution decreased, the variability between
brightness temperatures and cloud properties also de-
creased for all of the parameters examined (Table 2).
This result indicates that cloud properties at TMI scales
do not have variability as large as that of individual
profiles at high resolution. Structural differences in hy-
drometeor profiles decreased by roughly one-third of
the amount found at high resolution for both convec-
tive and stratiform regions. The same was true for dif-
ferences in the reflectivity profile. The variability, and
hence uncertainty, in surface rain rate was reduced by
about 12% over both convective and stratiform regions.
On the other hand, variability in TB–latent heating re-
lations was reduced more in the convective region
(30%) than in the stratiform region (15%). This result
can be attributed to fundamentally more uniform ver-
tical motions in stratiform regions.

The above results are somewhat contrary to those of
Smith et al. (1994) who showed that rain retrievals are
not significantly affected by resolution degradation.
Factors that contribute to the discrepancy in the find-
ings between this study and their study are that 1) this
study used a large dataset from a numerical simulation
and their study was confined to a limited set of ob-
served brightness temperatures from AMPR and 2) this
study treated the effect of convective and stratiform
clouds separately, whereas the Smith et al. (1994) study
did not distinguish between cloud types.

The reduction in variability noted in Table 2 indi-
cates the degree to which spatial averaging can reduce
the randomness of the TB–cloud property relations that
were illustrated in Fig. 2. In contrast, the variability in
TB–cloud property relations associated with the differ-
ent microphysical parameterizations illustrated in Fig. 5
is not random. They represent a bias associated with

systematic differences in the treatment of microphysical
processes that lead to fundamentally different cloud
structures and latent heating profiles (Part I). In that
regard, spatial averaging increases the relative impor-
tance of model microphysics when compared with the
inherent variability in TB–cloud property relations.

To illustrate this, retrievals of latent heating were
conducted over the Kwajalein, Republic of the Mar-
shall Islands, region for August of 1999 (Fig. 6). The
Collaborative Model for Multiscale Atmospheric Simu-
lation (COMMAS; Skamarock and Klemp 1993) data-
base used for this retrieval consisted of two simulations,
both of which were high ice; one used the scheme-A
microphysical parameterizations and the other used
scheme B, initialized with a sounding from Trier et al.
(1996) for a tropical oceanic squall line observed over
the Pacific Ocean warm pool. Additional details are
found in Seo (2000). The model brightness temperature
calculations took into account the TRMM antenna gain
function, and the cloud properties were averaged at an
intermediate scale, that of the 37-GHz TMI footprint.
The model database was partitioned into convective,
stratiform, or mixed-mode footprints. Observed TMI
data were classified according to Hong et al. (1999) and
were used to retrieve EOF coefficients of the latent
heating profile from the appropriate part of the data-
base. The EOFs were used to reconstruct instantaneous
footprint average latent heating profiles and were
added to the sum shown in Fig. 6.

This result, while limited in scope, clearly shows that
averaging enhanced the bias associated with the dif-
ferent microphysical schemes. The altitude of the
maximum heating is shifted upward by �2 km in
scheme B relative to scheme A. Moreover, scheme B
shows pronounced mid- to low-level cooling whereas

FIG. 6. Total accumulated latent heating (K h�1) retrieved from
TMI observations over Kwajalein during August 1999 for a simu-
lation using scheme-A microphysical parameterizations (dashed
line) and scheme-B microphysical parameterization (solid line).

TABLE 2. Structural differences in hydrometeor, radar reflectiv-
ity, and latent heating profiles and difference in surface precipi-
tation rates in percent over high and low resolutions in terms of
	T in the range of 0 and 10 K in AMeLi. Regular and italic fonts
represent high and low resolutions, respectively.

Structural difference
�1 mm h�1

(convective)
�0.1 mm h�1

(stratiform)

Hydrometeor profile 50–70 30–50 40–75 35–55
Radar reflectivity profile 35–45 23–30 18–31 15–23
Latent heating profile 105–115 65–90 90–100 75–85
Surface precipitation rate 45–58 32–47 50–80 35–70
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scheme A has almost no net heating or cooling in the
lowest 4 km.

6. Implications for retrieved latent heating

The EOF framework used in this study provides one
method for quantifying the uncertainty in retrieving
cloud properties using passive microwave observations
at TMI frequencies. It should be understood that this
approach retrieves the perturbation from the mean pro-
file. Large uncertainties in retrieving the EOF coeffi-
cient indicate that the profile cannot be adjusted reli-
ably from the mean structure associated with the model
database.

a. Stratiform regions

For stratiform region latent heating, for which the
uncertainty in retrieving the EOF coefficient is large, it
may be best to use other methods to estimate latent
heating. For example, the convective–stratiform heat-
ing algorithm developed by Tao et al. (1993) assumes
that the shape of stratiform heating is the mean over
the stratiform area in the cloud model. Their approach
adjusts the magnitude, but not the structure, of the
heating according to the precipitation rate. This adjust-
ment approach implies that the model database has the
correct mean heating profile. A similar assumption is
made in Shige et al. (2004). A key aspect of their ap-
proach is to partition the database according to echo
top, so that shallow convection can be separated from
deep convection, or by the precipitation rate at the
melting level as in the case of deep stratiform cloud.
Then all of the heating profiles for increments in echo
top for convective clouds, or melting level precipitation
rate for deep stratiform clouds, are averaged. Using a
radar profile as input, they retrieve the mean heating
for that echo top or melting-level precipitation rate. In
their method, each cloud profile that has the same echo
top or same melting-level precipitation rate will have
the same heating profile, regardless of the vertical
structure of the hydrometeors. Again, the assumption is
that the model has produced the correct mean profile.

Given the current limitations in bulk three-class ice
model microphysical parameterizations and the diffi-
culty in simulating broad regions of stratiform clouds
dominated by snow instead of graupel, it is not clear
that model databases have accurate mean stratiform
heating structures. This is true for the current study as
well. Moreover, we note that different implementations
of bulk three-class ice microphysical parameterizations
can produce differences in the mean structure of the
stratiform region latent heating, even with the same
microphysical settings (Part I).

Nevertheless, given the common weaknesses in re-
trieval databases, adjusting the model means using the
techniques of Tao et al. (1993) or Shige et al. (2004) is
likely more appropriate than using the EOF coefficient
to adjust the model mean. This might change if addi-
tional information relevant to snow and cloud ice, like
higher-frequency brightness temperatures or cloud ra-
dar, were used in the retrieval.

b. Convective regions

In convective regions, for which departures from the
mean can be substantial, an inability to retrieve the
perturbation associated with a given set of brightness
temperature observations would lead to large errors in
retrieved cloud structure. The analysis suggests that
there fortunately is skill in retrieving the EOF coeffi-
cient for convective-region latent heating, especially
when all of the TMI frequencies are used. Analyses
conducted for 36 � 36 km2 and 72 � 72 km2 footprints
(not shown) indicate that the uncertainty in retrieving
the EOF coefficient for latent heating is about 30%–
40%, which is slightly better than the 50% found at high
resolution. Averaging over time and space may further
reduce random errors.

Hence, EOF-based methods are more useful over
convective regions than over stratiform regions. With
its ability to account for variation in the vertical struc-
ture of latent heating, the EOF technique may be more
appropriate over convective areas than are methods
that adjust the magnitude of the model mean or assume
that clouds with the same echo top will have the same
heating profile. Regardless, the retrieval of latent heat-
ing is intimately tied to the microphysical parameter-
izations used in the cloud models that generated the
retrieval database. Although scheme A exhibited less
sensitivity to the microphysical parameters tested here,
it is unclear as to whether this behavior should be
viewed as a strength or as a weakness in the model. It
may be a matter of philosophical preference as to
whether or not a microphysical scheme should be sen-
sitive or invariant to physical factors that are poorly
known but physically meaningful, like the initial num-
ber of ice crystals assumed to be activated at 0°C. It
may also be difficult to justify implementing more so-
phisticated microphysical schemes when observational
guidance needed to validate their performance is un-
available.

7. Conclusions

The impact of model microphysics on the retrieval of
cloud properties based on passive microwave observa-
tions was examined using a three-dimensional, nonhy-
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drostatic, adaptive-grid cloud model to simulate a me-
soscale convective system over ocean. Two different
microphysical schemes that are both based on a bulk
two-class liquid and three-class ice parameterization
were tested by adjusting the assumed number of ice
crystals activated at 0°C (the so-called NCIO param-
eter). The low-NCIO runs, representative of a midlati-
tude environment with large concentrations of cloud
condensation nuclei (CCN), allowed supercooled cloud
water to accumulate. High-NCIO runs ensured that
enough cloud ice was present to absorb excess water
vapor and minimize the accumulation of supercooled
cloud water, representative of convection over the
tropical oceans and the Amazon.

The uncertainty in retrieved cloud properties was
quantitatively determined using an empirical orthogo-
nal function (EOF) framework. For convective surface
rain rates, the uncertainty varied between 20% and
60% depending on which combination of passive and
active microwave observations was used in the re-
trieval. The uncertainty in surface rain rate did not de-
pend on the microphysical scheme or the parameter
settings except for retrievals over stratiform regions
based on 85-GHz TB by itself, or 85-GHz TB and radar
reflectivity combined. The different behavior for con-
vective and stratiform regions was attributed to the in-
fluence of snow on stratiform rain and the relatively
low correlations between EOFs of snow and microwave
brightness temperatures at TMI frequencies (Part I).

Systematic differences in the treatment of the pro-
duction of cloud water, cloud ice, and snow between the
two parameterization schemes led to significant differ-
ences in the uncertainty in retrievals of those cloud
properties. Scheme A, based on Tao and Simpson
(1993), produced cloud structures that were somewhat
layered, where high concentrations of cloud ice and
snow were also associated with high concentrations of
graupel and rain. In contrast, scheme B, based on
Keenan et al. (1994), produced cloud structures with a
more uniform distribution of cloud ice and snow (Hris-
tova-Veleva 2000). Because the TMI frequencies re-
spond well to rain and graupel, scheme A exhibited less
uncertainty in retrievals of snow and cloud ice than did
scheme B. Moreover, scheme A, in which excessive wa-
ter vapor is partitioned into cloud water and cloud ice
somewhat independently of the number of ice crystals
present, showed less sensitivity to the NCIO parameter
than did scheme B.

To determine whether the variation associated with
the different microphysical parameterizations was sig-
nificant, a comparison was made with the inherent vari-
ability in TB–cloud property relations. The inherent
variability in TB–cloud property relations also provides

insight to the level of uncertainty in Bayesian retrieval
methods (Evans et al. 1995; Olson et al. 1999) in which
a model database is searched to find profiles that
closely match an input brightness temperature vector.
It was found that small changes in the input TB vector
used to drive the retrieval could lead to significant dif-
ferences in the vertical structure of retrieved cloud
properties, especially those properties that are poorly
correlated with TMI channels. Even within the same
simulation there existed large variability in hydro-
meteor structure and latent heating profiles for rela-
tively small changes in the TB vector. Indeed, the varia-
tion in latent heating was greater than what would be
expected from a mere difference in the magnitudes of
the profiles, suggesting that the vertical profiles had
different altitudes for the peak heating and cooling.
There is a fundamental lack of correlation between in-
stantaneously measured TB and latent heat release. In
physical terms, the latent heat release might be better
correlated with a change of TB in time than with an
instantaneously measured TB.

When the variability among the four simulations was
plotted in terms of departures from a reference data-
base (the low-NCIO version of scheme A), it was found
that differences in the microphysical parameterizations
could double the uncertainty in hydrometeor structure
and increase the variability in latent heating by about
50%. Nearly all of the increase was associated with the
range of variability among the scheme-B simulations.
Thus, depending on which microphysical parameteriza-
tion is used in the model, the impact of model micro-
physics on retrieved hydrometeor and latent heating
structure can exceed the inherent uncertainty associ-
ated with nonuniqueness in TB–cloud property rela-
tions.

This result does not imply that one scheme is better
than the other. Instead, it suggests that retrievals of
cloud properties from passive microwave observations
are limited by the accuracy of microphysical parameter-
izations used in cloud-resolving models. This funda-
mental result is independent of whether the analysis is
conducted at the resolution of the model output or at
the scales of satellite footprints. Averaging over
TRMM footprints reduced the inherent variability as-
sociated with randomness in TB–cloud property rela-
tions. However, the systematic differences associated
with the model microphysics represent a bias. In that
regard, spatial averaging increases the relative impor-
tance of model microphysics when compared with the
inherent variability in TB–cloud property relations.
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