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ABSTRACT

A neural network is used to obtain vertical profiles of temperature from microwave radiometer data. The
overall rms crror in the retricved profiles of a test dataset was only about 8% worse than the overall error using
an optimized statistical retrigval. In certain cases, such as one with a large temperature inversion, the neural
nctwork produced better reproductions of the profiles than did the statistical inversion.

1. Introduction

‘The radiance measured by a vertically pointing mi-
crowave radiometer is an integral function of height
above the radiometer, the ground-level pressure, and
the vertical profiles of temperaturc and water vapor. If
clouds ar¢ present, the radiance also depends on liquid
water content of the clouds. The details of the integral
function depend on the wavelength at which the ra-
diometer is operating. Therefore, a radiometer oper-
ating at several wavelengths can provide information
about the vertical profile of the temperature structure
in the atmosphere. Obtaining an estimate of that profile
requires inversion of a set of integral equations.

One technique for retrieving temperature profiles
from ricrowave radiances is a linear statistical inver-
sion (Strand and Wesiwater 1968; Hogg et al. 1983),
A six-channcl radiometer has been operated in Denver,
Colorado, since about 1981. It uses a linear statistical
inversion to obtain continuous soundings of temper-
ature in real time (Hogget al. 1983). The rms difference
between these temperature profiles and the U.S. Na-
tional Weather Service operational rawinsondc profiles
at the same site is generally 1°-3°C throughout the
troposphere (Westwater et al. 1984).

Attempts to improve on the accuracy of the micro-
wave-derived temperature profiles have concentrated
on including other sourccs of information. One ap-
proach has been to combine ground-based microwave
data with microwave and infrared radiometer data col-
lected from satellites (Westwater and Grody 1930;
Westwater et al, 1984; Westwater et al. 1985; Schroeder
1990). Another source of data that has been considered
is a radio acoustic sounding system, which infers air
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temperature from a Doppler radar measurement of the
speed of a transmitted sound wave (Schroeder 1990).

There are several similarities between a linear sta-
tistical inversion and a neural-network retrieval. In both
cases, some input vector is operated on to produce an
output vector. For our purposes, the input vector is a
set of microwave radiances plus the ground-level pres-
sure, temperature, and humidity. The output vector is
the vertical profile of temperature. In both cases, the
operator is generated using an existing set of paired
input and output vectors. In the linear statistical in-
version, this set is used to obtain the pertinent statistics
(i.e., the covariance matrices) that are used to derive
the inversion coefficients. In the neural-network re-
trieval, this set is used to train the network.

Despite these similarities, neural networks have not
been used extensively for data retrieval. Typical ap-
plications include classification of image features (Bar-
nard and Casasent 1989; Lee et al. 1990; Kamata et
al. 1991) and image feature detection (Fitch et al. 1991;
Ryan et al. 1991). Measure et al. (1991) considered
radiometric inversions using a two-layer neural net-
work, and this paper is an extension of their work.

2. Neural network

A schematic diagram of the type of neural network
that was used for this work is presented in Fig. . The
net has an input layer of L nodes to which an input
vector X of length L is applied. Each input node is
connected to all M nodes in a hidden layer. Each node
in the hidden layer performs a weighted sum over all
the input values to produce an output vector Y. Each
node in the hidden layer is connected to each node in
an output layer, which performs a weighted sum over
all of the results of the hidden-layer calculations. The
N values from the output-layer nodes create the output
vector Z.
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FI1G. 1. Schematic of neural network showing input
vector X and output vector Z.

The neural-network calculations in this paper were
made with a network simulator called NETS (Baffes
et al. 1991) running on a computer workstation. Gen-
erally, in this simulator all input and output values are
scaled so that they lie between 0 and 1. For atmospheric
inversions, the inputs and outputs are unbounded. No
matter what the range of values in the training set, they
will eventually be exceeded by the atmosphere. For
this reason, we scaled all values so that the training set
values were between 0.15 and 0.9. We then tested the
performance of the network using data that occasion-
ally fell outside of the range of the training set.

In NETS, a neuron performs a weighted sum of its
inputs and applies a sigmoidal function to the result
to produce an output. For the ith node in the hidden
layer, this can be expressed as

M
vi=S(2 Wi X;),
=0

(1)

where S is the sigmoidal function
_
1 +exp(—a)’

and wy; is the weighting of the connection between the
jth input neuron and the ith hidden neuron. Operation
of a neuron in the output layer is similar.

The weights w;; are determined during the training
process. In NETS, they are obtained using a back-
propagation algorithm that is described in detail by
Rumelhart et al. (1986). This algorithm adjusts the
weights iteratively to reduce the difference between the
actual training set output vectors and the estimated
output vectors calculated by the network using the in-
put vectors of the training set.

S(a) = (2)

3. Data

The traihing dataset was based on 10 years (1970-
79) of routine National Weather Service rawinsonde
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data taken at Stapleton International Airport in Den-
ver. Soundings are made twice daily. (1100 and 2300
UTC). To allow comparison, we used the same Jan-
uary, February, and March data as the winter dataset
of Schroeder (1990). Also, the data were interpolated
to obtain values at the same levels as that paper. This
was done so that rms errors could be calculated in the
same way, and the two techniques could be compared
directly.

The input vector comprised nine elements. Three
of these were the surface-level temperature, pressure,
and relative humidity. The other six were the brightness
temperatures at the six frequencies of the radiometer
(20.60, 31.65, 52.85, 53.85, 55.45, and 58.80 GHz).

For the training dataset, brightness temperatures
were calculated theoretically from the rawinsonde data
using a form of the radiative transfer equation in Askne
and Westwater (1986). Since rawinsondes do not
measure cloud water content, cloudy conditions were
modeled as in Decker et al. (1978). When the relative
humidity measured by the rawinsonde was above 95%,
a cloud was assumed, and three input vectors were
calculated with different assumptions about the total
water content. The amounts of water assumed were
based on cloud thickness, and a fraction of the total
water was assumed to be ice, with the fraction de-
pending on temperature. The attenuation due to these
clouds was calculated, and these values were used in
the radiative transfer calculation. To simulate the ef-
fects of instrument noise, a zero-mean Gaussian ran-
dom error with 0.5-K standard deviation was added to
each calculated brightness temperature.

The output vector was a 45-clement vertical profile
of temperature. The first 17 elements were’ evenly
spaced in height above the ground from 50 to 2150 m.
The other 28 were evenly spaced in pressure from 625
to 10 mb.

A test dataset was used that comprised 15 rawin-
sondes in February 1989, and actual radiometric data
taken at the same time and the same location. This
case was chosen because it contained an extremely cold
surface layer with a strong inversion (Neiman et al.
1989) and is a severe test of any inversion technique.

4. Results

We first considered the case of a neural network with
no hidden layer. Figure 2 is a typical temperature re-
trieval from the test data. From this figure, we see that
the agreement between the radiosonde data and the
retrieved profiles are similar for the statistical inversion
and the neural-network inversion. The major difference
is a fairly large error in the neural-network retrieval at
high altitudes.

Figure 3 is a similar plot for a case with a large tem-
perature inversion. In this case, the neural network re-
produces the magnitude of the temperature inversion
and approximates the profile much better than the sta-
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FIG. 2. Temperature as a function of height for a typical case from
the radiosonde (solid line), the statistical retrieval (dotted line), and
the neural network with no hidden layers (dashed line).

tistical retricval in the lower portion of the atmosphere.
As before, a substantial error appears at higher altitudes.

Overall performance of the two-layer neural network
is summarized in Fig. 4, which plots the estimated
temperature as a function of the actual tempcerature
for all points in the training dataset, and Fig. 5, which
is the same plot for the test dataset. All points from
cach profile were plotted; in Fig. 5, one can clearly see

Height (km AGL)
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F1G. 3, Temperature as a function of height for an cxtreme case

from the radiosonde (solid line), the statistical retrieval (dotted line),
and the ncural network with no hidden layers ( dashed line).
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Fi1G. 4. Scatterplot of retrieved temperatures versus
actual temperatures for the training dataset.

the traces of individual profiles because adjacent points
are not statistically independent. As one might expect,
agreement is better for the training set than for the test
set. The total rms difference between the radiosonde
data and the neural-network retrievals was 2.53°C for
the training set. The equivalent value for the test set
was 4.93°C. This is 24% worse than the value of 3.98°C
obtained by the statistical inversion { Schroeder 1990).

The values presented above were for a training ses-
sion of 10 000 iterations. The rms error on the training
dataset is plotted as a function of iterations in Fig. 6.
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FiG. 5. Scatterplot of retrieved temperatures versus
actual temperatures for the test dataset.
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The error drops fairly rapidly for the first few hundred
iterations, and then the performance improves more
slowly.

We next considered neural networks with a hidden
layer. Twenty neurons in the hidden layer were used.
Increasing the number up to 100 did not seem to in-
crease the performance significantly. Figure 7 is a plot
of the hidden-layer retrieval of the strong-temperature-
inversion case of Fig. 3. We see that the retrieval is a
little better with the hidden layer, especially at higher
altitudes. The total rms error on the test set using this
network was 4.28°C, which is only about 8% worse
than the optimized statistical inversion.

Finally, we considered the addition of more input
neurons that represented nonlinear combinations of
the data, such as squares and cross products. None of
the combinations we tried increased the performance
of the network significantly.

5. Conclusions

A neural-network retrieval with 20 neurons in the
hidden layer, trained for 10 000 iterations, can provide
temperature retrievals from microwave radiometer data
that are nearly as good as an optimized statistical re-
" trieval in terms of overall rms error. We would not
expect a neural network to do better than the statistical
inversion, because the latter is designed to minimize
rms error based on knowledge of the statistics. If the
neural network is given the same information, as was
done here, it could do no better.

Although the neural network did slightly worse than
the statistical retrieval overall, it seemed to do better
in certain cases. In difficult cases, such as the strong
temperature inversion of Fig. 7, the neural network
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FIG. 6. Root-mean-square error in training set
as a function of number of training iterations.
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FIG. 7. Temperature as a function of height for an extreme case
from the radiosonde (solid line), the statistical retrieval (dotted line),
and the neural network with 20 hidden-layer neurons (dashed line).

reproduced the essential features of the profiles better
than the statistical retrieval. It also seemed to generally
do better near the ground and worse at higher altitudes.
Thus, a neural network inversion might be preferred
despite a slightly worse rms error because it seems to
more faithfully recover the more meteorologically in-
teresting extreme cases.

Finally, we note that the performance of the neural
network seemed very insensitive to details of the im-
plementation. As long as we used a hidden layer of 20
neurons or more and trained the network for more
than a few hundred iterations, the results were very
similar. This, plus the closeness of the results to the
statistical retrieval results, suggests that we are getting
nearly all of the useful information out of the data.

The neural-network technigue lends itself to retriev-
als based on multiple sensors. It would be easy to add
data from a radio acoustic sounding system, data from
satelliteborne sounders, and radar wind profiles. One
only needs a suitable training set; the network should
adjust the weighting of the various data according to
their predictive capability. Radiosonde data from other
locations or previous times could also be used as long
as the separations or time delays were either constant
or provided as input variables. Various combinations
of these types of data are currently being investigated.
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