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[1] An integrated profiling technique (IPT) for the simultaneous retrieval of the
atmospheric state parameters temperature, humidity, and liquid water content profiles is
assessed. The method combines measurements of a modern, ground-based profiling
station equipped with a microwave profiler, cloud radar, and ceilometer, with the closest
operational radiosonde measurement and standard surface-based meteorological
measurements. All are combined within an optimal estimation procedure. The accuracy
assessment is carried out in a virtual environment of a regional climate model. The model
thermodynamic state is converted into the measurement space via so-called forward
modeling. The IPT is then applied to the simulated measurements to retrieve the desired
atmospheric state parameters which can be evaluated with the original model state. It
is found that IPT-derived temperature and humidity profiles can add significant
information for the time period between two operational radiosonde ascents, both if the
measurements take place at the radiosonde site or if they are spatially apart. The benefits
of a profiling station that applies an IPT can be valuable both for the reprocessing of
dedicated field campaign data to obtain the best representation of the atmospheric state
and for nowcasting and data assimilation applications. Depending on the density of the
given operational radiosonde network, a ground-based profiling station has the
potential of either significantly improving the quality of such a network or even
substituting a small number of radiosonde stations. A further benefit of a ground-based
profiling station is the retrieval of cloud microphysical properties, where IPT liquid water
path retrieval accuracies show values better than 10 g m�2, and liquid water content
profiles can be derived with relative accuracies of �30%.
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1. Introduction

[2] Precise quantification of the atmospheric state is
essential for climate research and for weather prediction.
The bulk of atmospheric profiling has historically been
undertaken by routine radiosonde ascents, but worldwide
the density of the radiosonde network is under pressure.
Until this day no real alternatives to radiosonde soundings
have been operationally established. Clearly, radiosonde
soundings state benchmark measurements when it comes
to profiling the atmosphere. However, carrying out radio-
sonde ascents on a routine basis presents enormous cost and
labor factors. Typically operational radiosonde sites launch

upper air soundings on a 12-hourly basis, so that short-lived
weather events will not be captured. Also, single ascents
need �1 hour to profile the troposphere and also underlie
wind drifts effects. Another drawback concerning radio-
sonde ascents is that no methods have been established to
measure liquid water on an operational basis. Generally in
situ measurements of liquid water can only be obtained by
employing costly aircraft measurements carrying suited
instruments which, e.g., evaluate the light scattered by the
droplets. Cost-effective and operational measurements of
cloud liquid water content would be of high value for the
evaluation and further development of numerical weather
prediction (NWP) and climate models, where mostly only
crude microphysical schemes are used to calculate the cloud
and the successive precipitation development. One demand-
ing question that still has not been resolved in this context is
to what extent a ground-based remote sensing site could
complement or even partially substitute parts of an opera-
tional radiosonde network.
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[3] It has been known for some time that passive micro-
wave radiometry offers the potential of filling the gap in
retrieving the atmospheric thermodynamic state [Westwater,
1997], i.e., the distribution of temperature, humidity and
liquid water, in a quasi-continuous and instantaneous way.
This requires a retrieval model, which transforms the
measured radiative quantities into thermodynamic informa-
tion. In general, the retrieval problem is underdetermined,
implying that no unique solution of the thermodynamic
structure exists in correspondence to the measurements.
Rather, a wide range of possible thermodynamic structures
cause the same measured radiative quantities, so that further
assumptions and additional measurements are needed to
narrow down the range of valid thermodynamic solutions.
Moreover, the vertical resolution of a typical microwave
profiler in a stand-alone operation mode for temperature
and humidity retrieval is very limited [e.g., Güldner and
Spänkuch, 2001]. Cadeddu et al. [2002] have applied a
multiresolution wavelet transform technique for studying
the vertical resolution of temperature profiles from a multi-
frequency microwave profiler and found rapidly degrading
values of 125 m in 400 m height to about 500 m in 1.5 km
height at zenith viewing direction.
[4] To overcome the aforementioned deficiencies of a

stand-alone instrument, this study makes use of sensor
synergy from a number of atmospheric sensors. In the
approach presented here, a continuous retrieval of the
vertically resolved atmospheric parameters temperature,
humidity and liquid water is achieved by employing a
ground-based profiling station, where simultaneous and
collocated measurements of a microwave profiler, a cloud
radar and a lidar ceilometer are combined with a priori
information obtained from the closest operational radio-
sonde sounding. The cloud radar and lidar ceilometer are
capable of unambiguously locating a cloud in the vertical
and thus fill a major gap left by microwave observations.
How such measurements can be combined in an optimal
way was shown by Löhnert et al. [2004] who introduced an
integrated profiling technique (IPT) for the combination of
the aforementioned measurements. The work by Löhnert et
al. [2004], while comprehensive, can be expanded and
refined considerably because it is expected that the inclu-
sion of a succession of additional parameters in the IPT
routine will further improve the technique of retrieving the
atmospheric state.
[5] The purpose of this paper is to address the accuracy of

the contemporary IPT. It is our goal to show how close
remote sensing measurements can get to describing the
actual atmospheric state, with specific focus on the temper-
ature, humidity and liquid water structure. This research is
timely because remote sensing technology is becoming
more and more accurate and affordable and microwave
profilers and cloud radars have been or are being set up at
a number of remote sensing sites over Europe, the United
States and other parts of the world (http://www.cloud-net.
org, http://www.arm.gov).
[6] A general problem is that it is not possible to assess

the accuracy of the retrieval method since the true state
required to validate the retrieved state is unknown. This
applies in particular to the cloudy component of the atmo-
spheric state. For example, in situ liquid water measure-
ments are only sparsely available from aircraft, which

themselves exhibit large measurement uncertainties. How-
ever, even with aircraft it is impossible to probe the vertical
column probed by a ground-based profiling station in an
instantaneous manner. Therefore the accuracy assessment is
performed within a state-of-the-art model environment, so
that the atmospheric state and the measurements can be
accessed at an arbitrary time and location. A further benefit
of such an approach is that the impact of the a priori
temperature and humidity profiles information supplied to
the IPT can be very effectively evaluated as a function of
time and space with respect to the actual measurement.
[7] The method of assessment is described in section 2,

where section 2.1 depicts our general strategy, section 2.2
describes the atmospheric state and measurement vectors
and also shows how the model measurements are converted
to the atmospheric state via the so-called forward model.
The inversion theory, i.e., the IPT retrieval scheme, is
illustrated in section 2.3, while section 2.4 deals with a
number of specific issues arising from the atmospheric
model that we chose to represent the real world. In section 3
the IPT retrieval accuracy is discussed by comparing the
retrieved states to the original states of the atmospheric
model. The focus lies on evaluating retrievals of tempera-
ture and humidity profiles as a function of time and space
from the a priori profile (sections 3.1 and 3.2), and on the
liquid water vertical structure (section 3.3). Finally, in
section 4, we summarize our results and assess the impli-
cations on climate monitoring and weather prediction.

2. Method of Accuracy Assessment

2.1. Strategy

[8] To overcome the problem inherent in validating the
IPT technique with real world data we apply an atmospheric
model in order to create an artificial true atmospheric state.
This is the state we would like to recover by supplying the
IPT with the remote sensing measurements (Figure 1).
Within the model world, measurements in the usual sense
of output from real instrumental devices do not exist.
Instead, virtual instrumental devices or forward models
are used to calculate simulated measurements from the
given atmospheric state (i.e., temperature, pressure, humid-
ity, cloud position, cloud microphysics). The great advan-
tage of this process is that we can completely exclude
systematic measurement errors as well as systematic errors
due to uncertainties in radiative transfer, which are almost
impossible to quantify in reality. On the other hand, in order
to produce realistic retrieval results, noisy errors typical for
each measurement have been included. Hence the results
presented in the following sections highlight the theoretical
potential of a physically based retrieval method for retriev-
ing the true atmospheric state.
[9] A possible disadvantage of the approach using the

atmospheric model as a ‘‘test bed’’ may be that the artificial
atmospheric states may not cover the complete range of
observable atmospheric states. A consequence might be that
the accuracy assessment is restricted to the model world
itself. In order to transfer the findings to the real world, the
assumption must be made that the state-of-the-art atmo-
spheric model represents the atmospheric state in a realistic
manner, at least concerning the mean state and the variabil-
ity. The validity of such assumptions can be tested by
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evaluating atmospheric models with measurements from
long-term observational campaigns like the European
cloudnet project or the U.S. Atmospheric Radiation Mea-
surement (ARM).

2.2. State Vector, Measurement Vector, and Forward
Model

[10] The atmospheric model supplies the true atmospheric
state vector x to be retrieved, which consists of vertical
profiles of atmospheric temperature (T), absolute humidity
(rv) and cloud liquid water content (LWC), such that we
can notate x = (T, rv, log10(LWC)). From here on profile
vectors will be noted in bold. We retrieve log10(LWC)
instead of directly LWC, because the distribution of
log10(LWC) more closely resembles a Gaussian shape than
LWC (see section 2.3) and additionally, we do not have to
worry about negative LWC values within the retrieval
procedure. Multiple liquid water cloud layers are also
retrieved and state no limitation to the method. The vertical
resolution is set to 250 m in the lowest 5 km and to 500 m
from 5 to 10 km, where the atmosphere has been cut off
synthetically. This leads to a total of 31 atmospherics levels,
which we will denote with nlevel from here on. A forward
model operator F is applied to x leading to the measurement
vector y, which consists of the parameters actually
measurable by the instruments, namely brightness temper-
atures (TB) from the microwave profiler, radar reflectivities
(Z) from the cloud radar, and the surface meteorological
measurements of temperature and humidity (Tgr and rv,gr).
This means that the measurement vector takes the following
form

y ¼

TB1

. . .
TB19

Z1
. . .
Zncld
Tgr
rv;gr

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð1Þ

[11] The brightness temperatures (TB1 . . . TB19) are
obtained from the given atmospheric state by applying the
radiative transfer operator RTO:

TBi ¼ RTO T;rv; p;LWC; fið Þ; ð2Þ

where the fi denote the microwave frequencies. Here we
utilize the 19 distinct frequencies of the 22-channel
microwave profiler MICCY [Crewell et al., 2001] with
f = (22.235, 22.985, 23.735, 24.485, 25.235, 25.985, 26.735,
27.485, 28.235, 50.800, 51.800, 52.800, 53.800, 54.800,
55.800, 56.800, 57.800, 58.800, 90.000 GHz). The
remaining three channels of MICCY are used to probe
information on polarization, which we do not employ here.
Since the profile of atmospheric pressure p is relevant for
radiative transfer, but is not be retrieved, we take p as a
given parameter. We assume that p at time of the
measurement is equal to the closest available operational
radiosonde profile of p. The specified RTO performs the
microwave radiative transfer only for nonscattering cases.
This approximation is justified for nonprecipitating clouds
and frequencies below �100 GHz [Simmer, 1994].
Microwave absorption for water vapor and oxygen is
calculated according to Rosenkranz [1998]. To speed up
the calculations we have made use of the Fast Absorber
Predictor (FAP) scheme for gaseous absorbers [Löhnert et
al., 2004], which basically, at a specified level, relates
ambient temperature, humidity and pressure to the total
microwave absorption via linear regression, whereby the
bias-corrected FAP RMS accuracy is mostly on the same
order as the RMS difference between the Liebe et al.
[1993] and Rosenkranz absorption models and never
exceeds �0.7 K. The FAP scheme is on the order of
10� faster than the original absorption codes. The time
factor is critical for calculating the Jacobians (see section 2.3).
Microwave absorption for liquid water is calculated
according to Liebe et al. [1993].
[12] In the retrieval scheme the radar reflectivities are

used as a physical constraint concerning the position of the
cloud in the vertical. Additionally, Z itself contains a certain
amount of information on LWC. The cloud radar reflectiv-
ities Z1 . . . Zncld in ncld detected cloud layers are calculated
from the LWC profile (dimension: ncld) via a power law
relation of the form

Z ¼ b1 � LWCb2 ; ð3Þ

whereby a cloud layer denotes the space between two
adjacent levels and a cloud is assumed to exist if the
threshold of 10�6 kg kg�1 in LWC is exceeded within the
250 m layer. The coefficients b1 and b2 are derived from a
singular column cloud microphysical model according to
Issig [1997]. The microphysics of this model is spectrally
resolved, meaning that cloud liquid water is calculated for
40 different radius bins. This allows the exact calculation of
Z because the radar reflectivity is equal to the sixth moment
of the droplet size spectrum. Accordingly b1 and b2 can be
determined by performing a linear regression between
log(Z) and log(LWC). Additionally, in this case, b1 and b2
were calculated as a function of height above cloud base

Figure 1. Schematic concept of the experimental setup
applied in this study.
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and cloud vertical extent (see Löhnert et al. [2001] for a
detailed description). However, because of the above
mentioned dependency to the sixth moment of droplet size
distribution, this relation alone is far too inaccurate for
reliable LWC results.
[13] The final components of the measurement vector, the

near surface values of temperature Tgr and humidity rv,gr are
directly taken from the lowest model level, which is located
at �10 m above the surface.
[14] To make our experimental setup as realistic as

possible, we have included random noise to the measure-
ment vector. The TBs have been contaminated with Gauss-
ian noise of 0.5 K, which should more than account for
radiometric and calibration noise of state-of-the-art micro-
wave profilers. The Z values have been contaminated with 1
dBZ noise and Tgr and rv,gr with 0.5 K and 0.1 g m�3,
respectively.

2.3. Inversion of the Measurement

[15] Section 2.1 describes the method of determining the
measurement vector y from the state vector x, which is
straightforward. This section now describes the inversion
procedure, i.e., how to determine x given y. The IPT is
applied to the measurement vector y with the goal of
retrieving the atmospheric state vector x in an optimal
way. The method is described in detail by Löhnert et al.
[2004] and highlights the benefits of combining a micro-
wave profiler with a cloud radar for simultaneously retriev-
ing T, rv and LWC. As mentioned above, determining
x from y directly is an underdetermined and ill-conditioned
problem, meaning that no unique solution exists and that
very small errors in the measurement will lead to huge
deviations in the atmospheric profile. A way to solve this
problem is to combine the measurements with a priori
information, i.e., information about the atmospheric state
which is given prior to the measurement. The optimal
estimation equations [e.g., Rodgers, 2000] are suited for
combining such pieces of measurement and a priori infor-
mation. An optimal atmospheric state xop can be found by
iterating the following formulation

xiþ1 ¼ xi þ KT
i S

�1
e Ki þ S�1

a

� ��1

� KT
i S

�1
e y� yið Þ þ S�1

a xa � xið Þ
	 


; ð4Þ

where i represents the iteration step, xa the a priori profiles
of T, rv and LWC, Sa the a priori covariance matrix and Se
the combined measurement and forward model error
covariance matrix. Ki = @F(xi)/@xi = @yi/@xi represents
the so-called Jacobian, or the sensitivity of the forward
model to changes in x, whereby Ki is recalculated for each
iteration. Optimally, the formulation of equation (4) should
guarantee the minimization of a quadratic cost function
between xa and xi, and y and yi, respectively, when the
difference between xi+1 and xi goes toward zero. The
iteration procedure is terminated after an optimal number of
iterations (i = op) when IPT has converged satisfactorily (for
more on the convergence criterion refer to Löhnert et al.
[2004]. It is important to note that the solution xop must be
interpreted as the most probable solution of a Gaussian

distributed probability density function, whose covariance
can be written as

Sop ¼ KT
opS

�1
e Kop þ S�1

a

� ��1

: ð5Þ

[16] The diagonal elements of this matrix give an estimate
of the mean quadratic error of xop, whereas the off-diagonal
elements yield information on the correlation of retrieval
errors between the different heights.
[17] As a further constraint to minimize the degrees of

freedom, the humidity is set to its saturation value within
the detected cloud boundaries. The saturation value of rv in
a specific cloud layer is determined using the corresponding
T value of the prior iteration. For the first iteration, the first
guess value of T is used.
[18] Typically, the a priori information will be compiled

from a climatology or provided by a radiosonde ascent or
even a model forecast. In the model world utilized in this
paper, we assume to know the profiles from an operational
radiosonde ascent, which was launched at distance Dd from
the measurement site and valid at time Dt prior to the
measurement. This was done in order to simulate the
information that IPT usually extracts from radiosonde
observations. In the accuracy assessment carried out Dt
has been varied from 0 to 12 hours, in correspondence to the
standard routine operation that radiosondes are normally
launched every 12 hours, and Dd has been varied from 0 to
�500 km. The sensitivity of the accuracy to the spatial and
temporal distance of the a priori information to the mea-
surement site will be addressed in section 3.2. In this study
we have assumed two approaches to constructing the a
priori information: the nowcasting (NC) and the climate
(CL) modes.
[19] In the NC mode we assume to have access only to

the latest radiosonde information before the time of the
measurement; for example, at 1500 LT (local time) the a
priori data would be taken from the 1200 LT sounding,
assuming that, ideally, the soundings are launched at 0000
and 1200 LT. The NC attribute originates from the possible
application of this kind of a priori data; it can be used to
calculate thermodynamic profiles online with the IPT, once
measurement and a priori data have been collected. To
construct a representative a priori covariance matrix Sa,
the assumption of taking the 1200 (0000) LT sounding as a
proxy for the actual temperature and humidity profiles
between 1200 (0000) and 2400 (1200) LT has been vali-
dated on a statistical basis. This information has been
derived by evaluating the atmospheric model output (Neval

evaluations) in the following way:

Sa;i;j ¼

PNeval

k¼1

va;i � vi
� �

k
� va;j � vj
� �

k

Neval � 1
; ð6Þ

where i,j range between 1 and 2*nlevel, a value i,j between
1 and nlevel indicating the variable temperature and a value
of i,j between nlevel+1 and 2*nlevel the variable humidity.
Then the diagonal entries of Sa are the mean square
differences between the a priori variables (va) and the true
variables (v) at each height (i = j). Correspondingly, the off-
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diagonal entries (covariances) are calculated as the mean
product of va � v at one height and va � v at another height
(i 6¼ j). Note that the full covariance matrix is calculated,
meaning that covariances are also calculated between
temperature and humidity. Not all model output was used
to calculate Sa, but only model output at 3-hourly
equidistant time steps. This means, e.g., that between the
radiosonde launches at 0 and 12 UTC the variables v and va
at 0300, 0600 and 0900 UTC are used to calculate Sa
(correspondingly 1500, 1800 and 2100 UTC between the
1200 and 0000 UTC launches).
[20] In the application of the CL mode we assume that the

measurements (remote and in situ) have been taken at some
time in the past and we want to reconstruct the best possible
thermodynamic state of the atmosphere, in the sense of a
reanalysis. The a priori profiles of T and rv are now
calculated by linear temporal interpolation at each height
between two consecutive radiosondes. The evaluation of
these a priori profiles for T and rv is performed according to
equation (6) in the same manner as in the NC mode.
[21] The LWC components of the covariance matrix are

calculated totally independently of the T and rv components,
implying that the a priori covariances between these param-
eters are inherently set to zero. As an a priori profile we
assume an average LWC profile derived from many realiza-
tions of the cloud microphysical model (section 2.2). Again,
as in case of the Z-LWC power law relations, this profile
was calculated as a function of height above cloud base
and cloud vertical extent. Correspondingly, for each cloud
vertical extent, a LWC covariance matrix has been
calculated, where the maximum cloud vertical extent
had to be set to 1500 m. The reasons for this were that
the microphysical model did not produce a sufficiently
large number of nonprecipitating cases with vertical
extents larger than 1500 m, so that a statistically signif-
icant covariance matrix could not be calculated for these
cases (for details, see Löhnert et al. [2001]). This means
that the IPT version presented here can only be applied to
cases where liquid clouds do not exceed a vertical extent
of 1500 m.
[22] In this study the Se matrix is calculated as follows.

For the first 19 � 19 components, which correspond to the
MICCY measurements, a typical value for a squared TB
error due to random calibration and radiometric noise is set
to 0.25 K2 for each frequency. It is assumed that these errors
are independent; thus they only contribute to the diagonal
components of Se. Further, the error covariances due to the
FAP are considered in the first 19 � 19 components, which
are calculated by considering the differences between the
original absorption model and the FAP. Note that the
covariances between each of the channels are considered
in the off-diagonal components of Se. The following ncld
diagonal components represent the squared errors of Z due
to random radar calibration uncertainty (1 dBZ2), but also
errors due to the uncertainty of the Z-LWC relationship.
The latter have also been derived by using output from
the cloud microphysical model described in section 2.2
and are again a function of height above cloud base and
cloud vertical extent. The components for Tgr and rv,gr
are simply the square of the error values noted in
section 2.2 and only contribute to the last two diagonal Se
components.

2.4. Specifics of Experimental Setup

[23] To generate a time series of ‘‘true’’ states by a large-
scale atmospheric model, the following requirements must
apply. It is important that the model carries LWC as an
independent prognostic variable, and does not diagnose
LWC as a function of relative humidity. The latter would
imply too strong restrictions on the possible outcomes for T,
rv and LWC. Though the actual skill scores of the model are
not of relevance for this study, a certain level of realism of
the model is required, meaning that the model should
produce temporal and spatial variations in the state variables
with amplitudes and frequencies that are comparable to
what is seen in observations. The model output has to be
physically consistent and it should preferably include the
lower stratosphere. Finally, the model should be able to
produce a temporal record that is sufficiently long to cover a
number of weather regime changes. It is also preferable that
the record is genuinely uninterrupted, such as in a climate
type run, in order to avoid discontinuities like in a series of
weather forecasts.
[24] Any present-day climate model would typically meet

these requirements. Here we have operated the Regional
Atmospheric Climate Model (RACMO2) [Lenderink et al.,
2003; de Bruijn and van Meijgaard, 2004] developed at the
Royal Netherlands Meteorological Institute (KNMI). The
model combines a recent version of the High-Resolution
Limited Area Model (HIRLAM) NWP dynamical core
(5.0.6) with a version of the parameterization package
of physical processes used by the European Centre for
Medium-Range Weather Forecast (ECMWF) model, i.e.,
cycle 23 release 4 (CY23R4). This release has also been used
in the ECMWF reanalysis project ERA40 (http://www.
ecmwf.int/research/era/). A detailed description of the
physics package is found in work by White [2002], or
available online at http://www.ecmwf.int/research/ifsdocs/.
The model has been operated on a domain covering western
Europe (126 � 130 grid points) at 18 km horizontal
resolution and with 40 layers in the vertical. A climate type
run has been performed for the 2-month period August–
September 2001, starting on 1 August 2001, 0000 UTC.
This period marks the first BBC campaign [Crewell et al.,
2005]. This campaign was part of the European CLIWA-Net
(Cloud Liquid Water Network) project, which involved the
setup of a prototype of a European cloud observing network
and the use of CLIWA-Net observations in model evalua-
tion [van Meijgaard and Crewell, 2005]. Lateral forcings
and sea surface temperatures are taken from ECMWF
analyses. For an arbitrary model grid point direct model
output of temperature, humidity and cloud parameters (i.e.,
liquid water content and cloud vertical extent) is stored at
15 min temporal resolution resulting in a uninterrupted time
series of 5855 records per grid point. Here we have selected
the model grid point nearest to Cabauw, Netherlands
(4.93�E, 51.93�N) to serve as the receptor point, which is
the location of the CESAR, the Cabauw Experimental Site
for Atmospheric Research of KNMI. This major remote
sensing site provides all the instruments (and many more)
mentioned in this study.
[25] For inferring the TBs the RTO has been operated on

the grid box mean model state variables rather than on pure
cloudy states. This modus operandi implies that we need to
adjust the humidity constraint to saturation within the cloud
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boundaries (section 2.1). Like virtually all present-day
climate models, RACMO2 utilizes a cloud scheme in
order to represent subgrid-scale cloud processes within a
model grid box in each model layer. The outcome of the
cloud scheme essentially assumes that a grid cell can be
divided into one cloudy part with fraction Cf and a cloud
free part with fraction (1–Cf). All liquid water mass is in
the cloudy part, LWCc, and conditions are at saturation,
rv,c = rv,sat. There is no liquid water loading in the cloud
free environment, LWCe = 0, the humidity is subsaturated,
rv,e < rv,sat. Temperature is not assumed to be subject to
subgrid-scale effects. Grid box mean quantities are derived
according to

m ¼ Cf � mc þ 1� Cf

� �
� me; ð7Þ

where m is any quantity. Hence, for nonzero grid box mean
liquid water contents it is no longer appropriate to assume
that conditions are saturated, but we must allow them to be
subsaturated. This can be achieved by relaxing the humidity
constraint according to

rv ¼ RH � rv;sat T ; pð Þ; ð8Þ

where RH is the grid box mean relative humidity of the
cloudy model layer.
[26] To adapt to the current limits of the IPT [see Löhnert

et al., 2004], contributions to TBs coming from liquid water
clouds at altitudes above 5 km have been suppressed. Since
the current IPT cannot be applied to precipitating cases,
contributions from liquid precipitative fluxes have also been
neglected. Additionally, because the ice phase is not re-
trieved, ice produced by the model has been neglected for
the calculation of the TBs and Z.
[27] Owing to the fact that the model does not provide

any information on the cloud particle size distribution
(rather only on LWC), an accurate calculation of Z is
impossible. Following Liao and Sassen [1994], the radar
reflectivity Z of a model layer containing liquid water can
be calculated according to the power law relation

Z ¼ 3:6

N
LWCð Þ

1=0:56ð Þ; ð9Þ

where N represents the cloud droplet number density in
units cm�3 and LWC and Z are here expressed in units
g cm�3 and mm6 m�3, respectively. Because RACMO2
does not employ the number density as a model parameter,
it has to be predetermined to simulate the real world in which
the number density can realistically vary between 50 and
300 per cm3 depending on the aerosol loading. This leads to
a parameterization of N as a function of the wind direction,
since in the Cabauw region wind direction can be
considered a reasonable proxy for the aerosol loading.
When the wind has a northwesterly component relatively
clean air with low aerosol loadings is imported from the
North Sea, whereas the opposite applies when flow has a
southeasterly component from the European continent. The
wind direction is easily available in the RACMO2 model,

but is, however, not part of the measurement vector y. The
precise relation we have used is

N ¼ 0:5 � Nmin þ Nmaxð Þ þ 0:5 � Nmin � Nmaxð Þ

� cos 2p � d � aminð Þ
360

� �
; ð10Þ

where Nmin and Nmax label the minimum and maximum
values for the droplet numbers, 50 and 300 cm�3,
respectively, d denotes the model wind direction in the
specified cloud layer in degrees, while amin, set to 315�,
indicates the wind direction where N reaches its minimum.
[28] It is now possible to calculate Z in a realistic manner

from RACMO2 model output by employing equations (9)
and (10) which we consider as the measurement ‘‘truth.’’
The precise details of this parameterization are irrelevant;
the only thing that matters is that noise is introduced in the
relation between Z and LWC in a quasi-realistic manner.
However, when solving the inverse problem, we use
equation (3) to infer LWC from Z because we cannot
measure N.

3. Evaluation and Results

[29] In the following the results of the temperature,
humidity and LWC profiles are analyzed in detail. A
common error measure is the systematic or bias error
defined as

BIAS ¼

PN
i¼1

xi;ret � xi;truth

Neval

; ð11Þ

with Neval denoting the number of evaluations, and xi,ret and
xi,truth the retrieved and ‘‘true’’ model state, respectively.
Also, we will use the so-called absolute bias, defined as

AB ¼

PN
i¼1

xi;ret � xi;truth

Neval

��������

��������
; ð12Þ

which is simply the absolute value of equation (11).
[30] Additionally, we use the root mean square (RMS)

error to characterize the random error. Generally the RMS
error is defined as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

xi;ret � xi;truth
� �2
Neval � 1

vuuut
; ð13Þ

however, in the following we will exclusively use a
corrected formulation to ensure that systematic differences
are without influence on the RMS value, leading to the
following formulation:

RMScorrected ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

xi;ret � m � xi;truth þ b
� �2

Neval � 1

vuuut
; ð14Þ
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with m and b denoting the slope, and the offset, respectively,
of the linear regression between xi,ret and xi,truth.
[31] In total, the RACMO2 data set consists of 5855 cases

at the receptor Cabauw of which 85% are cloudy and 15%
are clear sky. These numbers agree quite well with the
degree of cloudiness observed during the BBC campaign
[van Meijgaard and Crewell, 2005] when the amount of
clear-sky conditions was found to range between 15 to 11%
for time intervals of aggregation between 10 and 30 min.

3.1. Retrieval of Temperature and Humidity
Profiles at the Radiosonde Site

[32] In this section the results for temperature and
humidity profiles for the continuous NC and CL application
modes are shown, assuming that the a priori measurements
are taken at the same location as the measurements
contained in the measurement vector y. From the total
number of 5855, the IPT could only be successfully applied
to a subset of 2385 (�41%) cases. This is largely due to the
restriction regarding the maximum cloud vertical extent of
1500 m (section 2.3). Consequently, IPT was not applied to
the 3357 (�57%) of the RACMO2 cases, which exhibited
liquid clouds with vertical extents larger than 1500 m. The
remaining 113 (�2%) cases showed convergence problems
and were excluded from the following analysis.
[33] For the NC mode accuracies presented in Figure 2,

the a priori profile is assumed to consist of the latest
radiosonde ascent, which is available at 0000 and 1200 LT.
This means that for measurements taken between 0000
and 1200 LT, the 0000 LT ascent is used for T and rv a
priori information and for measurements between 1200
and 2400 LT, correspondingly the 1200 LT ascent is used.
Because of this setup of the experiment, the time interval
between measurement and a priori profile may vary
between 0 and 12 hours. Next to the IPT RMS errors
resulting from the IPT application, the RMS errors resulting
from assuming the persistence of the a priori profile (a priori
RMS) are also shown in Figures 2a and 2b. The difference
between these two RMS errors can be called retrieval profit,
indicating the benefit arising from the combination of all
measurements compared to the radiosonde alone. For tem-
perature (Figure 2a), as expected, we see the highest
retrieval profit in the lowest 2 km, which is due to the fact
that here the information content supplied by the microwave
profiler is the highest. In the 0–2 km range the average
profit is �0.7 K at an IPT RMS error of 0.7 K, whereas in
the 0–4 km range the overall profit is 0.4 K at an IPT RMS
error of 0.8 K. The gradual profit decrease with height can
be explained by the exponential decay of the temperature
weighting functions with height of the MICCY channels
50.8–58.8 GHz. Additionally shown in Figure 2a is the
error derived from the Sop matrix (equation (5)), here
referred to as the theoretical IPT error. If derived IPT
RMS and theoretical IPT error match well, this may be
seen as an indication that the retrieval system is working
correctly. Throughout the profile, these two errors show a
similar shape, with deviations seldom larger than 0.2 K. The
fact the IPT RMS error is slightly larger than the theoretical
IPT error in the lowest 4 km can be explained by the fact that
the Sa matrix was not derived using the full data between
the 0000 and 1200 UTC radiosondes but only 3-hourly
samples (section 2.2). Thus a certain amount of variability is

missing in the Sop calculation. The corresponding RMS plot
for humidity (Figure 2b) shows a maximum retrieval profit
at approximately 1.2 km of �0.7 g m�3. In the 0–2 km
range the average profit is �0.5 g m�3 at an IPT RMS error
of 0.7 g m�3, whereas in the 0–6 km range the overall profit
is 0.4 g m�3 at an IPT RMS error of 0.5 g m�3. Compared
to the temperature profile evaluation, the retrieval profit
due to the additional remote sensing and surface-based
measurements is found more pronounced for humidity and
is also found to extend to higher altitudes, with significant
profits up to �6 km height. This is due to the fact that here
the water vapor information content included in the
22.235–28.235 GHz channels is relatively constant with
height. The decay of the IPT accuracy beginning at �2 km
is then due to the exponential decrease of absolute humidity
with height. IPT RMS error and the predicted theoretical
error show similar behavior as in the temperature case.
Again, the slightly lower values of the theoretical error are
attributed to the way Sop is calculated.
[34] Because of the fact that the IPT could only be

successfully applied to a subset of the RACMO2 model
output, the a priori bias errors of temperature and humidity
are not zero, as would be expected from purely Gaussian
distributed a priori information (Figures 2c and 2d). If the
whole RACMO2 output set is regarded, the average a priori
bias errors in both cases are very close to zero. The fact that
systematic errors may arise in case of application to specific
cases is of course a general problem, which will also arise
during algorithm application in the ‘‘real world.’’ However,
the profiles of temperature and humidity IPT bias error are
close to zero, with maximum absolute values of 0.2 K and
0.2 g m�3, respectively. This shows that the IPT procedure
can, to a certain extent, correct for systematic errors
contained in the a priori data.
[35] Also shown in Figure 2 are the results one obtains

using a ‘‘purely’’ statistical algorithm, explained below.
Naturally, advantages of such statistical algorithms are that
they are much easier to develop and to apply. In this case,
multilinear regressions between brightness temperatures and
physical temperature, respectively absolute humidity have
been performed. The MICCY channels between 50.8 and
58.8 GHz were chosen for the temperature retrieval and the
channels between 22.235 and 28.235 GHz were taken for
the humidity retrieval. The regressions are based on a
10 year data set of the Dutch radiosonde station De Bilt,
in this case only using the months August and September.
Figures 2a and 2b make clear that the IPT outperforms the
statistical retrieval throughout the profile in terms of RMS
and bias error. The smaller RMS errors both for temperature
and humidity make clear that a physically constrained
algorithm, such as the IPT, together with sensible a priori
profiles can give rise to higher accuracies than commonly
used statistical algorithms. The bias error characteristics
make especially clear that purely statistical algorithms are
very much dependent on the climatology used for training.
Bias errors in the range of 1 K and 0.5 g m�3 in the lowest
4 km of the atmosphere as shown here are not uncommon
for such types of retrievals. Again, the significantly different
statistical properties of the IPT applicable subset compared
to the 10 year August/September climatology are a reason
for these large systematic errors. On average, the IPT will
never produce such a high bias error because of the fact that
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the a priori data always consists of closely situated infor-
mation from a radiosonde ascent.
[36] The accuracies of an IPT-like method in case of

rapidly changing weather events are of special interest in
data assimilation or nowcasting studies. In order to demon-
strate IPT performance during rapidly changing weather
events, the RACMO2 data set has been analyzed for events,
where within 6 hours, the integrated water vapor changed
by more than 5 kg m�2 or the temperature at 1500 m

changed by more than 3 K. For these cases, in the 0–2 km
range the average RMS error is 0.8 K, in the 0–4 km 0.9 K.
In case of absolute humidity, the corresponding values are
0.7 g m�3 and 0.8 g m�3, respectively. These numbers are
only slightly poorer than those considering all the cases and
show that the IPT is also capable of retrieving accurate
temperature and humidity profiles in highly variable
weather conditions.

Figure 2. Accuracies of (a, c) temperature and (b, d) absolute humidity profiles for the nowcasting (NC)
application mode. RMS errors are shown in Figures 1a and 1b, and bias errors are shown in Figures 1c
and 1d. Shown are IPT accuracies (thin solid line), theoretical IPT accuracies (RMS only, dotted line), a
priori accuracies (dashed line), and statistical retrieval accuracies (dash-dotted line). Subtracting the
dashed lines from the bold lines in the RMS plots can be interpreted as the retrieval profit due to the IPT
procedure. For orientation, the thick solid line in Figures 1b and 1d shows the mean profile of absolute
humidity divided by 10.
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[37] In contrast to the application in NC mode, Figure 3
shows the results for the application in climate mode CL. As
stated in section 2.3, the T and rv a priori profiles are now a
linear interpolation in time, either between the 0000 LT and
1200 LT or the 1200 LT and 2400 LT radiosonde ascents,
depending on the time of measurement. Again, we assume
the continuous measurements to take place at the same
location as the radiosonde ascent. Comparing to the NC
application mode, the overall retrieval profit is now smaller,
both for T and for rv. A significant temperature profit can
now only be identified at maximum up to 2 km (Figure 3a),
with an average value of 0.3 K and an average IPT RMS
error of 0.4 K. The slightly larger (�0.1 K) RMS errors of
the theoretical IPT accuracy in comparison to the a priori
RMS accuracy above 3 km results from the fact that the IPT

could not be applied to the whole model output set (from
which Sa was calculated), but rather only to the subset
mentioned above. This apparent inconsistency in RMS error
difference can now be understood by noting that the whole
model output set, which determines the theoretical IPT
error, contains more variability than the subset. A signifi-
cant humidity profit can be identified up to 3 km, whereby
the average humidity profit is now 0.2 g m�3 at an average
IPT RMS error of 0.5 g m�3 in the lowest 4 km (Figure 3b).
This reduction in retrieval profit in comparison to the
NC case is due to the fact that the CL a priori assumption
is much more accurate than the NC assumption. However,
the CL application can of course only be carried out, if,
relative to the measurement time, the latest radiosonde
ascent and the one in the nearest future are available

Figure 3. Same as Figure 2 but for climate (CL) application mode.
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simultaneously. Using the CL approach, temperature and
humidity IPT absolute bias (AB) error values are at maxi-
mum in the range of 0.1 K and 0.1 g m�3, respectively
(Figures 3c and 3d) with a priori AB errors slightly larger.

3.2. Retrieval of Temperature and Humidity
Profiles Away From the Radiosonde Site

[38] Up to now all calculations have been carried out
assuming that the a priori data and measurement data
originate from the same location. In the following we carry
out a sensitivity study, where the central question is: How
accurate is the IPT if the a priori information comes from
locations Dd km away from the point of measurement and
also from discrete time periods Dt hours before the actual
measurement? In this realization (in contrast to the setup in
section 3.1) the temporal distance between measurement
and a priori information is fixed to Dt. In case Dt were
equal to 6 hours, the sample size of IPT applicable cases
would be much too low because up to now we have
assumed 0000 and 1200 UTC as the a priori (= radiosonde
sounding) times and thus IPT application would only be
possible at 0600 and 1800 UTC of each day. In order to
obtain an equally large number of applicable cases as in
section 3.1, it is assumed that the a priori profile is known
for each time of measurement; that is, the profile atDt hours
before the measurement is assumed to be known. This is not
a realistic approach, but it will artificially increase the
sample size to create statistically significant results.
[39] Specifically, we evaluated cases for Dd = [0 km,

85 km, 510 km] andDt = [0 hours, 6 hours, 12 hours], which
results in nine possible Dd/Dt combinations. However, the
combination 0 h/0 km is not considered because here the a
priori information is equal to the model truth and the
additional measurements can by definition not contribute
to any profit. For each of the remaining eight combinations,
a separate a priori covariance matrix Sa was calculated.
Principally Sa was calculated as denoted in equation (6)
only that now va varies in time by precisely Dt, but also in
space according to Dd. With this experiment setup we
have generated eight IPT output applications, in which we
can investigate the influence of the a priori profile as
a function of Dd and Dt on the IPT retrieval accuracy. As
in section 3.1 the eight IPT applications could also be
successfully calculated for �40% of the total RACMO2
output set. We have chosen the spatial scale in order to
evaluate the results on a common basis. This means that the
Dt have been converted to the kilometer scale by using
Taylor’s hypothesis and a typical atmospheric propagation
velocity of 10 m s�1. The resulting distances were sorted into
classes corresponding to the closest whole number dividable
by 100. Combining the classes coming from Dd = [0 km,
85 km, 510 km] andDt = [0 hours, 6 hours, 12 hours] results
in seven spatial-scale classes (100, 200, 300, 400, 500, 700,
900 km) as shown in Figures 4 and 5. For example, the
900 km value represents the [Dd = 510 km, Dt = 12 hours]
combination because 510 is rounded to 500 and 12 hours
corresponds to 432 km, which is rounded to 400 km. For
comparison note that in section 3.1, the a priori profiles were
taken atDd = 0 km, butDtwas encompassing all values from
0 to 12 hours, corresponding to 0–432 km.
[40] In order to obtain a better overview the following

results are expressed in error measures that represent an

average over the lowest 4 km. We have chosen 4 km
because of the fact that the retrieval profit of the microwave
profiler is only marginal above this height. As expected,
Figure 4 shows increasing values of the 4 km–average a
priori temperatureRMS (calculated by applying equation (14)
to the model truth and the a priori variable) with increasing
kilometer scale. This is due to the fact that the a priori
assumption gets worse with increasing spatial scale. In the
first four spatial-scale classes, increasing values of average a
priori temperature RMS are correlated with an increase of
the average IPT RMS error rising from �0.5 to �1.0 K. For
larger distances the average IPT RMS error is rather
constant at values around 1.0–1.1 K. Approximately the
same average IPT RMS error is obtained, if, instead of the
radiosonde a priori information, the average temperature
profile and the corresponding covariance matrix of a 10-year
radiosonde data set (August/September) of the Dutch
sounding station De Bilt are used as a priori information.
Note that this approach does not correspond to the statis-
tical retrieval in section 3.1, but rather states a solver for
equation (4) using the modified a priori statistics. Figure 4
makes clear that for an a priori radiosonde ascent for spatial-
scale distances larger than 300 km, the average IPT RMS
temperature accuracy will not become better than in the case
when a sensible climatological mean is used. This is
interesting to note, because the average a priori RMS in
the climatological cases has by far the largest RMS value. In
this case, assuming the covariances between the levels are
captured correctly, the microwave profiler information can
lead to an average profit of more than 3 K in the lowest 4 km
(Figure 4). However, if average IPT RMS accuracies of less
than 1 K are to be achieved, the microwave profiler should
be situated within a spatial-scale radius of say 200–300 km
of the radiosonde measurement. Within this range, the
retrieval profit by using the instrument combination is
generally lower (because of the higher accuracy of the a
priori information), however the accuracies are best. Similar
evaluations have been carried out for the retrievals of
absolute humidity (Figure 5). Here increasing values of
the 4 km–average a priori RMS error can also be observed
for spatial-scale distances up to 400 km, where saturation
toward �1.3 g m�3 seems to take place. This saturation
coincides with approximately constant average IPT RMS
values of absolute humidity of 0.7–0.8 g m�3. Accuracies
of better than 0.5 g m�3 can only be obtained within a
spatial-scale radius of 100 km of the radiosonde ascent.
Again, if a climatological profile is used as a priori humidity
information, the accuracies are in the same range as in the
case when the radiosonde information corresponding to
spatial-scale distances of 400 km and larger is used.
[41] Concerning the systematic errors, Figures 4 and 5

also show, for both temperature and humidity, the average
AB errors. The average of the AB error is calculated by
again averaging the AB error values over the lowest 4 km.
Here, when taking the 4 km average, the AB error is used
instead of the bias error to avoid that the bias errors over the
4 km height range will cancel out to zero. In this respect, the
average AB error gives a measure for an overall systematic
error. As can be seen in Figures 4 and 5, the 4 km–average
a priori AB errors are quite significant starting at �400 km
spatial scale. If, as noted in section 3.1, the whole
RACMO2 output set is regarded, the average a priori AB
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errors are much closer to zero. This is again the result of
relating the IPT application to a certain subset of the model
output. This subset is not equally distributed over the
August/September period and can thus show systematic
deviations. However, it is encouraging to see that the
average IPT AB errors are in turn lower than 0.1 K and
0.15 g m�3 for temperature, respectively absolute humidity.
This means that the IPT procedure can essentially reduce
systematic errors contained in the a priori data.
[42] This seems not to be the case if the IPT runs

employing the 10-year a priori climatology are investigated.
In case of temperature, if the whole RACMO2 model output
set is regarded, the average a priori AB errors are no longer
negligible and we thus see a relatively high a priori AB error
of 2.2 K. Even in this AB error dominated case, the IPT
application can reduce the average IPT AB error to below
0.3 K. If the a priori bias errors are subtracted from each
profile before IPT application, the average IPT AB error is
also close to 0 K, which gives confidence that the IPT
performs in the desired linear manner. In the humidity case
(Figure 5), the integrated water vapor (IWV) bias error as

deduced by IPT (not shown) is very close to zero, however
the information content of the brightness temperatures in
conjunction with the weak a priori estimate is not able to
reduce the average IPT AB error.

3.3. Thermodynamic Profile Retrieval Within Liquid
Clouds

[43] IPT evaluation for the LWC profiles has been carried
out with respect to cloud vertical extent (Figure 6). For
LWC evaluation, only the NC mode application at the same
location of the radiosonde site has been chosen, since no
significant differences in LWC retrieval are observed as a
function of the T and rv a priori profiles. The LWC a priori
profiles chosen are also independent of location, and NC or
CL mode application. In all cases the LWC a priori profile is
taken from the statistics provided by the singular column
microphysical model (section 2.2). As stated in section 2.3,
currently only clouds with vertical extents of up to 1500 m
can be handled within the IPT. Like for T and rv, the
vertical resolution of LWC is 250 m, which results in six
classes of cloud vertical extent, in which in each case LWC

Figure 4. Average IPT and a priori accuracies for the lowest 4 km of the atmosphere as a function of the
spatial scale to the radiosonde launch. Black bars show average RMS a priori errors in the lowest 4 km
(assuming the persistent validity of the closest and latest radiosonde ascent). Dark gray bars show average
of the RMS IPT errors in the lowest 4 km. Light gray bars show average of the absolute bias (AB) a priori
errors in the lowest 4 km (assuming the persistent validity of the closest and latest radiosonde ascent).
White bars show average of the AB IPT errors in the lowest 4 km. The last four bars (climatology) show
results for the a priori data consisting of a T climatology.
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is evaluated as a function of height above cloud base.
Generally the LWC RMS errors increase with increasing
cloud vertical extent; this is due to larger amounts of LWC
in geometrically thicker clouds. As evident in Figure 6, the
largest LWC RMS errors are correlated to the maximum
LWC values within the profile. All in all, LWC RMS errors
never exceed 25 mg m�3 (Figures 6a–6f). If the cloud
layers closest to cloud top and cloud base are excluded from
the analysis, the mean relative LWC error for clouds with
vertical extents from 750 to 1500 m is approximately 30%.
Also, the predicted theoretical IPT LWC errors are in rather
good agreement with the derived RMS LWC errors. An
exception is formed by the upper layers of the clouds with
vertical extents of 1250 and 1500 m where the differences
between these two parameters are in the order of 5 mg m�3.
Also shown in Figure 6 are the error curves corresponding
to a standard LWC retrieval approach, where the Z-LWC
relation is linearly scaled to match the liquid water path
(LWP) measured by the microwave radiometer [e.g., Frisch
et al., 1998]. For cloud vertical extents larger than 500 m,
the mean in-cloud improvement of the IPT with respect to
the linear scaling method is �10 mg m�3, corresponding to
a relative improvement of �17%. The LWC bias character-
istics (not shown) are negligible, if, again only the levels
excluding the cloud boundaries are investigated. In this
case, if all six cloud classes and all levels are analyzed, a
mean in-cloud IPT LWC bias of +1 mg m�3 remains.
[44] Here we want to emphasize that application of the

IPT results in a very improved performance concerning the
retrieval of the integral quantities LWP and IWV. For LWP,
the overall RMS error is 6 g m�2, with a bias of +3 g m�2,

whereas for IWV the RMS error reaches 0.3 kg m�2, with a
bias error of �0.1 kg m�2. These numbers are a factor 2–5
better than obtained with statistical methods using standard
two-channel microwave radiometers [Löhnert and Crewell,
2003].
[45] One of the major benefits of microwave remote

sensing is not only the retrieval of cloud properties, but
also the possibility to retrieve temperature and humidity
within clouds. This fact is demonstrated in Figures 7 and 8,
where results for the NC application mode are shown.
Again, as in the LWC evaluation, the results are classified
in cloud thickness and are shown against ‘‘height above
cloud base.’’ In terms of temperature, the overall in-cloud
retrieval profit is 0.5 K at an IPT RMS error of 0.7 K, which
shows that the accuracy of the temperature retrieval within
the cloud is on the same order as in the general clear and
cloudy case (section 3.1). However, there is an overall
positive IPT bias error of +0.2 K (Figure 7) in the IPT
temperature retrieval, which is also present in the same
magnitude in the a priori bias. Apparently, because of lack
of constraints, the IPT is not capable of correcting for this a
priori bias. Generally the a priori bias error is more
pronounced, the thinner the cloud. A possible reason for
this might be the more adiabatic character of thin, develop-
ing clouds. However, finding a plausible explanation for
this behavior is complicated by the fact that this study is
dealing with grid box mean model clouds instead of real
clouds. In case of absolute humidity, the mean in-cloud IPT
RMS error is 0.5 g m�3 and the retrieval profit is in the
order of 0.7 g m�3, which is a very satisfactory value and is
even better than the values shown in Figure 2a for typical

Figure 5. Same as Figure 4 but for absolute humidity.
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cloud heights around 1 km. This improvement is due to the
additional humidity constraint introduced by equation (8).
The in-cloud a priori humidity error is slightly negative
for almost all cloud levels and classes (overall value
�0.13 g m�3). This can be explained by the fact that the
a priori humidity profile was derived for clear and cloudy
atmospheres. This means that the average absolute humidity
will be lower for the general case in comparison to the
clouds-only case, since cloudy cases are correlated with

higher humidity values. However, by employing the above
mentioned humidity constraint within the IPT application,
this negative bias can be compensated to an overall value of
�0 g m�3.

4. Discussion and Outlook

[46] Within this paper, we have tried to show how
ground-based microwave remote sensors can be exploited

Figure 6. LWC RMS profile accuracies as a function of height above cloud base. The clouds are sorted
into six classes of cloud vertical extent: (a) 250, (b) 500, (c) 750, (d) 1000, (e) 1250, and (f) 1500 m. The
numbers in the top right corners indicate the total number of cloud realizations per cloud class. Shown are
IPT accuracy (solid line with asterisks), theoretical IPT accuracy (dotted line with triangles), Z profile
scaled linearly to microwave-derived LWP accuracy (dash-dotted line with diamonds), and average LWC
values as comparison (dashed line with crosses).
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in an optimal sense with regard to the continuous retrieval
of the thermodynamic state of the atmosphere. For the
profile retrieval of temperature and humidity, the highest
information content originates from the brightness temper-
ature measurements of a microwave profiler such as
MICCY. It is clear that such a microwave profiler—mainly
because of restrictions in effective vertical resolution—

cannot reach the absolute accuracy of a radiosonde ascent,
either in terms of temperature or humidity. However, we
have demonstrated that microwave profilers can add a
significant retrieval profit to the profiles in the time between
two radiosonde ascents, either at the same location of the
ascent or at different locations of up to 900 km away from
the ascent.

Figure 7. In-cloud temperature profile accuracies as a function of height above cloud base. The plots
are sorted into the same six classes of cloud vertical extent as in Figure 6. IPT RMS error (bold line with
asterisks), IPT bias (dotted line with asterisks), a priori RMS error (bold line with triangles), and a priori
bias error (dotted line with triangles).
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[47] Temperature and humidity profile retrievals have
shown to be very dependent on the NC and CL application
modes, whereas the LWC profile retrieval is less dependent
on the mode of application. This is because in the presented
experimental setup, the LWC a priori profile does not
change in time and the covariances between temperature/
humidity and LWC are rather low. Generally, we expect that
the NC application mode will be of major focus in future,
because here the possibility exists for instantaneously
retrieving the atmospheric thermodynamic state and thus
this mode is suited for applications in nowcasting and data
assimilation. The CL application mode is suited for the

reprocessing of data time series, e.g., for dedicated mea-
surement campaigns, where it is of extreme importance to
produce very accurate physically consistent profiles of the
atmosphere using as many measurements and as much a
priori information as possible.
[48] For the cloudy cases that could be analyzed, the IPT

could reproduce the model LWC with mean accuracies of
30%. These LWC retrievals lead to overall LWP retrieval
accuracies of below 10 g m�2. This aspect is extremely
important for the detection and retrieval of low-liquid
water clouds, which have impact on the radiative budget.
Analyzing the LWC profile retrieval, it was shown that the

Figure 8. Same as Figure 7 but for in-cloud profiles of absolute humidity.
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IPT can outperform simple LWC retrieval methods, which
scale the measured radar reflectivity profile to the micro-
wave-derived LWP. Currently, the authors are working to
improve the applied a priori LWC profile information.
Future methods will provide a LWC a priori profile as a
function of cloud vertical extent, cloud base temperature and
statistical information about the nonadiabacity (dilution) of
typical fair weather clouds. Such information will be
obtained in the long-term sense by using cloudnet and US-
ARM data sets. From such data sets it is expected to obtain
the necessary cloud a priori information to describe clouds
with vertical extents thicker than 1500 m.
[49] In the NC application case we have shown that one

can continuously retrieve temperature and humidity profiles
within the lowest 4 km of the atmosphere with average
RMS accuracies of less than 1.1 K and 0.7 g m�3,
respectively. This is valid if the a priori information taken
for the IPT consists merely of a sensible climatological
mean of the station of measurement. However, caution must
be taken considering the representativeness of the a priori
information. For certain time periods, bias errors may be as
large as the RMS errors. Significant improvements to this
combined statistical/physical method can be obtained if the
a priori information is taken from the closest operational
radiosonde ascent. If the closest radiosonde ascent is within
a spatial-temporal radius of 100 km (in our assumption
100 km would be equal to a temporal distance of �3 hours),
the average RMS accuracies for temperature profiles and
humidity profiles within the lowest 4 km can be improved
to values of 0.4 K, respectively 0.4 g m�3, whereby the bias
errors will be very close to 0 in both cases. Increasing this
spatial-temporal distance will increase the retrieval profit
with respect to the radiosonde; however, the RMS accura-
cies will gradually decrease.
[50] From the results we showed in section 3, an opera-

tional user has now the possibility of identifying the
theoretical benefit (profit) associated to a profiling station
with the IPT application. We have shown the RMS accura-
cies for the parameters temperature, humidity and LWC and
also depict the profit one can derive from such a profiling
system in contrast to regarding the a priori profile as the
given truth. Principally, the user can now decide if a
profiling station applying IPT is worth installing at a certain
location or not. Four major benefits may arise from the
installation of such a profiling station.
[51] 1. In comparison to radiosondes, the IPT can addi-

tionally retrieve multiple cloud base, cloud top and profiles
of LWC, which can be very valuable for the initialization
and evaluation of various atmospheric models. Additionally,
valuable cloud climatologies may be derived.
[52] 2. Deployed at a radiosonde site, a profiling station

employing an IPT can retrieve continuous profiles of
temperature and humidity and capture atmospheric variabil-
ity (e.g., diurnal cycle, frontal passage) which often cannot
be measured by operationally launching radiosondes every
12 hours.
[53] 3. Deployed at a certain distance from an operational

radiosonde site, the profiling station may complement an
existing radiosonde network by adding extra temporal and
spatial information. This may be especially valid in inho-
mogeneous terrain, where generally high spatial variability
in temperature and humidity exists.

[54] 4. If the radiosonde network is very dense, one may
consider replacing an operational radiosonde site with a
profiling station applying IPT. Depending on the desired
accuracies, the spatial-scale distances to the closest opera-
tional radiosonde should however not exceed 100–200 km.
However, such a criterion would be up to the users and the
accuracy they require.
[55] It may be interesting to note that central Europe (here

including Austria, Belgium, Denmark, Germany, the Neth-
erlands and Switzerland) has a relatively dense operational
radiosonde network of in total 25 stations (http://www.
metoffice.com/research/interproj/radiosonde/index.html)
covering an area of 597 375 km2, which implies that each
radiosonde is representative for a radius of influence of
�87.2 km. The radiosonde networks of France or the
United States (conterminous area), however, only possess
radii of influence corresponding to �157 km and �196 km,
respectively. In the dense European network and with the
advent of ground-profiling stations, it may be worthwhile
considering the replacement of a small number manpower-
and cost-intensive radiosonde stations by a profiling station
in future. However, this would of course only be promising,
if additionally, a wind profiler would be incorporated into
the profiling station, which has the capability of deriving the
wind profile throughout the troposphere. In the less dense
networks, additional profiling stations will provide an
improvement toward continuously describing the atmo-
spheric thermodynamic state in space and time.
[56] In the NC approach we have demonstrated the

potential of the IPT using remote sensing measurements
together with a priori data consisting of radiosonde ascents.
Another approach however, might consist of using short-
range forecast data itself as the a priori information, which
may contain more information in comparison to the radio-
sonde data. However, in this case, the representativeness
error [Kitchen, 1989] might need to be accounted for. This
error accounts for the fact that a model grid box value
(describing a domain mean) is used as a priori information
for the retrieval at the remote sensing site, which states a
spot measurement.
[57] Although the above presented results are encourag-

ing, it must be mentioned that possible bias errors due to the
radiative transfer operator and the instrument calibration
have not been considered in this study. The main reasons for
the systematic uncertainty of the radiative transfer operator
can be found in description of microwave absorption due to
gaseous components (oxygen and water vapor) and liquid
water. Here, especially in the atmospheric windows, stan-
dard absorption models show systematic differences on the
Kelvin scale [Melsheimer et al., 2005]. Also, receiver drifts
and absolute calibration inaccuracies may also lead to
longer-term instrumental offsets causing systematic offsets,
typically also in the Kelvin range. Here, state-of-the-art
microwave profilers (such as the RPG HATPRO generation
[Rose et al., 2005]) can guarantee relatively high-accuracy
and stable measurements. One major advantage of the here
developed IPT-RACMO2 test bed is that such systematic
errors can also be investigated in future. Systematic errors
as a result of the instrument characteristics (these need to be
known in detail) and varying absorption and their influence
on the IPT-derived parameters may now be investigated in
detail. This will help to see if instrument accuracy and
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forward model accuracy are really suited in getting the
results close to the theoretical possible ones highlighted in
this study.
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