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Abstract—This paper presents a new neural network (NN) algo-
rithm for real-time retrievals of low amounts of precipitable water
vapor (PWV) and integrated liquid water from millimeter-wave
ground-based observations. Measurements are collected by the
183.3-GHz G-band vapor radiometer (GVR) operating at the
Atmospheric Radiation Measurement (ARM) Program Climate
Research Facility, Barrow, AK. The NN provides the means to
explore the nonlinear regime of the measurements and investigate
the physical boundaries of the operability of the instrument. A
methodology to compute individual error bars associated with
the NN output is developed, and a detailed error analysis of the
network output is provided. Through the error analysis, it is
possible to isolate several components contributing to the overall
retrieval errors and to analyze the dependence of the errors on
the inputs. The network outputs and associated errors are then
compared with results from a physical retrieval and with the ARM
two-channel microwave radiometer (MWR) statistical retrieval.
When the NN is trained with a seasonal training data set, the
retrievals of water vapor yield results that are comparable to those
obtained from a traditional physical retrieval, with a retrieval
error percentage of ∼5% when the PWV is between 2 and 10 mm,
but with the advantages that the NN algorithm does not require
vertical profiles of temperature and humidity as input and is
significantly faster computationally. Liquid water path (LWP)
retrievals from the NN have a significantly improved clear-sky
bias (mean of ∼2.4 g/m2) and a retrieval error varying from 1
to about 10 g/m2 when the PWV amount is between 1 and 10 mm.
As an independent validation of the LWP retrieval, the longwave
downwelling surface flux was computed and compared with ob-
servations. The comparison shows a significant improvement with
respect to the MWR statistical retrievals, particularly for LWP
amounts of less than 60 g/m2. This paper shows that the GVR
alone can provide overall improved PWV and LWP retrievals
when the PWV amount is less than 10 mm, and, when combined
with the MWR, can provide improved retrievals over the whole
water-vapor range.
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I. INTRODUCTION

R ECENTLY, there has been an increased interest in the
Arctic climate and its effects on the Earth’s radiation

budget. Several studies have focused on the retrieval of micro-
physical properties of mixed-phase clouds and on the effect of
Arctic cloud forcing on the Earth’s radiation budget [1]. One
of the challenges posed by the study of the Arctic climate is
that water vapor is very low during the winter, with integrated
water-vapor amounts rarely exceeding 5 mm and cloud liquid
water amounts rarely exceeding 100 g/m2. In these conditions,
the errors associated with retrievals from measurements in the
20- to 30-GHz region of the microwave spectrum have uncer-
tainties that can be as high as 50% for water vapor and 30%
or more for liquid water path (LWP). On the other hand, the
longwave and shortwave downwelling fluxes at the surface have
a very strong dependence on the amount of water in clouds and
are particularly sensitive to LWP values of 30 g/m2 or less [1].
It has also been established [2] that water, in the phase of
supercooled liquid, exists in the majority of Arctic clouds at
temperatures as low as −30 ◦C, strongly reinforcing the need
for improved accuracy in the retrievals. Turner et al. [3] recently
published an overview of the challenges associated with the
retrieval of low amounts of liquid water.

Currently, real-time precipitable water vapor (PWV) and
LWP retrievals at the Atmospheric Radiation Measurement
Program Climate Research Facility (ACRF), Barrow, AK, are
provided by the two-channel microwave radiometer (MWR)
operating at center frequencies of 23.8 and 31.4 GHz. This
portion of the atmospheric spectrum is mostly sensitive to water
vapor and liquid water, with a residual influence coming from
the 60-GHz oxygen absorption region. Since the integrated
amounts of liquid and vapor are linearly related to atmospheric
opacity, accurate retrievals from these channels can be achieved
by linear regression. The MWRs have been proven to be reliable
and accurate instruments under a wide range of atmospheric
conditions; however, in the Arctic, the atmosphere is extremely
dry during the winter, and the signal-to-noise ratio of the
measurements is very low. An additional source of uncertainty
associated with the current MWR retrievals is the effect of the
modeling of the oxygen absorption line. This uncertainty, in
the high-pressure and low-humidity conditions often present in
the Arctic, can cause a positive bias as high as 25 g/m2 in the
clear-sky LWP retrievals [4].
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Recent computations of the longwave and shortwave surface
radiation budget have shown that when LWP retrievals from the
MWR are used to parameterize the radiative properties of the at-
mosphere, the computed downwelling longwave and shortwave
fluxes are considerably higher than observations [5], suggesting
an overall overestimation of liquid water [2], [6]. The need for
improved retrieval accuracy has driven a considerable effort
that has led to the development of more sophisticated ground-
based retrievals. Among them is the algorithm of Turner [5],
which combines inputs from several instruments (including
infrared and MWRs, a ceilometer, and radiosondes) to enhance
the sensitivity to small amounts of liquid water. The deployment
of the G-band vapor radiometer (GVR) in Barrow has also been
a response to the need for increased accuracy in the retrievals.
The instrument has been operating since its deployment in
April 2005, providing continuous measurements of brightness
temperatures in the region of the strong 183.3-GHz water-vapor
absorption line.

This paper presents an neural network (NN) algorithm to
retrieve low amounts of liquid water and water vapor from GVR
measurements. The algorithm can provide real-time improved
retrievals of vapor and liquid under most conditions encoun-
tered in the Arctic, and it can be used as an improved compar-
ison point for more sophisticated multi-instrument retrievals,
such as the one proposed in [5]. It shows that NN retrievals
can take advantage of the high sensitivity of the GVR channels
to small amounts of PWV, reaching percentage retrieval errors
of 5% when the PWV is between 2 and 10 mm and substan-
tially reducing the retrieval bias. The LWP retrievals show an
improvement in the clear-sky discrimination by reducing the
clear-sky bias to less than 5 g/m2 (as compared to the 15 g/m2

of the MWR retrievals) and reducing the differences between
modeled and measured longwave downwelling surface fluxes.

The remainder of this paper is structured as follows.
Section II provides a brief overview of the instrument and the
measurements as they pertain to the retrieval algorithm (a more
detailed description of the instrument and its calibration can be
found in previous papers [7], [8]). A detailed discussion on
the effect of stratospheric water vapor on the measurements
[9] is not provided since this issue was extensively examined
in [8] and [10] and found not to be a major concern at the
GVR frequencies. In Section III, the retrieval methodology is
presented for both the NN and the physical retrieval, and the
advantages and disadvantages of the NN approach are briefly
discussed. Section IV describes the network structure, training
data set, and training procedure. The network is trained with
GVR-only data, and with a combination of GVR and MWR
data. A significant component of this paper is the realistic treat-
ment and quantification of the retrieval errors associated with
the NN; this is described in Section V. Finally, in Sections VI
and VII, the retrieval results are presented together with a
detailed error analysis. Water vapor retrievals are compared
with physical retrievals and with the MWR linear retrievals.
Liquid water retrievals are compared with MWR retrievals
and tested by comparing the computed longwave downwelling
radiation flux at the surface with observations. Section VIII
provides a summary of this paper and describes future work
plans.

Fig. 1. Brightness temperatures simulated at the four GVR channels as a
function of PWV.

II. INSTRUMENT AND MEASUREMENTS

The GVR, built by ProSensing under a U.S. Department of
Energy small business innovation research grant, was deployed
at the ACRF in April 2005. It has been fully operational since
January 2006. The instrument is a double-sideband MWR with
channels located ±1, ±3, ±7, and ±14 GHz away from the
183.3-GHz line center. A description of the instrument can be
found in [7]. The instrument’s parabolic mirror sequentially
points to the sky, a hot load, and an ambient load to achieve ac-
curate calibration. Calibration uncertainty on the GVR channels
has been estimated to be less than 1 K for the channels close
to the line center and less than 2 K for the more transparent
channels in the wing of the absorption line [8].

The sensitivity of channels in the proximity of the 183.3-GHz
line to PWV and LWP has been studied in [8], [9], and [11]. The
findings showed that the sensitivity of GVR channels to water
vapor is approximately 30 times higher than the sensitivity of
the MWR when the PWV is less than 2.5 mm. Comparison of
simulated and measured brightness temperatures also showed
that two channels (±7 and ±14 GHz) have a sensitivity to
liquid water that is about 2 and 3.5 time higher than that of the
31.4-GHz channel. Several retrieval algorithms to retrieve va-
por and liquid from measurements at these frequencies have
been recently developed. Specifically, a physical retrieval for
liquid and vapor [8] and a linear retrieval that uses only chan-
nels in the wing of the line [11] have been developed. The
physical retrieval has the disadvantage of requiring a temper-
ature and humidity profile as input. The linear retrieval has
the disadvantage of retrieving only in the linear region of the
measurements when the PWV is very low (less than 3 mm). As
shown in Fig. 1, the response of the ±1- and ±3-GHz GVR
channels to PWV starts to become nonlinear when the PWV
reaches about 2.5 mm, and the two channels saturate around
5 mm. The more transparent channels (±7 and ±14 GHz) still
retain sensitivity until the PWV amount is about 20 mm. Above
20 mm, only the ±14-GHz channel is appreciably sensitive.
In this paper, we consider 20 mm as a physical water-vapor
threshold above which the instrument will not be able to sepa-
rate the vapor from the liquid phase, and we therefore limit our
discussion to cases that fall below this threshold. It is important
to notice that, when clouds are present, the 183.3 ± 3-GHz
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channel will saturate when the water-vapor amount is less than
20 mm. From model simulations, it was determined that, when
the water vapor is between 15 and 20 mm, an LWP of about
80 g/m2 is sufficient to saturate this channel. Therefore, when
the PWV is higher than 15 mm, the LWP retrievals will be
reliable only for clouds with very small LWP.

Although the instrument was specifically designed for re-
trieving low amounts of water vapor, the enhanced sensitivity
to liquid water displayed by the two most transparent channels
enables us to develop an algorithm for the retrieval of LWP as
well. Of course, the retrieval of liquid water is influenced by the
instrument’s sensitivity to vapor.

The measurements analyzed in this paper were collected in
the winter and summer of 2007. Radio-frequency interference
(RFI) from a nearby U.S. Navy Radar strongly affected the
GVR measurement. Although several filters have been applied
to the raw and processed data, the effect of the interference is
still present. Data used in the comparison with radiosonde mea-
surements were filtered with a 5-min running median filter to
smooth interference spikes. Additional instruments used in this
paper include an infrared thermometer (IRT) to identify clear-
sky situations and a sky radiometer equipped with a shaded
pyrgeometer with a hemispheric field of view to measure the
longwave downwelling irradiance.

The MWR is a two-channel microwave radiometer that pro-
vides continuous retrievals of integrated water vapor and liquid
water. The instrument is continuously calibrated through an
automatic calibration algorithm that performs continuous tip
curve collection when the sky is clear and that continuously
updates the calibration parameters. The estimated calibration
accuracy of this instrument is 0.3 K [12].

III. RETRIEVAL ALGORITHMS

NNs have been extensively used to retrieve geophysical
quantities from satellite measurements [13], [14]. They have
proven to be reliable statistical techniques that, in some cases,
are preferable to computationally expensive variational re-
trievals. For example, once the network presented in this paper
is trained, it takes approximately 20 min to process a full month
of data at the highest temporal resolution (about 300 000 mea-
surements), whereas it would take about one month to process
the same amount of data with the physical retrieval developed in
[8]. In the case of water vapor and liquid water retrievals from
GVR measurements, the use of an NN allows us to overcome
some of the shortcomings of the already existent retrievals;
namely, the poor time resolution of the physical retrieval (due
to the need for radiosonde profiles) and the nonlinear nature of
the problem. With an NN, we can fully explore the nonlinear
regime of the measurements, investigating the performance of
the retrieval up to a PWV amount of 20 mm. Of course, the
NN itself is a statistical algorithm, and it has some of the
same shortcomings as those associated with the linear statistical
retrievals. For example, for the network developed in this paper
that uses only brightness temperatures as input, we expect the
standard deviation of the results to be higher than what would
be expected from a physical retrieval, since the latter is more
constrained by the vertical profiles used as input. When we eval-
uate the performance of the network, it is therefore important to

assess whether the advantage of real-time retrievals is offset by
a degradation of the accuracy of the results.

One of the problems encountered by the remote sensing
community in using NN algorithms is the difficulty in assessing
the errors associated with the network output. This fact has
traditionally constituted one of the reasons that a physical
retrieval is preferred, since error bars can be promptly estimated
by analyzing the covariance associated with the output [15].
Usually, errors on the NN outputs are estimated by computing
the total root mean square error (rmse) over the training data set
[16]. This approach, while legitimate in a linear case, does not
allow the computations of error bars associated with the single
output, and it therefore fails to properly represent the algorithm
performance in a case when we expect a deterioration of the
performance for a certain range of the input variables. The GVR
retrievals certainly fall in this category. Since the GVR channels
progressively lose sensitivity to water vapor as PWV increases,
we correspondingly expect a deterioration of the retrievals. To
address this point, we developed a procedure to compute error
bars associated with the network outputs by treating the various
sources of errors independently, and accounting for sources that
were considered to be the largest contributors to the overall
uncertainty. Although (as we will show later) the methodology
might slightly underestimate some of the errors, the estimated
values are in good agreement with the errors associated with the
physical retrieval algorithm.

The physical algorithm used in this paper was presented in
[8]. It uses a Gauss–Newton method that finds the zeros of
the gradient of a cost function. The minimization is achieved
by successive iterations, starting from a first-guess profile
of temperature, relative humidity, and liquid water. Although
continuously retrieved temperature and humidity profiles are
available from a colocated 12-channel microwave profiler, they
were not used in this paper because uncertainties in the upper
tropospheric layers of the retrieved temperature profile could
introduce considerable errors in the physical retrievals [8].
Therefore, the use of the physical retrieval was limited to the
times of radiosonde ascent.

The third retrieval algorithm used in this paper is the MWR
RETrieval (MWRRET) [17]. The algorithm is a linear sta-
tistical regression that dynamically estimates possible biases
present in the 23.8- and 31.4-GHz brightness temperatures
before proceeding with the retrievals. The MWRRET uses all-
year coefficients derived from an extensive set of radiosonde
profiles. Estimated retrieval rms uncertainty with this algorithm
is around 0.4 mm for water vapor and around 15 g/m2 for
the LWP.

IV. NN DESCRIPTION

An NN provides a nonlinear approach to map a set of input
variables xi(i = 1, . . . , Ni) to a set of output variables yj ,
provided a set of targets tj(j = 1, . . . , No)

yij = F (xik, wij) + εij (1)

where the index i indicates the elements of the training set
(i = 1, . . . , N), j varies between one and the number of output
variables No, and k varies between one and the number of
input variables Ni. The vector ε represents the output errors

Authorized licensed use limited to: National Center for Atmospheric Research. Downloaded on October 6, 2009 at 13:55 from IEEE Xplore.  Restrictions apply. 



1890 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 7, JULY 2009

TABLE I
NN ARCHITECTURE AND FINAL rms ERROR

and is discussed in greater detail later. The vector w represents
the network weights that will be optimized during the learning
process (wij being the weight connecting the element j to the
element i). A network is usually composed of one input layer,
some intermediate or hidden layers, and one output layer. In
our case, each element of the input layer is connected to each
element of the hidden layer through a logistic function

hi =
1

1 + exp(−ai)
, i = 1, . . . , Nh (2)

where Nh is the number of hidden nodes and ai is

ai =
Ni∑

j=1

wijxj + bi. (3)

Each element of the hidden layer is connected to the output
layer through a function as in (2) or through a linear function

yj =
Nh∑
k=1

wjkhk + bj (4)

where the vector b is called bias. The estimation of the opti-
mal solution is achieved by optimizing the set of the weights
wm(m = 1, . . . , Nw) by minimizing a quality criterion, which,
in this case, is the least squares criterion

E =
1
2

N∑
i=1

No∑
j=1

(yij − tij)2. (5)

A general network architecture with one input layer (with
four or six nodes depending on the number of channels), one
output layer with one node, and one hidden layer with 20 nodes
was considered sufficient for the purpose of this paper. The
choice of this simple architecture is based on previous work
on similar data (e.g., [13]). PWV and LWP were retrieved with
two separate networks, since the use of a one-output network
noticeably simplifies the error computations. For the PWV, two
separate networks were tested. One network was trained by
using only GVR measurements and one network was trained
by using a combination of GVR and MWR measurements.
The LWP network was trained with only GVR measurements.
Following the initial analysis, it was deemed important to train

the GVR network (for both PWV and LWP) by using a seasonal
rather than an all-year training data set. The structure of the
four networks tested in this paper is shown in Table I. The
elements of the input layer are brightness temperatures for var-
ious selected channels. The output layer has one element that is
either PWV or LWP. In both networks, all layers are connected
through the logistic function (2). The choice of the number of
hidden nodes and connections is somewhat arbitrary as long as
the network has enough connections to reproduce the complex-
ity of the process it has to learn. Several network configurations,
with different numbers of hidden nodes were tried. The network
was trained repeatedly starting with five hidden nodes and
progressively adding five nodes up to 25. For each network
configuration, the following parameters were compared: the
final rmse, the covariance of the final weights (which defines
the network uncertainty as explained later) and the time needed
for training. The rmse did not change noticeably when more
nodes were added; however, the variability of the weights and
the network uncertainty decreased. On the other hand, the time
needed to train the network increased as the number of hidden
nodes increased. At the end of the simulations, a network with
20 nodes was considered a good compromise between the three
parameters. After the training, network weights that have very
small values can be eliminated. In any case, the choice of net-
work architecture should not have a large impact on the results,
and we account for the uncertainty associated with the network
weights in the computation of the output error. The Stuttgart NN
Simulator (SNNS) (available at http://www-ra.informatik.uni-
tuebingen.de/software/snns/welcome_e.html) was used to train
the network. The SNNS was widely used in previous work
involving retrievals of geophysical parameters from ground-
based and satellite data [16], [18]. A conjugate descent algo-
rithm was chosen to find the optimal solution [19].

A. Training Data Set

The training data set consists of brightness temperatures
simulated with a forward radiative transfer model [20] from a
six-year ensemble (1633 cases) of radiosonde soundings (years
2000 to 2006) collected in Barrow. Three liquid path amounts
were simulated for each temperature and humidity profile when
the relative humidity at a given layer exceeded 95%. The
final training data set so obtained consists of 4854 patterns. In
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Fig. 2. (Black line) Histograms of PWV and LWP in the training data set
expressed as a percentage. The gray distribution in the right panel is from one
year of MWR-retrieved LWP.

addition to the training data set, an independent testing data set
was used to monitor the optimization procedure. This testing
set was computed from 550 radiosondes collected in 2007, for
a total of 1638 simulations, including cloudy cases. Gaussian
noise was added to the simulated brightness temperatures in the
training and testing sets (1 K for the GVR channels and 0.5 K
for the MWR channels).

The training data set is important because it should represent
the climatic variability of the site of interest very well. The
performance of the retrieval algorithm depends partially on how
well the events are represented in the training set, since the
network will poorly reproduce rare or infrequent events. As
shown in Fig. 1, the four GVR channels progressively lose
their sensitivity as the PWV increases, and, as explained in
Section II, when the PWV amount reaches 20 mm, three of the
four channels are saturated. For this reason, a physical limit of
20 mm was set as the maximum retrievable PWV from GVR-
only measurements, and only these cases were used to train the
network (N = 1597).

Fig. 2 shows the probability distribution of PWV (left side)
and LWP (right side) for the whole training data set, expressed
as a percentage. About 65% of cases in the training data set
have PWV amounts of less than 10 mm (half of which have a
PWV of less than 5 mm). This is also the PWV range where
the GVR channels have the best sensitivity. To assess how
realistically the LWP is represented in the training data set,
we show in Fig. 2 (right panel) the probability distribution of
one year of LWP retrievals from the two-channel MWR at the
NSA (histogram in brown). In about 83% of cases, the LWP
amount of the training data set is less than 0.1 mm (100 g/m2),
which compares well with the 72% of cases of the MWR-
retrieved LWP distribution. While the LWP does not display a
strong seasonal variation (except for a slightly higher average
in summer and fall), the PWV distribution has a marked
seasonality, as shown in Fig. 3. Winter (November–February)
and spring (February–May) are drier, with an average PWV
amount of 3 and 5 mm, respectively. This seasonal variation of
water vapor is due to increased local evaporation in summer and
fall, caused by more solar radiation, as well as changes in the
atmospheric circulation and ice cover over the nearby ocean.

Fig. 3. Seasonal histograms of PWV in the training data set expressed as
a percentage. The four partially overlapping subsets include four months of
data: November through February (winter), February through May (spring),
May through August (summer), and August through November (fall).

The PWV seasonality affects the results of the training.
When trained with the full data set, the NN attempts to find
the best fit over the whole PWV range. We can therefore
expect a generally higher rms error. However, since the GVR
is specifically designed for low amounts of PWV, seasonal
training will provide better results during dry conditions. For
this reason, the GVR network was first trained with the full
(all-year) data set and then with two seasonal data sets, one for
winter–spring and one for summer–fall. The seasonal training
is expected to give better retrievals for low amounts of PWV by
taking better advantage of the highly sensitive channels closer
to the line center and improving the overall rms error. The
LWP network was trained seasonally as well, since the response
of the network depends on the amount of water vapor. The
combined GVR + MWR network was trained with the all-year
data set.

B. Training Procedure

When training of the network is completed, the resulting
vector of network weights w∗ is the optimal solution that
minimizes the rms error defined in (5). To avoid “overtrain-
ing” during the minimization procedure, we periodically tested
the network on the independent testing set mentioned in
Section IV-A. Fig. 4 (top panel) shows an example of such
a training curve for the GVR PWV network, trained with the
seasonal winter data set. The curve is shown up to the point
when the training was stopped (∼7.105 iterations). The dashed
line represents the testing data set. In the bottom panel, the
backward differences of the rms errors are displayed to better
illustrate the flattening of the training curve up to the point
when the training was stopped. Similar curves are obtained for
all the other networks. To stop the training, the descent of the
testing data set was monitored and the training was stopped
when the rms error of the testing set decreased of less than
a fixed threshold (usually between 1% and 2% depending on
the network) for a selected number of iterations. An additional
parameter that was used to assess the completeness of the
training was the behavior of the Hessian matrix computed

Authorized licensed use limited to: National Center for Atmospheric Research. Downloaded on October 6, 2009 at 13:55 from IEEE Xplore.  Restrictions apply. 



1892 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 7, JULY 2009

Fig. 4. (Top) Training curve of the GVR-only network trained with the
seasonal winter data set. The solid line is the training data set, and the dashed
line is the testing data set. (Bottom) Backward differences between elements of
the rms error curve for the (solid) training and (dots) testing sets.

after the training. The Hessian matrix represents the second
derivative of the error function with respect to the network
weights. It is discussed in more detail on Section V-B. It should
be definite positive for a well-trained network.

The final rms errors for all tested networks are shown in
Table I. For PWV, the combination of the GVR and MWR
measurements improves the error computed over the whole data
set. This improvement is due to the fact that MWR channels
retain their sensitivity through a larger range of water-vapor
conditions, supplementing the loss of sensitivity of GVR chan-
nels. However, as is shown later, the GVR retrieval errors are
input dependent, while the GVR + MWR errors display less
sensitivity to the inputs. Therefore, an error estimate over the
whole data set does not properly represent the performance
of the GVR retrieval, and it is important to introduce a more
complete treatment that can better illustrate the dependence of
the errors on the amount of water vapor.

V. NETWORK RETRIEVAL ERRORS

The results of the NN retrievals are affected by a variety of
factors. In our analysis, we partially follow [21] and assume
that the total retrieval error σ2

T is the sum of three independent
components: the data target variance σ2

t , the model uncertainty
σ2

m, and the instrument noise σ2
N. The data target variance

is usually the largest contributor to the overall retrieval un-
certainty, and it is assumed here to be input dependent. It is
directly related to the intrinsic variability of the training data
set and includes radiative transfer and radiosonde uncertainties
as well. Radiative transfer uncertainties derive from the spectral
modeling of the line absorption parameters and water-vapor
continuum. The radiative transfer model used in this paper uses
the HITRAN database line spectral file [22] and the CKDv2.4
water-vapor continuum [23], where the latter is most likely
the largest source of uncertainty for the ±7- and ±14-GHz
simulations. The liquid water model used is Liebe 93 [24]. The
accuracy of the liquid water absorption model at frequencies
higher than 90 GHz suffers from lack of experimental data in
supercooled conditions. Uncertainties in the liquid absorption
model will affect the retrievals more when the cloud tempera-

ture is below −20 ◦C, which is not an uncommon occurrence
in winter. Uncertainty due to radiosonde soundings can derive
from incorrect soundings of stratospheric layers (where the
humidity is very low) and from the effect of a dry bias. Errors
in the sounding of stratospheric humidity of Vaisala RS90
radiosondes have been extensively investigated in [8] and found
to have a minimal effect on the measurements, when the water
vapor exceeds 1 mm. The effect of the dry bias will impact the
training of the network and will have a larger effect for daytime
soundings.

Model uncertainties represent the errors associated with the
determination of the optimal weights and are usually a small
part of the total retrieval errors. This error component is esti-
mated by computing the covariance matrix of the weights, as
explained in better detail in the subsequent sections. Finally,
the instrument noise error is estimated by perturbing the input
measurements and computing the resulting change in the net-
work output. Although the three components of the error are
theoretically independent, there will be a degree of correlation
among them due to the way they are estimated. This is because
both the target noise and the instrument noise are estimated
through the network itself and will therefore contain a compo-
nent related to the network uncertainty. However, this network
component is much smaller than the remaining components and
will therefore have a small effect, if anything it will lead to a
small overestimation of the errors.

Another important approximation introduced in this analysis
is the assumption that the water vapor and liquid water follow a
Gaussian distribution. This is not the case in reality. In particu-
lar, the LWP, has an approximately log-normal distribution that
is truncated at LWP = 0. However, the same assumption of a
Gaussian distribution is made when retrieving these parameters
by means of optimal estimation technique and linear regression.
Assuming that the variables follow a Gaussian distribution
when in fact they do not will result in a bias in the retrievals.

A. Target Noise

We saw earlier that the training procedure minimizes the rms
error defined in (5). When only GVR data are used, we can
reasonably assume that the uncertainty in the retrieval depends
on the accuracy of the brightness temperatures used as input.
The methodology used here to estimate this input-dependent
target noise is a variation of the approach suggested by [21]
and successfully used in [25]. After the network is trained,
the absolute residuals σ = |y − t| are computed. A secondary
network, identical to the original one, is then trained by using
the elements of σ as targets. The resulting trained error network
is then applied to the radiometric measurements at the moment
of the retrieval to estimate an input-dependent σ2

t (x). Although
this methodology may underestimate the magnitude of the
target noise, it gave reasonable results in the cases analyzed
here. As previously mentioned, since we are training the output
target noise with the same network used for the retrieval,
the target noise will not be completely independent from the
network errors themselves. The upper panel of Fig. 5 shows the
mean differences between real residuals and residuals estimated
(over the training set) with the auxiliary network. Residuals are
binned in 0.1-mm bins, and they are displayed together with
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Fig. 5. (Top panel) Mean differences between real and estimated residuals for
the PWV GVR-only network computed over the winter data set (circles joined
by solid line). Squares joined by dotted line were obtained after correction
coefficients were applied to the estimated residuals. Residuals are binned in
bins of 0.1 mm, and the ±1 standard deviation in within each bin is shown as
a vertical bar. (Bottom panel) Number of points inside each bin. The triangles
joined by dashed lines are obtained by setting the estimated residuals to zero.

their standard deviation inside each bin. Residuals estimated by
the secondary network (black points joined by solid line) are
generally lower than the real residuals [26]. From a scatterplot
of real and estimated residuals, a correction was determined
(slope and offset) to correct for this underestimation. Corrected
residuals are shown in Fig. 5 as squares joined by a dotted line.
Correction coefficients were derived for all networks and for all
training data sets and were used to estimate the errors when the
network was applied to real data.

In the case of the combined MWR + GVR retrieval, the re-
sultant residuals depend less on the input (as expected). This is
due to the fact that the MWR sensitivity does not depend on the
water-vapor amount. This can be seen in Fig. 6, which shows
the percentage error distribution (target noise) over the testing
data set for the GVR and GVR + MWR networks compared
to the distribution of the MWR retrieval errors assumed to be
equal to 0.4 mm. Residuals are shown for clear-sky cases only.
Plots on the top display target noise for cases with a PWV
of < 10 mm (N = 365), while plots on the bottom are for
cases with a PWV greater than 10 mm (N = 151). Residuals
are shown for the GVR, the MWR, and the GVR + MWR
networks from left to right. When the PWV is less than 10 mm,
the target noise for the GVR-only and the GVR + MWR
networks is less than 5% in ∼90% of the cases. When the PWV
is more than 10 mm, the target noise for the GVR + MWR
and MWR networks is less than 5%. The MWR percentage
error distribution is shown for an assumed constant error of
0.4 mm. The histograms in Fig. 6 show that the network is
capable of weighing the varying sensitivity of the channels
achieving low percentage errors when the ±1- and ±3-GHz
channels are most sensitive (PWV < 10 mm) and using the
remaining sensitivity of two-wing channels when the two most
sensitive channels are saturated. The NN errors shown in Fig. 6
only refer to the target noise that is a single component of the
total NN retrieval uncertainty, so the comparison with the MWR
errors, which represent the total uncertainty, is not equivalent.
It is shown later that the instrument noise plays a major role in

Fig. 6. (Left and central columns) Distribution of target error percentage
over the testing data set (clear-sky cases) for the GVR-only and GVR +
MWR networks. (Right column) MWR error distribution for an assumed rms
error = 0.4 mm. The top three panels show cases with a PWV of less than
10 mm (N = 365). The bottom three panels show cases with a PWV greater
than 10 mm (N = 151).

the combined GVR + MWR algorithm but it has less impact in
the GVR-only retrieval.

B. Network Model Uncertainty

The second component of the retrieval error is due to model
uncertainty. When the optimization procedure is complete, the
network has determined the optimal weights w∗. If we assume
that the targets follow a Gaussian distribution, the network
weights follow a Gaussian distribution, with mean w∗ and
covariance Cw. It can be shown [21], [26], [27] that the
covariance of the network weights is the inverse of the Hessian
matrix

H =
N∑

i=1

1
σ2

t (xi)
∂E2

i

∂w2
. (6)

This gives us an opportunity to compute the effect of the
network uncertainties on the network output as

σ2
m(x) = gT(x)H−1g(x). (7)

As previously mentioned, the fact that the distribution of
the target is not actually Gaussian will introduce a bias in the
estimation of this error as well. If we indicate the network
output with y(x,w), then g(x) can be computed as g(x) =
∂y(x,w)/∂w, a vector whose dimension equals the number
of weights Nw. The Hessian matrix H is a square symmetric
matrix of dimensions Nw that can be computed by finite
differences or (as in this case) computed by exact computation
following [28]. Before inversion, the Hessian matrix was reg-
ularized by adding a small scalar λ to the diagonal elements.
The scalar was incremented in small steps until the matrix
was positive definite. The criteria monitored to determine the
optimal regularization were the number of negative eigenval-
ues, the rms difference between the diagonal elements of the
original and regularized matrices, and the condition number
of the regularized matrix [25]. The left panels and top right
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Fig. 7. Parameters used to monitor the regularization of the Hessian matrix
before inversion. (Top left) Number of negative eigenvalues. (Bottom left)
Conditon number. (Top right) RMS difference of matrix diagonal elements. The
bottom right panel shows the diagonal elements of the Hessian matrix for the
GVR-only network. The first 80 weights (to the left of the dotted line) connect
input and hidden layers. The last 20 weights (to the right of the dotted line)
connect hidden and output layers.

panel of Fig. 7 show, as an example, the variation of these three
parameters with the increase of the small regularization scalar
λ. The bottom right plot of Fig. 7 shows the diagonal elements
of the Hessian matrix. The values in Fig. 7 were computed for
the GVR vapor network in which the first 80 weights connect
the input and hidden layers, while the remaining 20 weights
connect the hidden and the output layers. Once the Hessian
matrix is regularized, the covariance matrix of the network
weights can be computed. The diagonal elements of this matrix
can give us an idea of the uncertainty associated with the
network weights. One example is shown in Fig. 8, which shows
the network weights and associated error bars (±1 standard
deviation) computed as the square root of the diagonal elements
of the covariance matrix. The uncertainty on the network weight
appears to be quite low. This source of error is not the dominant
contributor to the overall retrieval error. Once the network is
applied to real measurements, the effect of network uncertainty
on individual output points can be evaluated by using (7).

C. Instrument Noise

The final source of uncertainty that we take into account
is due to the instrument noise. We apply a perturbation ∂x =
±1 K to each GVR measurement and ∂x = ±0.5 K to each
MWR measurement used in the retrieval

∂y

∂xi
=

1
2

(∣∣∣∣ ∂y

∂xi+

∣∣∣∣ +
∣∣∣∣ ∂y

∂xi−

∣∣∣∣
)

(8)

where the index i(= 1, . . . , Nc) indicates the radiometric chan-
nel used in the retrieval and ∂x indicates a perturbation around
the measured value. Assuming that the radiometric noise is
independent for the four channels, the total radiometric noise
contribution is

σ2
N =

Nc∑
i=1

σ2
i

(
∂y

∂xi

)2

(9)

Fig. 8. Optimal weights for the GVR-only network trained with the winter
data set, with the associated standard deviation computed as the square root
of the Hessian diagonal elements. The first 80 weights are between the input
and hidden layer. The remaining 20 weights are between the hidden and output
layers. The top panel shows the PWV network weights, and the bottom panel
shows the LWP network weights.

where σ2
i is the channel variance. It was mentioned in Section II

that measurements from this instrument were affected by the
presence of RFI. The interference will introduce a certain
degree of noise correlation among the channels. Since the RF
environment at the radiometer location changes continuously
because new instruments are often added (and some are re-
moved), it is desirable not to model the interference as a perma-
nent feature of the data set and the retrieval. However, the RFI
effects were estimated (although not included in the subsequent
analysis) on the subset of data analyzed in this paper, and
a nonnegligible covariance was found between the ±1- and
±14-GHz channels. The effect of this covariance [when added
to (9)] is to increase the instrument noise component by
about 10%.

VI. PWV RETRIEVAL RESULTS

The NN coefficients were applied to a total of four months of
GVR and MWR measurements in 2007, two months in winter
(January, February) and two months in summer (July, August).
GVR brightness temperatures were smoothed with a 5-min
running median filter to eliminate possible artifacts due to RFI.
Retrievals from the GVR network that was trained with the
all-year data set (not shown) have little advantage with respect
to the MWR statistical retrieval. The NN retrievals noticeably
deteriorate when the PWV amount increases.

The real advantages of using the GVR to retrieve PWV
can be better seen when we train the NN by using a seasonal
training set. In this way, the high sensitivity of the water-vapor
channels can be used to focus on the retrieval of low amounts of
PWV. A scatter-plot of radiosonde PWV versus retrieved PWV
is shown in Fig. 9. In the left panel, all cases are shown, while
in the right panel, only cases with a PWV of less than 5 mm are
shown. When the PWV is less than 5 mm, the NN output has
less scatter than the MWRRET output. Although the physical
retrieval is probably the best retrieval technique for small
amounts of PWV, the NN retrieval has comparably good results.
The slightly superior performance of the physical retrieval is
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Fig. 9. Scatter plot of PWV measured by radiosonde (X-axis) and retrieved by using (black circles) the GVR-only NN seasonal retrieval, (crosses) physical
retrieval, and (brown triangles) MWRRET linear retrieval. (Left panel) All cases (N = 145). (Right panel) Cases with PWV of <= 5 mm (N = 62).

TABLE II
REGRESSION PARAMETERS BETWEEN RADIOSONDE PWV AND PWV FROM NN, PHYSICAL

RETRIEVAL, AND LINEAR RETRIEVAL. ALL UNITS ARE IN MILLIMETERS

achieved by utilizing the radiosonde temperature profiles as
input. Interestingly, the physical retrieval has a larger variability
when the PWV is higher. The reason for this variability is
not known at this point. Note that when we estimate the rms
error with respect to radiosonde, we are including uncertainties
in the radiosonde estimation as well. These uncertainties are
more pronounced during very dry conditions. The numerical
results for the various networks are shown in Table II. Results
presented in this table were obtained by computing the linear
regression coefficients between the retrieved PWV and PWV
measured by the radiosondes Vaisala RS92 launched from the
same location where the radiometer is situated. Although the
accuracy of Vaisala RS92 radiosondes is generally considered
better than the accuracy of RS80, recent studies indicates the
possible presence of a dry bias in the radiosonde measurements
that is dependent on the solar zenith angle [29], [30]. This study
is also supported by Rowe et al. [31], which found significant
diurnal biases in Vaisala radiosondes launched from Antarctica.
Table II clearly shows that MWRRET retrievals perform very
well across the whole range of PWV. While the rms error of the
MWRRET retrieval does not sensibly change across the PWV
range, the GVR-only retrieval varies from 0.18 mm to more
than 1 mm as the PWV increases. The combined GVR + MWR
retrieval, on the other hand, has an rms error comparable to that
of the MWR-only retrieval.

Fig. 10. Total PWV retrieval error percentage for (crosses) the NN seasonal
retrieval, (squares) physical retrieval, and (solid line) MWRRET linear re-
trieval. Errors are averaged over 2.5-mm bins.

The total percentage errors of the physical and NN retrievals
are shown in Fig. 10 as a function of radiosonde PWV. From
this figure, it is evident that the physical retrieval errors are
comparable to those of the NN and that both errors increase
when the PWV increases, to become larger than the MWR
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Fig. 11. Contribution to the total PWV retrieval error (indicated by triangles)
due to the three error components (target noise, network error, and instrument
noise). (Top panel) GVR-only network. (Bottom panel) GVR + MWR network.
The disconnected black diamonds (centered at 2.5 and 12.5) are the rms values
from Table II for PWV < 5 mm and PWV > 10 mm.

linear retrieval errors when the PWV amount is higher than
∼10 mm. Both the physical retrieval and NN errors are in the
5% range for PWV amounts between 2 and 7 mm. Single con-
tributions to the total retrieval errors from the three components
are shown in Fig. 11. Here, retrieval errors averaged over bins
of PWV are displayed together with their standard deviation.
This figure shows that in the GVR-only network, the largest
contributors to the overall error are the target noise and the
instrument errors that rapidly increases above 10 mm. It is
also clear from Fig. 11 that, since for the GVR-only network
the instrument noise increases as the PWV increases, a 1-K
perturbation in the input brightness temperature will cause a
larger error in the retrievals when the channels are close to
saturation. In the MWR + GVR network, the instrument noise
is the largest contributor to the overall error that remains almost
constant over the whole PWV range. For comparison, the rms
errors from Table II are shown in Fig. 11 as black diamonds.
The agreement between the theoretical and observed errors is
acceptable. Discrepancies between the modeled and observed
errors in the GVR-only network could derive from the RFI
effects not accounted for in the model (as we discussed in
Section V-C the inclusion of RFI effects in the computation
of the instrument noise component will increase the modeled
error of about 10%). In the GVR + MWR network, on the other
hand, it seems that the instrumental noise for the MWR may be
slightly overestimated.

To conclude the PWV comparison, Fig. 12 shows a time
series of PWV retrieved with the GVR seasonal algorithm
during March (top panel) and July (bottom panel). The NN
retrievals are in black, while the MWR retrievals are in brown.
The smooth lines are the corresponding error boundaries (±1
standard deviation), and the circles are radiosonde measure-
ments. Only a short portion of the data is shown for clarity.
During the month of March 2007, the Radiative Heating in
Underexplored Bands Campaign (RHUBC) intensive operation
period (IOP) was under way at the NSA. As part of this IOP,
a large number of radiosonde soundings were launched daily.
The top panel of Fig. 12 shows data collected on March 5. It can
be seen that although the MWR retrievals perform remarkably

Fig. 12. Time series of PWV as retrieved by (black lines) the GVR seasonal
NN, and by (brown lines) the MWRRET linear retrieval and as measured by
(circles) radiosondes. The dashed lines of corresponding colors represent ±1
standard deviation of (smoothed) the retrieval. (Top panel) One day of data
collected on March 5, 2007. (Bottom panel) Data collected during part of
July 4, 2007.

well in such dry conditions, the noise in the MWR retrievals is
much larger than it is in the GVR retrievals. The bottom panel
of Fig. 12 shows a portion of data collected during July 4, with
a PWV above 10 mm. In this case, we see that uncertainty in the
GVR-only retrieval is higher than it is in the MWR retrieval.

VII. LWP RETRIEVAL RESULTS

Accurate retrievals of LWP in the Arctic environment rep-
resent a challenging task because the liquid amount is very
low in the majority of cases. As previously mentioned, al-
though the GVR was specifically designed for the retrieval of
small amounts of water vapor, the sensitivity to liquid of the
two-wing channels is about three times the sensitivity of
MWR’s channels [8], [11]. Errors for the MWR statistical
retrieval are estimated to be around 15 g/m2; however, an LWP
in this range is not infrequent in the Arctic. The statistical
distribution of one year of LWP retrievals from the MWR is
shown in Fig. 2 (right panel). The figure shows that about 80%
of cases have an LWP amount of less than 100 g/m2, resulting
in a retrieval uncertainty of at least 30% or more in the majority
of cases. The high uncertainty of MWR retrievals is evident
when we examine the retrievals during clear-sky condition, as
is shown later.

The LWP network was trained with the same seasonal train-
ing sets used in the vapor retrieval. Fig. 13 shows a time series
of retrieved LWP similar to the cases shown in Fig. 12. The
top panel shows LWP retrieved on March 5, 2007 (a complete
clear-sky day). The bottom panel shows a low-liquid cloud case
on February 15, 2007. One of the first conclusions that can be
drawn from Fig. 13 is that GVR retrievals return less liquid than
do the MWR retrievals.

Clear-sky liquid retrievals for the MWR and GVR were ana-
lyzed by selecting cases where the readings from the colocated
IRT were less than 215 K. Distributions of clear-sky retrievals
from the two instruments are shown in Fig. 14. During clear-
sky conditions, the GVR retrieves an LWP amount of less than
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Fig. 13. Time series of LWP as retrieved by (black lines) the GVR seasonal
NN and by (brown lines) the MWRRET linear retrieval. The dashed lines
of corresponding colors represent ±1 standard deviation of (smoothed) the
retrieval. (Top panel) One clear-sky day of data collected on March 5, 2007.
(Bottom panel) Data collected during part of February 15, 2007.

Fig. 14. Distribution of retrieved LWP during clear-sky (IRT of < 215 K)
conditions for the month of January and July combined. The left panel shows
retrievals from the GVR. The right panel shows retrievals from the MWR (N =
32 444).

2.5 g/m2 and less than 5 g/m2 in approximately 70% and 95%
of cases, respectively, while the MWR has a broader distribu-
tion centered on 0 g/m2 but a high number (∼45%) of negative
cases. When the IR temperature is higher than 215 K, clouds are
likely present in the IRT field of view. A cloud base temperature
threshold of 230 K was set as the minimum temperature to
classify the scene as cloudy (with some form of liquid water),
although the cloud could be completely made of ice. The distri-
bution of retrieved LWP for January and July 2007 for cases
classified as cloudy is shown in Fig. 15. In January, ∼2.5%
(and in July ∼12%) of GVR retrievals have an LWP amount
of less than 2.5 g/m2 in the region of retrieval uncertainty.
As previously mentioned, the MWR retrievals might be biased
toward larger values because of the modeling of the oxygen
line. Previous studies showed that LWP retrievals from the
MWR are generally higher than retrievals obtained from IR and
aircraft measurements [32]. The right side of Fig. 15 indicates

Fig. 15. Distribution of retrieved LWP during cloudy (IRT of > 230 K)
conditions for the month of January (winter, N = 16 112) and July (summer,
N = 21 063). The left panel shows retrievals from the GVR, and the right
panel shows retrievals from the MWR.

Fig. 16. Downwelling longwave surface flux residuals (measurements minus
model) for cloudy cases obtained by using (black solid circles) the GVR-
retrieved LWP and (open squares) the MWR-retrieved LWP as the model
parameter. Cases are classified as cloudy if the IRT temperature is > 230 K.

that the percentage of negative LWP values is higher in winter,
when the LWP amounts are usually lower.

As an independent test for assessing the retrievals, we used
the retrieved LWP as a parameter in the radiative transfer
model RRTM that computes longwave downwelling surface
fluxes [33]. The cloud liquid water has a large impact on the
calculations of the longwave downwelling flux, particularly in
the region of low LWP [3], and we expect that a better LWP
retrieval will result in a better agreement between measured
and modeled surface fluxes. We performed the computations
for 135 cases coincident with the times of radiosonde ascent.
Radiosonde temperature and humidity profiles were used as
input to the radiative transfer model, together with the estimated
LWP. Clouds were assumed to be entirely liquid, with a liquid
droplet effective radius of 7.0 μm and cloud fraction of one.
A cloud layer was assumed to be present when the relative
humidity was higher than 95% and the liquid water profile
was assumed to be constant. The retrieved LWP were binned
in 10 g/m2 intervals. The mean of the longwave radiative
flux residuals (measurements minus model) in each bin are
shown Fig. 16 for cloudy cases. The corresponding numer-
ical values are displayed in Table III. The number of cases
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TABLE III
COMPARISON OF MEASURED AND MODELED DOWNWELLING LONGWAVE SURFACE FLUXES

in each LWP bin (N ), the mean, and the standard devia-
tion of the differences between measurements and model are
displayed for the two retrievals. MWR retrievals are limited
to cases with an LWP > 0. In spite of the few number of
cases, the behavior of the residuals is consistent with the
statistics of LWP shown in Figs. 14 and 16. The GVR-based
LWP retrievals clearly give smaller biases and standard de-
viations in the radiative flux comparison than do the MWR
retrievals.

When all cases are considered (not shown in the figure),
residuals involving the GVR-retrieved LWP are much smaller
than residuals computed with the MWR-retrieved LWP. Surface
fluxes obtained with MWR retrievals are constantly higher than
the observed ones, suggesting that the MWR overall overesti-
mates LWP. This behavior of MWR residuals is consistent with
what is found in [5]. Residuals obtained with GVR retrievals
are generally in the uncertainty of the longwave radiative flux
measurements themselves (±4 W/m2). If we use the IRT
readings to split the data into cloudy cases (Fig. 16) and clear-
sky cases, we see that a large portion of the overestimation in
the MWR retrievals is due to clear-sky LWP bias. This bias
is caused partially by the weakness of the signal and partially
by the modeling of the wing of the oxygen absorption region.
The distribution of residuals during the clear-sky and cloudy
scenes is very consistent with the distribution of LWP shown in
Figs. 15 and 16, with the GVR uncertainty increasing when the
LWP is below 5 g/m2 and with the MWR retrieving too much
over the LWP range of 0–60 g/m2. The overall GVR residuals
are better than those from the MWR, indicating a more realistic
representation of the LWP distribution.

VIII. SUMMARY AND CONCLUSION

Retrievals of small amounts of water vapor and liquid water
have become an essential need to assess the effect of clouds
and water vapor on the Earth radiation budget. The Arctic
environment in particular presents challenging conditions in
which traditional 20- to 30-GHz MWRs operate at the limit of

their sensitivity. The use of the stronger 183.3-GHz absorption
line poses a challenge in itself, because the brightness tem-
peratures are nonlinearly related to the water-vapor amounts.
This paper develops an NN for the retrieval of low amounts of
water vapor and liquid water in the Arctic from a ground-based
183.3-GHz MWR. A previous physical algorithm developed
for this instrument required vertical profiles of temperature
and humidity as input. By using an NN, it is possible to
provide real-time retrievals and, at the same time, exploit the
nonlinear region of response of the instrument. The network
was trained first with an all-year data set and then with a
seasonal data set. A seasonal training data set was deemed
preferable since it enables the network to focus on cases with
smaller PWV amounts, therefore taking better advantage of
the higher sensitivity of the GVR channels. Particular atten-
tion was devoted to the realistic treatment of the NN output
errors. Three independent sources of errors were identified
and estimated, and their individual contribution to the over-
all retrieval error was analyzed. The estimation errors were
found to be of the same magnitude as those obtained from a
traditional physical retrieval, confirming the reliability of the
NN outputs.

Outputs from the NN retrieval were compared with those
from a physical retrieval that uses GVR-only measurements
and those from a linear statistical retrieval (MWRRET) that
uses only MWR measurements. Results show that a seasonally
trained NN can retrieve PWV with a 5% uncertainty between
about 2 and 7 mm and with about 10% uncertainty when the
PWV is more than 10 mm. The rms error computed with
reference to radiosonde measurements for which PWV < 5 mm
showed a very low bias (−0.08 mm) and a standard deviation
of about 0.18 mm. A combination of GVR and MWR measure-
ments resulted in an improved rms error across the whole PWV
range.

LWP retrievals display a markedly improved clear-sky
detection capability and a retrieval error between 1 and
10 g/m2, depending on the water-vapor amount. LWP retrieved
with the NN is generally lower than the LWP retrieved from
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MWR measurements. Radiative transfer computations showed
that longwave downwelling surface fluxes, computed by using
GVR-retrieved LWP, are closer to the measured fluxes than
those computed by using MWR-retrieved LWP, indicating that
a lower LWP amount is probably more realistic.

Overall, the NN results can be seen as a step forward in
providing improved real-time retrievals of water vapor and
cloud liquid water. These retrievals can be used as a start-
ing point or as a comparison point for more sophisticated
retrievals combining multiple active and passive instruments.
In the near future, a radiometer operating at 90/150-GHz will
be deployed at the ACRF to improve the retrieval of small
LWP amounts. Once this additional instrument is deployed, we
plan to extend the NN architecture to include measurements at
90 and 150 GHz and to explore the possibility of retrieving
cloud liquid content from microwave measurements between
30 and 176 GHz.
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