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ABSTRACT

Two independent ground-based passive remote sensing methods are used to retrieve lower-tropospheric

temperature and humidity profiles in clear-sky cases. A simulation study for two distinctly different climatic

zones is performed to evaluate the accuracies of a standard microwave profiler [humidity and temperature

profiler (HATPRO)] and an infrared spectrometer [Atmospheric Emitted Radiance Interferometer

(AERI)] by applying a unified optimal estimation scheme to each instrument. Different measurement modes

for each instrument are also evaluated in which the retrieval uses different spectral channels and observa-

tional view angles. In addition, both instruments have been combined into the same physically consistent

retrieval scheme to evaluate the differences between a combined retrieval relative to the single-instrument

retrievals. In general, retrievals derived from only infrared measurements yield superior RMS error and bias

to retrievals derived only from microwave measurements. The AERI retrievals show high potential, espe-

cially for retrieving humidity in the boundary layer, where accuracies are on the order of 0.25–0.5 g m23 for a

central European climate. In the lowest 500 m the retrieval accuracies for temperature from elevation-

scanning microwave measurements and spectral infrared measurements are very similar (0.2–0.6 K). Above

this level the accuracies of the AERI retrieval are significantly more accurate (,1 K RMSE below 4 km). The

inclusion of microwave measurements to the spectral infrared measurements within a unified physical re-

trieval scheme only results in improvements in the high-humidity tropical climate. However, relative to the

HATPRO retrieval, the accuracy of the AERI retrieval is more sensitive to changes in the measurement

uncertainty. The discussed results are drawn from a subset of ‘‘pristine’’ clear-sky cases: in the general case in

which clouds and aerosols are present, the combined HATPRO–AERI retrieval algorithm is expected to

yield much more beneficial results.

1. Introduction

High-temporal-resolution vertical profiles of atmo-

spheric temperature and humidity are needed by many

applications in atmospheric sciences, such as weather

forecasting initialization, model evaluation, and process

studies. Atmospheric stability in particular is described

by the basic meteorological quantities, namely, tem-

perature and humidity profiles. Even today, radio-

sondes continue to provide a benchmark measurement

for determining high-resolution vertical profiles of pres-

sure, temperature, humidity, and wind because all of the

parameters can be simultaneously determined and the

accuracy is acceptable for a number of meteorological

and aerological applications. Operational radiosonde

soundings, however, typically provide 12-hourly obser-

vations, a temporal resolution that is often not sufficient
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for many meteorological applications, such as resolving

boundary layer (BL) transitions or frontal passages.

Also a radiosonde ascent drifts with the wind, which can

lead to a significant horizontal displacement, and the

ascent as such will take ;1 h to profile the troposphere,

both of these factors leading to a sampling error. Ad-

ditionally, many radiosonde sensors show a ‘‘dry bias’’

behavior during the daytime (e.g., Cady-Pereira et al.

2008; Turner et al. 2003), an error that is difficult to

account for because of its dependence on multiple en-

vironmental factors.

Remote sensing methods have the advantage of being

able to derive profile information of temperature and

humidity with a high temporal resolution but suffer

some drawbacks in vertical resolution and accuracy. This

paper compares the performance of ground-based tem-

perature and humidity profiling methods in two different

spectral regions: microwave and infrared. Using identi-

cal retrieval approaches, we will address the following

questions: What are the respective merits of microwave

and infrared ground-based temperature and humidity

profiling, and what can be gained from a combination of

both? This study (part I of a planned series) focuses

purely on simulations of clear-sky (CS) conditions. The

application to measured data will follow in part II, where

we are currently analyzing the humidity and tempera-

ture profiler–Atmospheric Emitted Radiance Interfer-

ometer (HATPRO–AERI) retrieval performance dur-

ing a field experiment conducted in the Black Forest

during the summer of 2007 (Wulfmeyer et al. 2008). The

overall goal is to analyze retrieval performance in detail

to pursue simultaneous temperature, humidity, and

cloud microphysical parameter retrieval in the near

future.

Passive microwave radiometry uses frequency bands

around the water vapor absorption line at 22.235 GHz

for water vapor profiling and around the 60-GHz oxygen

complex for temperature profiling. Studies have shown

that approximately four to five independent levels of

temperature information may be obtained, whereas the

number of independent water vapor levels is on the

order of two (Löhnert et al. 2008; Hewison 2007). If

elevation-scanning measurements are additionally con-

sidered, temperature accuracies are within 0.5 K close to

the ground and degrade with height to ;1–2 K in the

lower troposphere (Crewell and Löhnert 2007), whereas

humidity accuracies range on the order of ;0.8 g m23.

These values are more or less independent of the oc-

currence of clouds, except in cases of heavy precipita-

tion where saturation effects may occur or the instru-

ment is influenced by rainwater on the radome.

Previous studies have shown that multispectral mea-

surements in the infrared contain information on the

tropospheric temperature and humidity profile (Smith

et al. 1999; Feltz et al. 2003). This information is gen-

erally limited to clear-sky cases and cases where clouds

are optically thin. However, in the case of an optically

thick cloud, information on temperature and humidity

may still be obtained below the cloud if the cloud

emissivity and temperature are known or retrieved.

In the following, we describe the parallel development

of microwave (MW) and infrared (IR) techniques for

temperature and humidity retrieval for clear-sky cases

using the same optimal estimation retrieval framework

for each. These retrieval algorithms are applied to a

typical central European climate and a humid tropical

climate to be able to interpret the results as a function of

vertically integrated water vapor (IWV) amount.

Our goal is to analyze the error characteristics of both

approaches and to combine both measurements to

evaluate the accuracy that is obtained in a joint retrieval

algorithm. The results shown in this study are based

purely on virtual measurements derived from radiative

transfer simulations to facilitate the retrieval error anal-

ysis. In this way we can exclude sources of bias error as

a result of erroneous calibration and absorption model

uncertainties—errors that are difficult to quantify in

general. We underline that the results shown in this pa-

per are only to be interpreted under these circumstances.

The characteristics of the microwave and infrared

instruments used for simulation are described in section

2 of this paper, whereas the retrieval framework, which

consists of an optimal estimation approach, is described

in section 3. In section 4, we evaluate the accuracies

of the retrieval procedures, whereby the MW and IR

techniques are separately applied to the same cases and

compared to each other. We examine the benefits of

combining MW and IR approaches in one joint retrieval

and also evaluate the impact of using different IR bands

and microwave measurement approaches (zenith-only

measurements versus zenith-plus-elevation–scanning mea-

surements). In section 5 we provide a summary and an

outlook toward describing the cloudy atmosphere with

the expected powerful combination of microwave and

infrared bands.

2. Instrumentation and simulation

This study employs simulations of two state-of-the-art

passive ground-based remote sensing instruments: the

microwave profiler HATPRO and the infrared inter-

ferometer AERI. In the following, the basic principles

and characteristics of each instrument are briefly spec-

ified. We also describe the generation of the simulated

measurements, illustrating how the instrument charac-

teristics are maintained.
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a. HATPRO

The microwave profiler HATPRO was designed as a

network-suitable low-cost microwave radiometer that

can observe liquid water path (LWP), humidity, and

temperature profiles with high temporal resolution up

to 1 s (Rose et al. 2005). HATPRO consists of total-

power radiometers utilizing direct detection receivers

within two bands, M1 and M2 (see Table 1, Fig. 1). The

seven channels of band M1 contain information about

the vertical profile of humidity through the pressure

broadening of the optically thin 22.235-GHz H2O line

and also contain information for determining LWP. The

seven channels of band M2 contain information on the

vertical profile of temperature resulting from the ho-

mogeneous mixing of O2 throughout the atmosphere.

At the opaque center of the O2 absorption complex at

60 GHz, most of the information originates from near

the surface, whereas further away from the line, the

atmosphere becomes less and less opaque so that more

and more information also originates from higher at-

mospheric layers.

In addition to the spectral information, angular in-

formation can enhance the accuracy of the temperature

profile in the boundary layer (Crewell and Löhnert

2007) when the atmosphere in the direct horizontal vi-

cinity (;3 km) of the microwave profiler is assumed

to be horizontally homogeneous. Only the brightness

temperature from the optically thick frequency bands

close to 60 GHz are used in these elevation scans. Be-

cause the brightness temperatures vary only slightly with

elevation angle, the method requires a highly sensitive

radiometer (i.e., low random noise levels), which is typ-

ically realized by using wide bandwidths (up to 4 GHz) in

these channels.

To simulate the HATPRO measurements, we use a

radiative transfer operator consisting purely of a 1D

emission-only forward integration of the radiative

transfer equation, which generates brightness temper-

atures monochromatically at the HATPRO center fre-

quencies. For the calculation of the absorption coeffi-

cients, a fast absorption predictor (Löhnert et al. 2004)

based on Rosenkranz’s (1998) millimeter-wave absorp-

tion model is employed to enhance the speed of the

Jacobian calculations. In clear-sky situations, this so-

called microwave forward model needs profiles of tem-

perature, humidity, and pressure to be able to simulate

realistic brightness temperatures; other gaseous atmo-

spheric constituents play only a minor role at the

HATPRO center frequencies from the perspective of a

ground-based upward-looking instrument. To take into

account the estimated random error of real HATPRO

measurements, the error numbers listed in Table 1 are

randomly added to the forward model simulations.

These error estimates include typical radiometric noise,

calibration uncertainties, and random uncertainties in

the fast absorption predictor.

b. AERI

The AERI is an operational infrared spectrometer

that measures the downwelling infrared radiance from

3.3–19 mm (3020–520 cm21; see Fig. 1) at 1-cm21 reso-

lution (Knuteson et al. 2004a,b). Two detectors are used

in a ‘‘sandwich’’ configuration to provide the needed

sensitivity across the entire spectral range. Details on

the calibration approach and accuracy are provided by

Knuteson et al. (2004b). The random noise in the AERI

observations is determined from the imaginary com-

ponent of the calibrated radiance (Knuteson et al.

2004b), and thus any scene-dependence of the noise

level is automatically captured for each sample. The

AERI is typically run in one of two temporal sampling

modes: 1) ‘‘normal sample’’ mode, whereby sky radi-

ance is averaged for 3 min followed by views of the two

calibration blackbodies, resulting in an approximate

7-min temporal resolution; and 2) ‘‘rapid sample’’ mode,

where sky radiance is averaged for 12 s and multiple

(8–10) sky averages are collected before the black-

bodies are viewed. Although the rapid-sample data

have approximately 4 times more random noise than the

normal-sample data, a principal component-based noise

filter is used to remove the uncorrelated random error

from the AERI observations, which results in a similar

noise level in the rapid-sample data as that in the

normal-sample data (Turner et al. 2006).

The AERI has approximately 2500 spectral channels

for each of its two detectors. Previous studies (e.g.,

Turner 2005) have assumed that the random noise be-

tween any two of these spectral channels is indepen-

dent. We have confirmed this by analyzing a long time

series of observations where a well-characterized black-

body was placed in the sky port. The analysis of these

data demonstrated that the absolute value of the cor-

relation coefficient between any two spectral channels

was less than approximately 0.3, and there was no ap-

parent pattern identified when the correlation matrix

was plotted (not shown).

Like the microwave spectrum, the infrared spectrum

also contains information on the vertical profile of

temperature and humidity. Smith et al. (1999) and Feltz

et al. (1998) used spectral observations from 612–713

and 2223–2260 cm21 (i.e., measurements from the 15- and

4.3-mm CO2 bands, respectively) for temperature profil-

ing, and observations from 538–588 and 1250–1350 cm21

(i.e., measurements from the wings of the rotational and

6.3-mm water vapor bands, respectively) for water vapor
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profiling. Our analysis demonstrated that the informa-

tion content on both the longwave side (612–660 cm21)

and shortwave side (675–713 cm21) of the 15-mm CO2

band are essentially equivalent, and because the ran-

dom noise level is higher on the longwave side of the

band, we will not include the observations from the

612–660 cm21 band in this study. Thus, our analysis fo-

cuses on the four distinct bands A1–A4 of the AERI

shown in Table 1.

To simulate the AERI measurements, a fast-trans-

mittance forward model based upon Eyre and Woolf

(1988) is utilized. This ‘‘fastaeri’’ model treats water

vapor and ozone as variable gases, but holds the others

fixed to values in the U.S. Standard Atmosphere, 1976.

The carbon dioxide profile is set to have a constant

mixing ratio of 380 ppmv, and the contributions from

chlorofluorocarbons (CFCs) are not included in the

model. The fastaeri model was constructed using output

from the Line-by-Line Radiative Transfer Model

(LBLRTM), version 11.3, which includes version 2 of

the Mlawer–Tobin–Clough–Kneizys–Davies (MT-CKD)

water vapor continuum model (Clough et al. 2005).

TABLE 1. Description of microwave (M1, M2) and infrared (A1–A4) bands and the assumed instrumental noise used for the different

retrieval setups.

Band M1

center frequency

(GHz)/noise (K)

Band M2

center frequency

(GHz)/noise (K)

Band A1

range (cm21)

Band A2

range (cm21)

Band A3

range (cm21)

Band A4

range (cm21)

No. of

channels

No. of

channels

No. of

channels

No. of

channels

Noise

(mW m22 sr21 cm)

Noise

(mW m22 sr21 cm)

Noise

(mW m22 sr21 cm)

Noise

(mW m22 sr21 cm)

22.24/0.4 51.26/0.5 538–588 675–713 1250–1350 2223–2260

23.04/0.4 52.28/0.5

23.84/0.4 53.86/0.5 104 79 208 77

25.44/0.4 54.94/0.2

26.24/0.4 56.66/0.2 1.8 0.30 0.25 0.011

27.84/0.4 57.30/0.2

31.40/0.4 58.00/0.2

FIG. 1. Areas (gray shaded) of the (a) microwave and (b),(c) infrared spectra used for tem-

perature and humidity profiling in this study. The light gray and black lines depict the spectra

during a humid summer day at Payerne (IWV ; 30 kg m22) and during a typical winter day with

low amounts of water vapor (;8 kg m22). The associated atmospheric profiles are shown in Fig. 3.
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The monochromatic layer-to-surface transmission pro-

files from the LBLRTM are convolved with the AERI’s

spectral response function (a sinc function), the effec-

tive layer optical depths at each AERI spectral channel

are computed by taking ratios of the convolved trans-

mittance profiles at different layers, and these layer

optical depths are related to the atmospheric state

predictor variables at those layers via linear regression.

The fastaeri model contains both uncorrelated error

(because each of the regressions for each spectral

channel were determined independently of the other

channels) and correlated error that comes from inade-

quacies in the LBLRTM (such as errors in the for-

mulation of the water vapor continuum). The model’s

uncorrelated error is assumed to be smaller than the

uncorrelated error in the normal-sample AERI data.

The correlated error in the model would most likely

manifest itself as a bias, and we have assumed for this

study that the forward models are unbiased estimators;

thus, we are assuming that the correlated error in the

model is negligible. Note that fastaeri is an emission-

only model that does not include scattering (i.e., real-

istic clouds cannot be simulated). The fastaeri model

has been used extensively in previous analyses of water

vapor and temperature from the AERI (e.g., Smith

et al. 1999; Feltz et al. 2003).

For this sensitivity study, the fastaeri model was used

to compute radiance with the spectral resolution of the

AERI, and uncorrelated random noise was added to

these calculations. We utilized the average noise level of

a normal-sampling AERI system in clearsky cases

(Knuteson et al. 2004b). This translates into 1-sigma

uncertainties of bands A1–A4 given in Table 1.

3. Retrieval methodology

The true atmospheric state vector x, which we are

retrieving in this study, consists of vertical profiles of

atmospheric temperature (T) and absolute humidity (ry),

such that we can notate x 5 (T, ry). The vertical reso-

lution used in the retrieval algorithm for both tempera-

ture and humidity is set to 50 m in the lowest 200 m and

then increases gradually to 150 m at 1000 m, 250 m at

3000 m, and 500 m at 10 km above the surface (total of

43 levels), which corresponds approximately to typical

height grids used in state-of-the-art NWP models.

a. Measurement inversion

The goal of the applied inversion scheme, the inte-

grated profiling technique (IPT; Löhnert et al. 2004)

algorithm, is to retrieve x by optimally exploiting the

information from a given measurement vector y (Rodgers

2000). Depending on the situation, y will consist of a

vector of observed microwave brightness temperatures

and/or infrared radiances. Generally in remote sensing

applications, determining x from y directly is an un-

derdetermined and ill-conditioned problem, meaning

that no unique solution exists and that very small errors

in the measurement may lead to huge deviations in the

retrieved atmospheric profile. Approaches to increase

the number of degrees of freedom of the solution vector

are to combine complementary measurements or add a

source of a priori information to the retrieval problem,

which is the seasonal mean profile in our case. If the

relationship between x and y is slightly to moderately

nonlinear, an optimal atmospheric state xop can be

found by iterating the following formulation:

xi11 5 xi 1 (KT
i S�1

e Ki 1 S�1
a )�1[KT

i S�1
e (y� yi)

1 S�1
a (xa � xi)], (1)

where i represents the iteration step, xa represents the a

priori knowledge of T and ry, Sa represents the a priori

covariance matrix, and Se represents the combined

measurement and forward model error covariance ma-

trix. The Jacobian, or the sensitivity of the forward

model to changes in x, is denoted by Ki 5 ›F(xi)/›xi 5

›yi/›xi, where Ki is recalculated for each iteration using

finite differences. The forward model F transforms from

the state space (x) to the measurement space (y) in a

straightforward way; that is, given a state space vector at

a certain iteration xi, F calculates yi by applying the

radiative transfer operators described in sections 2a and

2b to compute the brightness temperatures and/or ra-

diance at the microwave frequencies and/or the infrared

wavenumbers.

Optimally, the formulation of Eq. (1) should guar-

antee the minimization of a quadratic cost function

between xa and xi, and also between y and yi, when the

difference between xi11 and xi goes toward zero. The

iteration procedure is terminated after an optimal

number of iterations (i 5 op) when IPT has converged

to a sensible point (i.e., when the change in xi is small).

This is determined when the cost function reaches an

adequate minimum, yielding the solution xop. Rodgers

(2000) describes a method to judge whether the itera-

tion procedure has reached convergence by considering

a quadratic cost function between F(xi) and F(xi11):

[F(xi11)� F(xi)]TS�1
dy [F(xi11)� F(xi)]� d, (2)

with d denoting the dimension of y and Sdy the covari-

ance matrix between the measurement y and F(xop).

If this criterion is not fulfilled after 10 iterations, the

retrieval is aborted. It is important to note that the so-

lution xop must be interpreted as the most probable
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solution of a Gaussian distributed probability density

function, whose covariance can be written as

Sop 5 (KT
i S�1

e Ki 1 S�1
a )�1. (3)

The diagonal elements of this matrix give an estimate of

the mean quadratic error of xop, whereas the off-diagonal

elements yield information on the correlation of re-

trieval errors between the different heights.

A further important measure for retrieval algorithm

evaluation is the averaging kernel matrix A that states the

sensitivity of the retrieved to the true state (5›xop /›x). In

the case of Gaussian statistics, A can be written as

A 5 Sop(KT
opS�1

e Kop). (4)

The diagonal values of A are frequently used as a

measure of vertical resolution (Rodgers 2000), whereas

the trace of A states the independent number of levels

that can be retrieved from a given measurement.

b. A priori information

In this study, our goal is to show the potential of a

combined HATPRO–AERI observation system for

temperature and humidity retrieval. For this reason we

do not use any other a priori information besides a long-

term radiosonde climatology. Löhnert et al. (2007) have

shown how the microwave profiler retrievals can be

enhanced by including additional in situ measurements

such as close-by radiosonde ascents. However, this pa-

per’s main goal is to assess the accuracy of the tem-

perature and humidity retrievals solely from microwave

and infrared measurements alone.

To evaluate the information content from the two

instruments relative to each other, we utilize data from

two climatically different stations. The first station

considered is Payerne, Switzerland, which represents a

typical central European climate, located at 468499N

and 68979E at 492 m above sea level. The a priori pro-

files xa were calculated as seasonal means using 9446

radiosonde ascents over a time period from 1992 to

2006. The second station considered is Darwin, Australia,

which represents a humid tropical climate, located at

128429N and 1308899E at 30 m above sea level. Here

2218 radiosonde ascents over a time period from 1992 to

2005 passed the quality control procedure and thus were

used to determine the a priori profiles. All radiosondes

were subject to a sophisticated quality control proce-

dure (Nörenberg et al. 2008) to guarantee the use of

only physically realistic ascents. The covariance matri-

ces Sa were calculated 4 times for each station (i.e., as a

function of season), with the variances of T and ry at

each vertical level on the diagonal and the covariances

between the different levels in the off-diagonal com-

ponents. Note that the covariances between T and ry

have also been considered.

c. Se matrix

For this simulation study, the error covariance matrix

Se contained only nonzero elements on the diagonal

components and the off-diagonal components were set to

zero, which assumes that the measurement uncertainties

between any pair of wavelengths are uncorrelated. This

matrix is used to describe the expected measurement

accuracy of the HATPRO and AERI instruments. For

the HATPRO simulations, the error numbers were set to

the square values of the noise levels listed in Table 1.

For the AERI, the square of the 1-sigma uncertainties

of bands A1–A4 given in Table 1, which were described

in section 2b, were used along the diagonal of the Se

matrix, and zeros were utilized on the off diagonal.

4. Retrieval evaluation

Only CS radiosonde ascents were used in the retrieval

simulation. A simple relative humidity threshold scheme

was applied to identify CS cases, where radiosondes were

classified as CS when the relative humidity remained

below the threshold value of 95% throughout the entire

profile. Approximately 70% and 79% of the radiosonde

ascents at Payerne and Darwin, respectively, were deter-

mined to be CS. This does not necessarily guarantee

that the atmosphere was free of condensate during the

time of these ascents; however, this is not essential in the

retrieval process because clouds are not considered in

the forward model. HATPRO brightness temperatures

and AERI radiances have been simulated from pres-

sure, temperature, and humidity profiles from a subset

of the CS radiosonde ascents equally spanning all sea-

sons: 620 and 643 cases were selected at Payerne and

Darwin, respectively. The difference in climatology of

these two sites is shown in the distributions of surface

temperature and IWV (Fig. 2). The Payerne site shows a

much cooler and broader (282.1 6 7.5 K) distribution of

surface temperature in comparison to the Darwin site

(300.6 6 2.2 K), indicating fairly warm and constant

low-level temperatures at the latter site. However,

Darwin shows a higher standard variation in IWV (12.5

kg m22) with values peaking around 70 kg m22 and a

mean value of 40.2 kg m22 in comparison to a mean

value of 14.9 kg m22 and a variation of 7.3 kg m22 at

the Payerne site. These two significantly different sites

were chosen for retrieval evaluation to test the sensi-

tivities of the MW and IR retrievals under a wide range

of conditions.
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We then applied the above described retrieval method

to six different setups of the simulated measurement

vector y. The first four setups encompass two micro-

wave-only and two infrared-only retrieval configura-

tions (see Table 2). The microwave zenith-only (MZ)

setup applies only zenith-looking simulations from all

the HATPRO channels (bands M1 and M2), whereas

the microwave zenith plus elevation retrieval (ME)

additionally uses the four most opaque channels of band

M2 at five further elevation angles (428, 308, 10.28, 19.28,

and 5.48 above the horizon). The standard AERI re-

trieval setup (AE) uses simulated measurements be-

tween 538 and 588 cm21 (band A1) and 1250 and 1350

cm21 (band A3) for water vapor profile information and

additionally one side of the 15-mm CO2 band from 674

to 713 cm21 (band A2) for temperature profiling. The

second AERI (AE4) retrieval setup uses the standard

AERI setup plus the channels from 2223 to 2260 cm21

(band A4). The remaining two retrieval configurations

then constitute the combinations of MZ and AE

(MZAE) and MZ and AE4 (MZAE4) for joint retrieval

evaluation.

a. Retrieval example

Two spectra (Fig. 1), which represent typical dry and

moist cases, were used as input into the MW and IR

retrieval algorithms (Fig. 3). In the moist summer case,

both the MZ and the AE retrieval show very similar

results in matching the almost-dry-adiabatic lapse rate in

the lower troposphere. The spectral information content

in both microwave and infrared data is too low to resolve

the lifted inversion around 4 km, as the weighting func-

tions for these ground-based sensors become quite broad

in the mid–upper troposphere. For this reason, we have

restricted our analysis to heights below 5 km. The tem-

perature retrieval for the drier winter case clearly shows

that the AE retrieval is able to reproduce the strong lifted

inversion at ;1 km more accurately than the MZ re-

trieval, which shows clear ‘‘smoothing’’ effects. This also

holds true for both summer and wintertime humidity

profile retrievals. The AE retrieval shows potential to

retrieve distinct features of the humidity profiles, such as

the fairly constant ry values in the BL and the following

abrupt decrease with height in the winter case, as well as

the humidity increase around 2 km in the summer case.

FIG. 2. Distributions of (a) surface temperature and (b) IWV for the Payerne (N5 620 cases)

and Darwin (N5 643 cases) sites during selected clear-sky scenes.
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Additionally, the diagonal components of Sop have

been evaluated for retrieval error characterization (Fig. 4).

As expected from Fig. 3, the error in the AE retrieval

for T and ry is smaller than the error in MZ, both in the

winter and summer cases. Note that for the winter case,

the ry accuracy of AE is better than of MZ by almost a

factor of 4. To test the sensitivity of the assumed mag-

nitude of the instrument random noise, the HATPRO

and AERI noise levels have been multiplied by 0.5 and

2 and the retrieval was then reapplied (Fig. 4). For these

two example profiles, the sensitivity of the MZ retrieval

to changes in the assumed magnitude of the random

error in the instrument is significantly smaller than for

the AE retrieval, with the changes in MZ retrieval ac-

curacy ranging from 8% to 18% and the changes in the

AE retrieval accuracy ranging from 40% to 100%. The

instrument noise level has relatively little influence on

the MZ retrieval accuracy of ry above 1.2 km (winter)

and 2.5 km (summer). This suggests that the MW

measurements add no significant amount of information

to retrieval accuracy above these heights. However, the

retrieval will still perform more accurately than the as-

sumption of the seasonal a priori profile resulting from

the level-to-level correlation contained in Sa. The much

higher sensitivity of AE to the assumed instrumental

noise reflects the fact that there is generally more in-

formation contained in the AERI compared to the

HATPRO measurements. If the error noise assump-

tions for the AERI (Table 1) are too conservative and/or

are significantly reduced by principal component analysis

noise filter (section 2b), then AE retrievals may be

much more accurate than assumed; however, if the

uncertainties in the AERI observations are larger than

expected, MZ may even outperform AE—especially in

high-humidity cases above the lower BL.

b. Statistical retrieval evaluation

We applied the retrieval technique to the six different

configurations of the simulated measurement vector y

(Table 2) for the selected CS scenes at each site. Figures

5–8 show the derived accuracies from the retrieval

simulations as a function of height above ground. Each

FIG. 3. Profiles of (a) temperature and (b) humidity for a summer and winter case at Payerne.

Shown are radiosonde measurements (gray), MZ retrievals (dotted), and AERI retrievals

without the 4-mm channel (AE; solid).

TABLE 2. Description of different measurement configurations and their overall retrieval performance averaged over 0–5 km.

Name Measurements used

Successful

convergence (%)

(Payerne/Darwin)

Temperature

retrieval accuracy (K):

mean RMSE 0–5 km

(Payerne/Darwin)

Humidity retrieval

accuracy (g m23):

mean RMSE 0–5 km

(Payerne/Darwin)

MZ Bands M1, M2 88/99 1.22/0.86 0.66/1.24

ME Bands M1, M2 (elevation

scanning in band M2)

90/98 0.95/0.73 0.65/1.19

AE Bands A1, A2, A3 71/84 0.69/0.71 0.42/1.15

AE4 Bands A1, A2, A3, A4 70/87 0.64/0.65 0.41/1.05

MZAE Bands M1, M2, A1, A2, A3 74/83 0.67/0.67 0.41/0.99

MZAE4 Bands M1, M2, A1, A2, A3, A4 72/85 0.64/0.62 0.38/0.94
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of these figures only shows an analysis of those cases

where all of the shown methods converged simulta-

neously. Because of this, the number of cases shown in

each figure may vary but is noted in each figure caption.

The overall successful convergence rate for each re-

trieval configuration is also shown in Table 2. Generally

the microwave-only retrieval success rates are higher

than those configurations that include AERI data. Typ-

ically, the AERI retrievals need more iterations and if

the first guess (here the a priori profile) is too far from

the ‘‘true’’ atmospheric state, an adequate solution

[Eq. (2)] is often not found after 10 iterations. In these

cases, the algorithm often tends toward nonphysical

parameters (e.g., unrealistically high supersaturation).

The higher success rate in Darwin, relative to the

Payerne site, can be explained by the very small varia-

bility of the temperature profile. Thus, the temperature

profile is described by the a priori profile to a higher

degree, which helps the retrieval find a minimum more

effectively and faster.

1) PAYERNE

The performance of the different single-instrument

retrievals (Fig. 5) show similar temperature RMSE ac-

curacies in the lowest 500 m for ME, AE, and AE4

ranging from 0.2 to 0.5 K. These low error values are

very suitable for lower BL profiling and underline that

HATPRO in elevation-scanning mode is able to per-

form similarly to the AERI in this range. At higher al-

titudes the ME accuracies more closely resemble those

of MZ, which performs poorest throughout the lowest

5 km. MZ accuracies are rather poor at the surface

(;2.0 K RMS), decrease to 0.5 K in the lower boundary

layer, and increase back to ;2 K at 5 km. The high values

at the surface are due to the comparably high variability

of the temperature resulting from local influences of the

FIG. 4. (left) Temperature and (right) humidity accuracies (square root of the diagonal values

of Sop) for the (top) wintertime and (bottom) summertime cases shown in Fig. 3 as a function of

assumed instrumental random noise. Noise as given in Table 1 (dotted line), noise values

multiplied by 0.5 (solid), and noise values multiplied by 2 (dashed). Black lines indicate results

from AE retrieval; gray lines indicate results from MZ retrieval.
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turbulent energy fluxes. This variability is not captured

by MZ, because the zenith-pointing microwave mea-

surements can only represent the temperature of a

;30–40-m-thick layer above the ground. By measuring

at low elevation angles, ME is able to capture this var-

iability. Both AE and AE4 accuracies, on the contrary,

remain below 1 K up to 4-km height. AE and AE4 ac-

curacies are very similar showing that the use of the

shoulder of the 4-mm CO2 absorption band does not

significantly enhance the accuracy of the temperature

retrieval and thus is not needed. Furthermore, this study

has not accounted for the possible solar scattering

contribution to the 4-mm signal that may result from an

aerosol-loaded sky, which would further impact the

accuracy of the retrieval in the AE4 configuration.

The accuracies of the humidity retrieval in the BL

show significant differences between HATPRO and

AERI. The AE accuracies are as low as 0.25 g m23 in

the lower BL, slowly increasing to 0.6 g m23 at 2 km,

whereas the MZ retrieval shows constant values around

0.75 g m23 in the same height range. Thus, as also in-

dicated in the example profiles in Fig. 3, the AERI re-

trievals show the ability to resolve more vertical hu-

midity structure than the HATPRO retrievals. How-

ever, both AERI and HATPRO retrievals are still

significantly more accurate than the mean seasonal cli-

matology (which is indicated by the a priori profiles as

dotted lines). For temperature and humidity retrievals,

the bias errors are rather small relative to the RMSE.

Of all humidity retrievals, MZ and ME exhibit the

largest bias errors in the range of 20.15 g m23 in the

lower 2.5 km and 10.15 g m23 in the upper 2.5 km,

whereas the biases from AE and AE4 retrievals are

insignificant. The bias in the a priori data shown in

FIG. 5. (top) Temperature and (bottom) humidity (left) RMSE and (right) bias error for the

retrievals applied to the Payerne dataset computed from N5 304 successful and simultaneous

MZ retrievals (solid lines), ME retrievals (dashed), AE retrievals (dot–dashed), and AERI

retrievals with the 4-mm channels (AE4; dot–dot–dot–dashed). The error characteristics of the

a priori profiles (mean seasonal climatology) are also shown (dotted). Note that the a priori

RMSE of temperature is in the range of 4–5 K and thus is not shown here.
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Fig. 5 is a result of regarding only a subsample of the

original data from which the mean seasonal profiles were

derived (i.e., the subset of cases that converged for all

four retrieval methods). Figure 5b nicely shows that this

‘‘seasonal bias’’ is corrected for by all retrievals; how-

ever, certain artifacts such as the curvature between 3

and 4 km (Fig. 5b) are maintained. This is a result of the

statistical correlation between each of the levels, which

is prescribed in the Sa matrix.

The combination of both MZ and AE or MZ and

AE4 into one physical retrieval scheme shows no sig-

nificant improvement in the retrieved temperature and

humidity profiles compared to the AE retrieval alone in

the Payerne dataset (Fig. 6). The behavior of the com-

bined retrievals—both from the RMSE and bias error

point of view—is very similar to that of AE. This clearly

demonstrates that no significant additional information

is added from the microwave profiler measurement to

the spectral infrared measurements. This conclusion,

however, is only strictly valid for an atmosphere con-

taining no clouds and no significant amount of aerosol.

In the current retrieval configuration, the computa-

tion of the Jacobian matrix Ki requires a perturbation

of 43 temperature and humidity values at each iteration

step. Mainly because of the computing time for the

forward calculations with the fastaeri model, this re-

quires a significant amount of time for an AE profile to

converge (;180 s on a standard Linux PC as compared

with ;15 s for the MZ retrieval). Because future ap-

plications of this retrieval technique will include the

retrieval of clouds and aerosol (and thus the inclusion of

even more time-consuming scattering calculations), it is

highly desirable to significantly reduce this calculation

time without losing too much accuracy. To achieve this

goal, empirical orthogonal functions (EOFs) have been

separately derived for the temperature and humidity

profile at each site. Analysis of the EOF data reduction

using the objective algorithm by Turner et al. (2006)

showed that both temperature and humidity profiles at

Payerne can be sufficiently described by 10–15 EOFs

(eigenvectors). In this case, the state vector x consists

only of the EOF coefficients. These coefficients are

FIG. 6. As in Fig. 5 but from N5 272 successful and simultaneous MZ (solid), AE (dashed),

MZAE (dot–dashed), and MZAE4 (dot–dot–dot–dashed) retrievals.
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multiplied with the corresponding eigenvector and sub-

sequently summed up to obtain the profile. The finite-

difference calculations to compute K are thus performed

in a space with smaller dimensionality, allowing K to be

computed much more efficiently. However, before call-

ing the forward model, the perturbed EOF-coefficient

vector is transformed back into state space. Retrieving

temperature and humidity profiles in EOF space for AE

(AE_EOF) and subsequently transforming back into

state space shows essentially no loss of accuracy in the

retrieved temperature profile (Figs. 7a,b). An exception

may be the height range 800–1200 m where inversions at

the top of the boundary layer frequently occur. The

RMSE accuracy of the retrieved humidity profile (Fig.

7c) is also only partially reduced in the lower 2 km, with

maximum RMSE increases on the order of 0.15 g m23.

The humidity bias error characteristics are not affected

(Fig. 7d). The advantage of the EOF decomposition is

that computation time for a successful retrieval is re-

duced by a factor of 3–4, provided that the above-men-

tioned decrease in accuracy is acceptable.

2) DARWIN

In the much warmer and moister tropical climate, the

retrieval behavior (Fig. 8) does differ significantly to the

central European climate (Fig. 5). RMSE values for all

temperature retrievals in the lowest 500 m are lower at

the Darwin site because of the less pronounced diurnal

cycle in the tropics. Here, the lapse rate is frequently

close to adiabatic, whereas typical nighttime inversions

and daytime adiabatic lapse rates in central Europe

result in higher temperature variability of the BL. Fewer

temperature inversions, which are difficult to capture

with any retrieval algorithm, occur in the tropical cli-

mate. Above 1-km height, the addition of the micro-

wave channels (i.e., MZAE) or the 4-mm channel to the

AE retrieval (AE4) results in a slight accuracy im-

provement of ;0.1 K (Fig. 8a). However, above 3 km,

FIG. 7. As in Fig. 5, but from N5 276 successful and simultaneous MZ retrievals (solid

lines), AE retrievals (dashed), and AERI retrievals derived with an EOF decomposition

for temperature and humidity using 10 separate eigenvectors for each variable (AE_EOF;

dash–dotted).
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all RMSE curves slowly evolve toward the a priori RMSE

curve indicating no benefit to retrieval at these heights.

In the case of humidity RMSE values at the tropical

site, AE is only superior to MZ up to a height of ;1 km

(Fig. 8c). Above this height, the large amounts of water

vapor in the tropics result in a more opaque atmosphere

for the AERI, so that the vertical resolution at higher

altitudes diminishes. The water vapor absorption is much

weaker for the microwave channels employed here,

making the atmosphere much more transparent; thus, the

MZ retrieval suffers no loss of sensitivity as the IWV

increases. Additional spectral channels that correspond

to weaker water vapor absorption lines (such as in the

region from 1200 to 1250 cm21) could be included in the

AERI’s observational vector, which would improve the

AERI retrievals in these moist environments; however,

we have not pursued this here to keep the parameters for

the retrieval as consistent as possible between Payerne

and Darwin. As a consequence, the MZAE combination

shows the best RMSE results throughout the profile.

Generally, the RMSE humidity accuracies are poorer for

the Darwin site than for the Payerne site, but the abso-

lute values and the variability are higher at Darwin also.

The a priori bias of both temperature and humidity

for the chosen tropical dataset are higher than in the

central European case. For the temperature retrievals at

Darwin (Fig. 8c), MZ shows the highest sensitivity to

bias error (same as for the Payerne site), whereas the

AERI retrievals are less sensitive and can compensate

for the a priori bias in the lowest 2 km. Above this

height, the bias error of all retrievals follows the cur-

vature of the a priori bias, with an overall reduction of

bias error. In the case of the humidity retrieval, the a

priori bias of the data subset is too large to be entirely

compensated by any of the retrieval configurations, al-

though the retrievals, including the AERI data, show

less sensitivity to the a priori bias in the lowest 1.5 km

(Fig. 8d). This result clearly shows that an a priori bias

of this magnitude should be avoided. A possible solu-

tion to this problem would be to scale the a priori profile

FIG. 8. As in Fig. 5 but applied to the Darwin dataset computed from N5 459 successful and

simultaneous MZ (solid), AE (dashed), AE4 (dot–dashed), and MZAE (dot–dot–dot–dashed)

retrievals.
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of humidity with a realistic and independent IWV value

(e.g., obtainable from a temporally and spatially nearby

radiosonde measurement or a GPS measurement).

The main results discussed above are summarized in

Table 2, where the RMSE have been averaged over the

0–5-km altitude range to show the benefits and draw-

backs of each retrieval configuration that were evalu-

ated. This table demonstrates that the AERI offers

significantly more value relative to the HATPRO ob-

servations in clear-sky conditions for temperature and

humidity profiling, except in very humid conditions.

c. Degrees of freedom

An objective way to analyze the information content

of the different retrievals is to evaluate the distribution

of the number of degrees of freedom of the each single

retrieval [Eq. (4); i.e., the number of independent levels

of temperature or humidity that can be determined].

For temperature, the distributions of degrees of free-

dom of MZ and AE do not overlap, neither for the

Payerne nor for the Darwin site retrieval simulations

(Figs. 9a,c). This clearly demonstrates that AE provides

more information on the temperature profile than MZ:

on average 5.6 as opposed to 2.4 independent layers.

Figure 9a also illustrates that the inclusion of the

elevation-scanning mode for the HATPRO can double

the amount of independently retrieved levels, but as

seen from Fig. 5, this improvement is mostly limited to

the lowest 500 m. As expected, ME and MZ do not

differ with respect to the humidity retrievals because no

additional information about the humidity profile has

been added and scanning has only been considered for

the channels between 50.8 and 60 GHz, which are sen-

sitive primarily to temperature. For the Darwin site

simulations, in comparison with Payerne, the average

number of independent levels in the humidity retrievals

is reduced for AE (from 6.3 to 4.2) and increased for

MZ (from 1.6 to 2.7). For MZ, the increased opacity at

the band M1 microwave channels leads to a slightly

improved height resolution, whereas the AERI chan-

nels in bands A1 and A3 are becoming more opaque

and thus resolve the height profile in a less accurate way

in the moist tropical environment.

The potential of an instrument to retrieve the tem-

perature or humidity profile with a certain accuracy and

vertical resolution depends on the number of indepen-

dent pieces of information contained in the measure-

ment. The number of independent pieces of information

depends to some degree on the number of spectral

channels of the observations, the noise levels, and the

spectral location of the channels, but it also depends

strongly on the spectral characteristics of the absorption

lines observed. For example, the oxygen absorption

feature from 51 to 60 GHz really comprises 33 different

absorption lines, yet it is perceived as one continuous

feature (see Fig. 1) because of pressure broadening of

the lines. All measurements made along this absorption

feature are highly correlated and thus the number of

independent pieces of information about the tempera-

ture profile is rather low. In the infrared region between

675 and 713 cm21, the CO2 absorption lines can be re-

solved by the instrument (because they do not overlap as

much) and there are more distinctly independent spectral

features, thereby providing more pieces of information

allowing the temperature profile to be better resolved.

5. Conclusions and outlook

We have presented simulation results from two in-

dependent ground-based remote sensing instruments, a

standard microwave profiler (HATPRO) and an infra-

red spectrometer (AERI), for lower-tropospheric pro-

filing of temperature and humidity in ‘‘pristine’’ clear-

sky conditions. To compare both methods objectively,

all measurements have been simulated realistically and

consistently, and the same optimal estimation retrieval

framework was applied to both using the same a priori

information. In all cases, the infrared retrievals of

temperature and humidity outperform the microwave

retrievals concerning RMSE and bias error, although

the microwave temperature retrievals that incorporate

elevation scans are as accurate as the infrared retrievals

in the lowest 500 m. The AERI retrievals show high

potential, especially for retrieving humidity in the BL,

where accuracies are better than 0.5 g m23 for a central

European climate. Distinct differences occur between a

tropical and central European climate, where the inclu-

sion of microwave measurements to the spectral infrared

measurements within a unified physical retrieval scheme

results in a slight improvement because of the higher

opacity of the very moist atmosphere in the tropics.

The limited number of sondes (constituting the CS

data subset) employed in this study present a trade-off

between representativeness and calculation time.

However, we believe that the presented statistics reflect

the true distribution because the CS data subset was

equally distributed over all seasons.

If the error statistics presented here were to be inter-

preted for climatological studies, a detailed error analysis

for the full set of encountered conditions—including

cloudy conditions—would be necessary. This is of par-

ticular relevance because ;30% of the cases from the

entire Payerne dataset show that the relative humidity

threshold of 95% was exceeded and thus the presence of

clouds in the moist layers was likely. Also, aerosols can
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significantly enhance the observed downwelling infra-

red radiance signal, depending on the aerosol size dis-

tribution, optical depth, and composition (e.g., Turner

2008). The simulations presented above have not included

aerosol, which will pose an issue when applying the re-

trieval schemes to real measurements. For a clear-sky re-

trieval to be successful, an objective classification scheme

must be available to rule out the presence of clouds and

aerosol, or the radiance contribution from the aerosol and/

or cloud layer must be incorporated into the retrieval

(either as a priori information or retrieved simulta-

neously). Note that even very small amounts of column-

integrated liquid water content (;1 g m22) can lead to

nonnegligible signals in an AERI measurement (Turner

2007). Before the application of a clear-sky retrieval, if it

cannot be ruled out that clouds or aerosols (especially

hydroscopic aerosols leading to cloud formation) are

present, a microwave-only retrieval may turn out to be

more accurate, because passive microwave measure-

ments are insensitive to aerosol and optically thin clouds.

In this sense, the present study is to be regarded as a

starting point for the development toward a joint ther-

modynamic and cloud, aerosol, and trace gas (e.g., CO,

CH4) retrieval scheme including microwave and infrared

measurements; however, appropriate forward models

must be employed that have the capability of dealing

with multiple gaseous constituents and scattering. The

simultaneous use of microwave and AERI observations

to retrieve only cloud properties has already been dem-

onstrated by Turner (2007) and Turner and Eloranta

(2008). We are currently setting up and testing a so-

phisticated retrieval scheme for temperature, humidity,

cloud phase discrimination, cloud optical depth, and

cloud effective radius from simultaneous AERI and

HATPRO measurements. In contrast to the results

shown here, we expect significant improvements in the

retrieved atmospheric state by the HATPRO–AERI

combination because clouds are semitransparent in the

microwave region. In case of an optically thick cloud in

the infrared, which occurs when the liquid water path is

FIG. 9. Histograms of the number of degrees of freedom for (left) temperature and (right)

humidity retrievals at the (top) Payerne and (bottom) Darwin sites. The different shading

indicates the MZ (horizontal lines), ME (slant lines), and AE (gray shaded) retrievals.
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above approximately 60 g m22, the AERI measurements

will yield accurate information on temperature and hu-

midity profiles below the cloud and the cloud-base tem-

perature, as well as—to a certain extent—cloud optical

depth, whereas the microwave measurements will give

information on temperature and humidity throughout

and above the cloud, in addition to the total liquid water

content. In the case of an optically thin cloud, the AERI

will provide information on cloud effective radius and

optical depth and the atmospheric state profiles below

the cloud, whereas again the microwave radiometer will

provide a reliable source on temperature and humidity

profile throughout the troposphere.
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