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[1] We present a new algorithm for retrieving optical depth and liquid water content and
effective radius profiles of nonprecipitating liquid water clouds using millimeter
wavelength radar reflectivity and dual-channel microwave brightness temperatures. The
algorithm is based on Bayes’ theorem of conditional probability and combines prior
information on cloud microphysics with the remote sensing observations. Prior probability
distribution functions for liquid water clouds were derived from the second, third, and
sixth moments of droplet size distributions measured by in situ aircraft probes in shallow
tropical cumuli. The algorithm also calculates error bars for each retrieved parameter. To
assess the algorithm, we perform retrieval simulations using radar reflectivity and
brightness temperatures simulated from tropical cumulus fields calculated by a large eddy
simulation model with explicit microphysics. These retrieval simulations show that the
Bayesian algorithm has similar magnitude errors to current retrieval methods for liquid
water content and liquid water path retrievals but has much smaller errors for effective
radius and optical depth. We also perform retrievals on three months of data from the
Atmospheric Radiation Measurement (ARM) Program’s site on Nauru in the tropical west
Pacific. For nonprecipitating liquid water clouds over Nauru during June–August 1999
we retrieve a mean optical depth of 9.2, mean liquid water content of 0.112 g/m3, and
mean effective radius of 7.8 mm. The Bayesian method is a flexible approach to cloud
profile remote sensing and could be expanded to other sites or cloud types. INDEX TERMS:

3360 Meteorology and Atmospheric Dynamics: Remote sensing; 0320 Atmospheric Composition and

Structure: Cloud physics and chemistry; 3394 Meteorology and Atmospheric Dynamics: Instruments and

techniques; 3399 Meteorology and Atmospheric Dynamics: General or miscellaneous; KEYWORDS: remote

sensing, clouds, radar, microwave radiometer, Bayes

1. Introduction

[2] Liquid water boundary layer clouds are an important
element of the Earth’s radiation budget. Due to their
relatively high albedos they can greatly reduce incoming
solar radiation, thereby cooling the surface. However, they
also exert a warming influence in the thermal infrared over
what would exist in a clear sky due to their emission of
infrared radiation at fairly high temperatures. To accurately
quantify the radiative effects of these clouds on the surface
energy budget, information is needed about the horizontal
and vertical distribution of their microphysical properties,
such as liquid water content and effective radius. Most
current data on cloud microphysical properties come from
in situ aircraft measurements during field programs. While
such data are useful for case studies and statistical databases
[e.g., Miles et al., 2000], they have limited temporal and

spatial coverage and are expensive to obtain. To develop
long-term data sets of cloud microphysical properties for
many different cloud regimes, a remote sensing based
retrieval method is needed. One of the objectives of the
Department of Energy’s Atmospheric Radiation Measure-
ment (ARM) Program is to develop such data sets in order
to assess and improve current cloud parameterizations in
models.
[3] Microphysical radiative properties of clouds are

functions of the cloud droplet size distribution (DSD).
The liquid water content (LWC) is proportional to the third
moment of the DSD, while extinction is proportional to
the second moment, and effective radius (re) is the ratio of
the third moment to the second moment. Remote sensing
instruments cannot directly measure the DSD, as can in
situ probes on aircraft. However, they can measure param-
eters that are related to the moments of the size distribu-
tion. Then radiative properties can be retrieved by relating
the measured parameters to the desired moments of the
DSD.
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[4] For radars operating at millimeter wavelengths, cloud
droplets are much smaller than the radar wavelength so the
Rayleigh approximation applies and radar reflectivity is
proportional to the sixth moment of the droplet size dis-
tribution. Advances in instrumentation within the last 5
years have led to the development of unattended millimeter
wavelength cloud radars with the vertical resolution (�45 m)
and sensitivity (�60 dBZ) required to study boundary layer
clouds [Moran et al., 1998; Clothiaux et al., 1999]. Several
algorithms have been developed that seek to relate meas-
ured radar reflectivity to liquid water content. These are
generally linear regression equations in which the coeffi-
cients are determined either from in situ aircraft data [e.g.,
Fox and Illingworth, 1997] or from cloud models [e.g., Liao
and Sassen, 1994].
[5] Moments of the DSD other than the sixth cannot be

directly retrieved from remote sensing measurements. How-
ever, the total column liquid water path, or vertical integral
of the third moment, can be retrieved from a passive dual-
channel microwave radiometer, in which one channel is
more sensitive to integrated water vapor and the other to
integrated liquid water [Westwater, 1978]. The inclusion of
total liquid water path adds an additional constraint on the
DSD, but is still not enough to describe it completely, so
other information or assumptions must be included.
[6] Several combined radar/radiometer retrieval methods

have been developed in recent years for stratus and strato-
cumulus clouds. One of the common assumptions in these
retrieval methods is that the droplet distribution can be
modeled by a single mode gamma or lognormal distribution
with number concentration constant with height and a fixed
value of the width of the lognormal distribution, slog, or
shape of the gamma distribution, ngam [Frisch et al., 1995;
Dong et al., 1997]. Assuming a single mode lognormal
distribution with a fixed width and number concentration
constant with height is equivalent to assuming that the
liquid water content is proportional to the square root of
the radar reflectivity [e.g., Frisch et al., 1995, equation
(18)]. Miles et al. [2000] reviewed a large number of in situ
aircraft measurements of stratus clouds and found large
variations in slog and ngam. They showed that using clima-
tological values of slog can lead to errors of up to 25–75%
in some retrieved parameters. Other retrieval algorithms
[Dong et al., 1997; Mace and Sassen, 2000] are also
constrained to match the downwelling solar flux at the
surface, which improves the optical depth accuracy, but
does not allow independent validation of the cloud retrievals
using solar radiative transfer models, and restricts the
retrievals to uniform overcast cloud layers. There has been
little research reported on microphysical retrievals from
radar and microwave radiometer data in cumulus clouds.
[7] We present a new liquid cloud retrieval method based

on Bayes’ theorem of conditional probability, which com-
bines remote sensing measurements with prior information
on cloud microphysics. We make no assumptions about the
shape of the droplet size distribution, but instead use
information from in situ measurements about the second,
third, and sixth moments of the droplet size distributions.
Inputs to the algorithm are cloud location from cloud radar
and lidar, profiles of radar reflectivity, brightness temper-
atures from a microwave radiometer, and radiosonde pro-
files of temperature and humidity. These data are readily

available from instruments located at the Atmospheric
Radiation Measurement (ARM) Program’s sites. Outputs
of the algorithm are vertical profiles of liquid water content
and effective radius, total column precipitable water vapor,
liquid water path, optical depth, and uncertainty estimates
on all retrieved quantities. Due to the current difficulties in
discriminating hydrometeor reflectivities from those caused
by insects at the ARM Southern Great Plains (SGP) site in
Oklahoma, we are concentrating on marine tropical cumulus
data from the ARM Tropical Western Pacific (TWP) site on
the Republic of Nauru.
[8] Section 2 describes Bayes’ theorem and the justifica-

tion for basing a retrieval algorithm on it. Section 3
describes the inputs to the algorithm. Section 4 discusses
the retrieval algorithm in detail. Section 5 presents a test of
the algorithm using data from an LES model while section 6
illustrates results from actual data at Nauru. Section 7
presents a summary of the retrieval and conclusions.

2. Bayes’ Theorem

[9] Bayesian theory is a general approach to solving
inverse problems such as retrieving a vertical profile of
cloud properties from a set of remote sensing observations
[Sivia, 1996; Rodgers, 2000]. Following Rodgers [2000],
we define the measurement vector, y, as the set of remote
sensing observations (microwave brightness temperatures
and vertical profiles of radar reflectivity), each with an
associated measurement error. We define the state vector, x,
as the set of all cloud and atmospheric parameters which
affect the measurement vector. The basis of Bayesian theory
is that the inverse problem can be related to the forward
problem through a set of measurements and prior knowl-
edge about the probability of the state vector.
[10] Bayes’ theorem of conditional probability is given

by

ppost xjyð Þ ¼
pf yjxð Þppr xð ÞR
pf yjxð Þppr xð Þdx

; ð1Þ

where x and y are the state vector and measurement vector
defined above. In this equation, the quantity ppr(x), is
known as the prior probability density function (pdf ) of the
state x. It represents our knowledge about the possible
values of x before the measurement is made.
[11] As discussed in section 3.2, we use in situ observa-

tions of cloud drop size distributions from aircraft to create a
prior pdf. The term, pf (yjx), is the conditional, or forward,
probability of the remote sensing observations, y, given the
state vector. It is represented by a forward model, which
expresses our understanding of the physics that relate the
atmospheric and cloud properties to the measured quantities
(brightness temperatures and radar reflectivity), including
the uncertainties. The forward probability can be modeled
as a distribution of observations around a simulated obser-
vation, with the width of the distribution given by the
measurement and model uncertainties. The denominator
simply normalizes the integral. Finally, the term ppost(xjy)
is known as the posterior pdf and is the probability
distribution of the state vector given the measurement
vector. The posterior pdf is the result of applying Bayes’
theorem to a set of measurements and prior information. It
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represents our knowledge of the cloud properties after the
measurements are taken, and includes information from the
measurements and the prior pdf.
[12] The application of Bayes’ theorem produces a prob-

ability distribution of cloud properties. To retrieve a vector
of cloud properties, we integrate over this posterior pdf to
calculate the mean value,

xh i ¼
R
x pf yjxð Þppr xð Þ dxR
pf yjxð Þppr xð Þ dx

: ð2Þ

An estimate of the uncertainty in the retrieval is the variance
around this mean vector, which is the second moment of the
posterior pdf,

s2x ¼
R
x� xh ið Þ2 pf yjxð Þppr xð Þ dxR

pf yjxð Þppr xð Þ dx : ð3Þ

The computation of these integrals is performed via Monte
Carlo integration and is discussed in detail in section 4.
[13] Bayes’ theorem is a useful framework for a retrieval

algorithm because it relates the inverse problem to the
simpler forward problem, produces uncertainties on
retrieved variables, and introduces a priori information in
a well defined formalism. Since the retrieval of cloud
microphysical properties from remote sensing measure-
ments is an ill constrained problem, a priori information is
always included in retrieval algorithms, even if not explic-
itly stated as such. A priori information is necessary to
provide a connection between the observed radar reflectivity
and liquid water path and the desired quantities of liquid
water content, extinction, and effective radius. In a linear
regression algorithm, such as LWC = aZb, the a priori
information is the functional form of the equation and the
slope, a, and the exponent, b, which are determined from in
situ data or cloud models. In a combined radar/radiometer
algorithm the a priori information is the assumed form and
width of the DSD, and the assumption that number con-
centration is constant with height. In both of these algo-
rithms, the relationship between LWC (or effective radius)
and radar reflectivity is fixed, based on the particular
assumptions made. In the Bayesian algorithm, the prior
pdf allows a distribution of relationships between reflectiv-
ity and LWC or re. For each observed reflectivity there is a

range of possible retrieved LWC and re, with some being
more probable than others.
[14] The prior pdf must encompass the possible regions

of parameter space expected for a particular cloud type since
properties outside the bounds of the prior cannot be
retrieved. However, the prior should not be so broad that
valid knowledge of cloud microphysics is ignored, which
would lead to poor retrievals. To expand the Bayesian
algorithm to different cloud types or regions, pdfs repre-
sentative of the given cloud regime must be developed. If
little is known of a particular cloud type, then a suitably
broad pdf should be chosen.

3. Inputs to Algorithm

3.1. Remote Sensing Observations

[15] The algorithm has been developed for the suite of
instruments present at each ARM site, which include a
Belfort or Vaisala Ceilometer (CEIL), a Micropulse Lidar
(MPL), a Millimeter Wavelength Cloud Radar (MMCR), a
Microwave Radiometer (MWR), and Vaisala radiosondes
(RAOB). The data from all of these instruments is readily
available from the ARM archive (http://www.archive.arm.
gov/).
[16] The MMCR is a vertically pointing Doppler radar

that operates at 34.86 GHz (8.6 mm) [Moran et al., 1997]. It
cycles through four different operational modes, each with
different sensitivity, spatial and temporal resolution, and
aliasing characteristics. Details of the operational parame-
ters of the MMCR at each ARM site are given by Clothiaux
et al. [1999]. The Active Remote Sensing of Clouds
(ARSCL) product described by Clothiaux et al. [2000]
combines information from all modes of the MMCR with
MPL and CEIL data to produce a best estimate of cloud
boundaries, hydrometeor reflectivities and vertical veloc-
ities at 10 s temporal and 45 m vertical resolution. The
ARSCL product is freely available from the ARM archive.
[17] The MWR is a dual-channel radiometer operating at

wavelengths of 23.8 GHz and 31.4 GHz. The ARM liquid
water path (LWP) retrievals from the MWR are calculated
using a statistical linear regression with climatological
coefficients (http://www.arm.gov/docs/instruments/ static/
mwr.html). At Nauru, the retrieved LWP is often greater
than 40 g/m2 at times when the cloud radar reports clear sky.
Figure 1 is a plot of the statistical LWP retrieved from

Figure 1. Statistical liquid water path retrieval from MWR and vertically integrated radar reflectivity.
At times when there are no radar returns, the retrieved liquid water path has an offset of 30–60 g/m2.
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the MWR and vertically integrated reflectivity from the
MMCR, showing this offset. This LWP offset is a system-
atic error due to the use of climatological coefficients in the
regression equation, and is expected to affect the cloudy sky
liquid water path retrievals as well [Liljegren, 1999]. There-
fore we use the brightness temperatures from the MWR,
which are the actual observables, instead of the ARM
statistical LWP retrievals. The MWR instruments are cali-
brated by an automated tipping curve calibration, which can
provide absolute accuracy of about 0.5 K if performed
correctly [Han and Westwater, 2000]. Westwater et al.
[2000] showed that the MWR was well calibrated during
the Nauru99 field experiment (15 June 1999 to 15 July
1999) with the accuracy of the brightness temperatures
within ±1K.
[18] Radiosondes are launched twice a day during normal

operation at Nauru, and were launched 3–4 times a day
during the Nauru99 period. Westwater et al. [2000] show
that the Vaisala RAOBs launched at the Nauru site during
the Nauru99 experiment exhibit the well-known dry bias in
precipitable water vapor [Miller et al., 1999]. Therefore we
use the radiosondes only for temperature profiles and the
shape of the water vapor profile, and to estimate the radar
attenuation due to water vapor, which is discussed in section
4.3.

3.2. Prior Probability Density Function

[19] To calculate the microphysical properties of liquid
clouds requires knowledge of the droplet size distribution,
which cannot be measured directly by remote sensing
instruments. However, the radiatively important properties
of liquid clouds: liquid water content, shortwave extinction,
and effective radius, are all related to the moments of the
DSD. Since the remotely sensed parameters of the cloud,
radar reflectivity and total liquid water path, are also related
to moments of the DSD, we can reduce our requirements to
knowing the second, third, and sixth moments of the DSD,
plus the relationships between these moments. The prior
pdf, ppr(x), of the state vector, x, represents our knowledge
about the microphysics of a given cloud regime. For our
liquid water cloud retrieval, the variables in the prior pdf are
the second, third, and sixth moments of the droplet distri-
bution plus the total column precipitable water vapor. The
above moments are directly related either to the observed
quantities or to the cloud properties we wish to retrieve and
the precipitable water vapor is related to the observed
microwave brightness temperatures.
[20] To create a functional form of the prior pdf, we

assume that the probability of the moments of the droplet
size distribution and the total precipitable water vapor, V,
are independent, then the prior pdf can be written as

pprðxÞ ¼ pprðM2;M3;M6ÞpprðV Þ; ð4Þ

where M2, M3, M6 are the vertical profiles of the second,
third, and sixth moments of the droplet size distribution. For
simplification, we can write the prior pdf as ppr(M) ppr(V ),
where M is a vector containing the vertical profiles of the
second, third, and sixth moments. We model the prior pdf of
the precipitable water vapor, ppr(V ), as a Gaussian
distribution with mean and standard deviation derived from
a climatology of MWR observations at Nauru. We develop
a form for the prior pdf of the droplet moments, ppr(M2,M3,

M6), based on data from microphysical probes on in situ
aircraft.
[21] The prior pdf should be representative of the cloud

regime being retrieved; in this case, shallow boundary layer
cumulus such as those primarily seen at Nauru. As there are
no in situ microphysical aircraft data available over Nauru,
we use data from the Small Cumulus Microphysics Study
(SCMS) field project [French et al., 2000], which took
place in east central Florida in the summer of 1995 and
focused on shallow warm cumuli, and the Joint Hawaiian
Warm Rain Project (JHWRP) [Raga et al., 1990], which
took place off the northeastern coast of Hilo during the
summer of 1985 and sampled shallow cumulus band clouds.
In general, the SCMS clouds were small isolated cumuli in
their early stages. Cloud depths ranged from 1.5 to 2 km and
diameters were roughly 1 km [French et al., 2000]. The
JHWRP clouds had bases from 430 to 750 m with tops
reaching several hundred meters above the base of the trade
inversion (which was generally between 1700 and 2450 m),
and occurred in bands that formed approximately 15–20 km
off the coast [Raga et al., 1990].
[22] To construct the prior pdf of the droplet size distri-

bution moments, we use measured size distributions sampled
every second from the FSSP 100 and Optical Array Probe
(OAP) 260X (which measures large droplets) instruments
on the National Center for Atmospheric Research (NCAR)
C-130 aircraft during SCMS and on the University of
Wyoming King Air during JHWRP. During the SCMS
project, the FSSP 100 had 15 bins with center diameters
from 3.7 mm to 50.5 mm, while the OAP 260X had 64
channels with 17 mm diameter spacing. The first three
channels of the 260X probe were noisy (S. Lasher-Trapp,
personal communication, 2000) so usable data consists of
the 68 mm diameter bin through 1071 mm diameter. During
the JHWRP project, the FSSP and 260X were in normal
operating modes, with the FSSP measuring droplets from
2.0 mm to 47.0 mm in 3.0 mm bins and the 260X measuring
droplets from 40.0 mm to 140 mm in 10.0 mm width bins
[Baumgardner, 1989]. Information from the 260X probe is
included because a few large droplets can make a substan-
tial contribution to radar reflectivity while contributing
negligibly to liquid water content. Figure 2 shows a sample
SCMS size distribution that contains both cloud and drizzle
droplets. The drizzle droplets are not noticeable in the
droplet number concentration, only slightly noticeable in
the third moment, but then dominate the sixth moment.
Thus the relationship between the sixth and third moments
(reflectivity and liquid water content) and sixth and second
moments (reflectivity and extinction) will be different for
volumes containing only cloud droplets and volumes con-
taining cloud and drizzle droplets, and both need to be
included in the prior pdf.
[23] To create the prior pdf, data from 10 SCMS flights

and 40 JHWRP flights were used. For each flight we
calculate the second, third, and sixth moments of the droplet
size distribution for each point in the flight where the FSSP
concentration >10 cm�3. The moments of the droplet size
distribution are given by

Mk ¼
X
j

Nj

Dc

2

� �k

; ð5Þ
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where Dc is the diameter of the center of the FSSP or 260X
bin and Nj is the concentration [cm�3] per bin. The units of
the kth moment are mmk/cm3.
[24] Figure 3 shows scatterplots of the second, third, and

sixth moments of the observed droplet distributions from
the combined SCMS and JHWRP in situ data. We apply
thresholds to the in situ data, based on the detectability
limits of the cloud radar and microwave radiometer, of 9.66
on log M6 (corresponding to �60 dBZ) and 7.0 on log M3

(corresponding to roughly 1.1 g/m2 for a 250 m thick
cloud). We then fit a 3-D bimodal lognormal probability
density function to the data by maximum likelihood esti-
mation. The resulting pdf has 19 parameters: means and
standard deviations for each of the moments in each mode
of the lognormal distribution, correlations between the
moments in each mode and a parameter that represents
the relative probability of each mode. The pdf is also shown
in Figure 3.
[25] Cloud properties usually have some degree of verti-

cal correlation, however, the prior pdf of M2, M3, M6 is
obtained from in situ aircraft measurements at various
heights above cloud base in different clouds, so no infor-

mation about vertical correlation is present. To estimate a
vertical correlation, we examine three months of MMCR
data at Nauru. We determine the vertical autocorrelation
function of log Zi

1/2 for all liquid water clouds 	 20 range
gates thick, where Zi is the reflectivity at each 45 m
resolution range gate, i, and log Zi

1/2 is a proxy for log
M3 at the given range gate. We fit an exponential function to
the autocorrelation as a function of range gate lag to obtain
the decorrelation length. Figure 4 shows the autocorrelation
function and the exponential fit. The estimated decorrelation
length is 7.2 range gates.

4. Bayesian Retrieval

[26] Applying Bayes’ theorem gives the posterior prob-
ability distribution for the state vector. To calculate the
posterior pdf, we need to develop a forward pdf which
relates the state vector, x, to the measurement vector, y.

4.1. Forward Probability Density Function

[27] The forward pdf, pf (yjx), represents the probability
of making the remote sensing observations of brightness
temperature and radar reflectivity given a set of cloud
properties (profiles of second, third, and sixth moments)
and total column water vapor. The forward pdf can be
written as

pf ðy jxÞ ¼ pf ðTb;23; Tb;31;Z j M2;M3;M6;V Þ; ð6Þ

where Tb,23 and Tb,31 are the microwave brightness
temperatures at 23.8 and 31.4 GHz, respectively, and Z is
the vertical profile of radar reflectivity, Z = (Z1, Z2, . . ., ZN).
If we assume that the errors in brightness temperature and
reflectivity are independent, that microwave brightness
temperatures depend only on the absorption due to cloud
liquid water, water vapor, and other gases, and that the
reflectivity at each range gate is a function only of the sixth
moment, then

pf ðy jxÞ ¼ pfTðTb;23 j M3;V ÞpfTðTb;31 j M3;V Þ
YN
i

pfZðZi j M6iÞ;

ð7Þ

where Zi and M6i are the reflectivity and sixth moment,
respectively, at each range gate and N is the number of
cloudy range gates.
[28] To relate the brightness temperatures to the state

vector, we use the Rosenkranz [1998] microwave absorption
model to calculate the volume absorption coefficient at 23.8
and 31.4 GHz at each level of the profile using the temper-
ature, pressure, and shape of the water vapor profile
determined from the closest radiosonde, the precipitable
water vapor from the prior pdf, and liquid water content
calculated from the given M3i. Using the Rayleigh–Jeans
approximation, we integrate the radiative transfer equation
to calculate the downwelling brightness temperatures at the
surface for each frequency. We assume that the forward pdfs
of Tb,23 and Tb,31 are normally distributed about the simu-
lated brightness temperatures for each observation, with
standard deviations equal to the uncertainty in the measured
brightness temperatures and model error, sTb

:

Figure 2. Example SCMS moment distributions for cloud
droplet distribution containing some drizzle droplets.
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Figure 3. Scatterplots of the cloud droplet moments from the SCMS and JHWRP in situ data. The solid
lines are contours of the bimodal lognormal pdfs fit to the data by maximum likelihood.
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pfTðTb;23 j M3;V Þ ¼
1ffiffiffiffiffiffi

2p
p

sTb;23
exp

�ðTb;23 � Tbsim;23Þ
2

2s2Tb;23

" #
ð8Þ

pfTðTb;31 j M3;V Þ ¼
1ffiffiffiffiffiffi

2p
p

sTb;31
exp

�ðTb;31 � Tbsim;31Þ
2

2s2Tb;31

" #
: ð9Þ

For simplification, we define

c2 ¼ Tb;23 � Tbsim;23

s23

� �2

þ Tb;31 � Tbsim;31

s31

� �2
" #

; ð10Þ

then the forward pdf of the brightness temperatures
becomes

pfT ¼
expð� 1

2
c2Þ

2psTb;23sTb;31
: ð11Þ

[29] The forward pdf for the radar reflectivity at a range
gate, given the sixth moment, pfZ(ZijM6i), is represented by a
probability distribution around M6i including the two
sources of error: calibration error and random error due to
the receiver noise. The calibration error on the MMCR at
Nauru is assumed to be 1 dB (E. Clothiaux, personal
communication, 2000). The receiver noise is the random
error associated with the measured signal due to the thermal
noise in the radar receiver. It depends on the mode used and
the distance of the hydrometeors from the antenna. For each
mode, we estimate the sensitivity at each range gate based
on the parameters of the operational modes at Nauru given
by Clothiaux et al. [1999]. If radar reflectivity is expressed
in units of mm6/m3, then the calibration error is multi-
plicative while the receiver noise error is additive.

4.2. Integration Details

[30] To retrieve a vector of the desired cloud properties
and a measure of their uncertainty, we integrate over the
posterior pdf, to calculate the first and second moments of
each parameter, as given in equations (2) and (3). Given the
above equations for the prior and forward pdfs, equation (2)
can be rewritten as

hxi ¼

R
xe�c2=2pprðV Þ pprðMÞ

QN
i

pfZðZi j M6iÞdx

R
e�c2=2pprðV Þ pprðMÞ

QN
i

pfZðZi j M6iÞdx
: ð12Þ

This is a 3N + 1 dimensional integral over the profile of M2,
M3, and M6 at each range gate and the total column water
vapor. The integral could be performed by a Monte Carlo
computation, in which random points are uniformly
distributed over the integration region. However, the range
of observed reflectivities for which a retrieval can be
performed is rather large (�60 dBZ to 0 dBZ) while the
uncertainty on the observed radar reflectivity is approxi-
mately 1 dBZ. Therefore pfZ(ZijM6i) is vanishingly small in
all except a very limited area of the integration region. Since
there are many cloudy range gates, performing an accurate
Monte Carlo integration over the whole region would
require too many points to be computationally feasible.
[31] To reduce the number of points needed in the Monte

Carlo integration, we perform a change of variables so that
the integration points are randomly distributed according to
the prior pdf and the measured Zi. From the definition of
conditional probability,

pðM6i; ZiÞ ¼ pðZi j M6iÞ pðM6iÞ ¼ pðM6i j ZiÞ pðZiÞ: ð13Þ

Since Zi = aM6i, where a is simply the constant factor
relating reflectivity to the sixth moment, p(M6i) is propor-
tional to p(Zi). Therefore pfZ(ZijM6i) is proportional to
pfZ(M6ijZi), and equation (12) can be rewritten as

hxi ¼

R
xe�c2=2pprðV Þ pprðMÞ

QN
i

pfZðM6i j ZiÞdx

R
e�c2=2pprðV Þ pprðMÞ

QN
i

pfZðM6i j ZiÞ dx
; ð14Þ

where the proportionality constants cancel out. This redefini-
tion of the forward probability allows us to distribute M6

around the measured reflectivity according to the noise
characteristics of the reflectivity.
[32] We can also rewrite the prior pdf of the droplet

distribution moments as

pprðMÞ ¼ pprðM2;M3 j M6Þ pprðM6Þ

¼ pprðM2;M3 j M6Þ
YN
i

pprðM6iÞ; ð15Þ

where ppr(M6i) is the marginal prior distribution of M6. This
allows us to write the retrieval equation as

hxi ¼

R
x expð� 1

2
c2Þ

QN
i

pprðM6iÞ du

R
expð� 1

2
c2Þ

QN
i

pprðM6iÞ du
; ð16Þ

du ¼ pprðV ÞpprðM2;M3 j M6Þ
YN
i

pfZðM6i j ZiÞ dfx: ð17Þ

Through this change of variables we can randomly distribute
the integration points according to the prior pdf and the

Figure 4. Autocorrelation function of three months of
radar data at Nauru. The dashed line is the exponential fit,
which gives a decorrelation length of 7.2 range gates.
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observed radar reflectivity rather than having to distribute
them over the whole state vector space.
[33] To create the random distribution of integration

points, we use the model of forward probability, pfZ(M6ijZi),
to create random M6i points given the observed radar
reflectivity, Zi and the sources of error. The calibration error
is given by Ecalib = 100.1(r C) where r is a random Gaussian
deviate (which is the same for the entire radar column) and
C is the calibration error in dB. The receiver noise at each
range gate is Erec,i, which is a random deviate with
magnitude of the order of the radar sensitivity expressed
in mm6/m3. The receiver noise is a significant error until the
radar power is at least 10 dB over the noise level. So, at
each range gate,

M6i ¼
1

a
Zi Ecalib þ Erec;i


 �
: ð18Þ

[34] Given the M6i, we then generate random pairs of
(M2i, M3i) from the 3-D bimodal lognormal prior pdf by
using analytical expressions which relate the parameters of a
3-D normal pdf to a 2-D conditional normal pdf with a fixed
third parameter. The profile of (M2i, M3i) has vertical corre-
lation given by the decorrelation length determined in section
3.2. We then perform the Monte Carlo integration over these
points. Further details of the generation of the (M2i, M3i)
points are given in Appendix A.
[35] The formulas for the mean and variance of the liquid

water content, L, at each range gate, i, can be written as

hLðiÞi ¼

PNint

n¼1

LnðiÞe�c2
n=2
QN
i

pprðM6i;nÞ

PNint

n¼1

e�c2
n=2
QN
i

pprðM6i;nÞ
ð19Þ

s2LðiÞ ¼

PNint

n¼1

LnðiÞ � hLðiÞið Þ2 e�c2
n=2
QN
i

pprðM6i;nÞ

PNint

n¼1

e�c2
n=2
QN
i

pprðM6i;nÞ
; ð20Þ

where L(i) = (4p/3)(10�6) M3i for L in g/m3 and Nint is the
number of random points used in the integration. Similar
equations can be written for volume extinction and effective
radius. The formulas for the mean and variance of the
optical depth are

hti ¼

PNint

n¼1

dR
PN
i¼1

bi

� �
e�c2

n=2
QN
i

pprðM6i;nÞ

PNint

n¼1

e�c2
n=2
QN
i

pprðM6i;nÞ
ð21Þ

s2t ¼

PNint

n¼1

dR
PN
i¼1

bi

� �
� hti

 �2
e�c2

n=2
QN
i

pprðM6i;nÞ

PNint

n¼1

e�c2
n=2
QN
i

pprðM6i;nÞ
; ð22Þ

where bi = 2p10�3 M2i is the shortwave extinction in km�1

and dR is the range gate resolution in kilometers. A similar
expression can be written for the retrieved liquid water path.
[36] Since the retrieved parameters are weighted by e�c

n
2,

which falls off rapidly with c2, we reduce computational

time by only summing over points for which c2 < 20. For a
retrieval to be successful, we require at least two points be
included in the summation. If the actual cloud properties lie
outside the region covered by the prior pdf, then they cannot
be retrieved because the values of c2 will be too large.
Figure 5 shows a flowchart of the steps followed to perform
a retrieval.

4.3. Algorithm Details

[37] In the forward pdf for brightness temperature given in
equation (8), the parameter sTb represents the uncertainty in
the brightness temperatures. This uncertainty is a combina-
tion of the uncertainty in the measured value and uncertain-
ties in the microwave radiative transfer model. We use a base
value of 1.0 K to represent the calibration and model
uncertainties. Another source of error is that the MWR and
MMCR have very different beam widths (6	 and 0.31	,
respectively) which means the MWR sees a much larger
volume than the MMCR. If the cloud is inhomogeneous or
not large enough to fill the entire MWR beam width, then the
measured brightness temperatures and radar reflectivities are
not representative of the same cloud. To account for this
uncertainty, we assume that the Tb error due to the MMCR
and MWR beam mismatch is proportional to the LWP of the
cloud. We estimate the change in brightness temperature per
g/m2 of liquid water path, �Tb, for each frequency from a
multiple regression of brightness temperatures to total LWP
and precipitable water vapor. Then sTb

2 = sconst
2 + sfrac

2 , where
sconst = 1.0 K, sfrac = 0.1 �Tb, and we have assumed the
fractional error is 10%.
[38] We correct radar reflectivity for attenuation due to

water vapor absorption using the radiosonde humidity
profile. Due to the high humidities at Nauru (mean column
precipitable water vapor �4.4 g/m2), the two-way attenu-
ation due to water vapor is typically 0.3–0.5 dB at cloud
top. Attenuation due to liquid droplets may also be impor-
tant in thick clouds. At 35 GHz attenuation due to liquid is
approximately 0.65 dB km�1 per g/m3 of liquid water at
20	C [Lhermitte, 1990]. We make a first order correction
for liquid water attenuation by assuming as a first guess
that the statistical LWP calculated from the MWR is correct
and that LWC / Z1/2 and calculating the attenuation due to
that profile [Frisch et al., 1998]. We then adjust the
observed radar reflectivities by the calculated attenuation
and use the corrected radar reflectivity profile in the
retrieval.
[39] We do not attempt to perform retrievals for precip-

itating clouds; however, precipitation events can lead to
raindrops standing on the dome of the MWR after the
precipitation has ceased, which causes high brightness
temperatures even in clear skies. The MWRs at the
ARM sites have been fitted with heaters to speed up the
evaporation of rain, but at Nauru, due to the high humid-
ities and perhaps malfunctioning of the heaters, it can take
several hours for the rain to evaporate off the dome. This
can be seen in Figure 6 which shows a time series of 31 GHz
brightness temperature and radar reflectivity. The peak in
brightness temperature occurs during precipitation, then
the brightness temperature falls off as rain on the dome
evaporates. This can mask or artificially inflate the bright-
ness temperature signal due to clouds during this time,
although the radar still gives useful information.
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[40] To correct for the effect of rain on the MWR dome,
we identify precipitation events based on a flag in the MWR
data stream, brightness temperatures above 100 K, and radar
reflectivity in the lowest two range gates. Using the radio-
sonde profile and the Rosenkranz microwave model, we
calculate the slope of the lines relating the 31 and 23 GHz
brightness temperatures for clear sky and for liquid cloud
conditions. For each cloudy point during which there is water
on the radiometer dome after the precipitation has ended, we
find the intersection of these two lines given the measured
brightness temperatures. This point gives the expected clear
sky brightness temperatures. We use the nearest clear points

before and after the cloudy period to estimate what the
measured clear sky brightness temperatures would have been
during the cloudy period. Then we define the offset due to
the water on the dome, �T, as the difference between this
estimated clear sky brightness temperature and the expected
clear sky brightness temperature. To correct for the offset, we
subtract �T from the measured cloudy brightness temper-
atures and set sTb

= �T.
[41] In the Bayesian algorithm, the retrieval is based on

the prior information and the observations. The relative
entropy [Bernardo and Smith, 1994; Rodgers, 2000], or
information content, defines the amount of information

Figure 5. Flowchart of steps taken for each observed reflectivity profile and set of microwave brightness
temperatures. Numbers in parentheses refer to equations in the text. Nint is the total number of Monte
Carlo integration points, n is an indexing variable, and Nsum is the number of points having c2 < 20.
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added to the retrieval by the observation. The relative
entropy is defined as

I ¼
Z

ppostðxjyÞln
ppostðxjyÞ
pprðxÞ

 �
dx; ð23Þ

which is easily computed by integrating over the retrieval
points. If the observation adds no information to the
retrieval, then the posterior and prior pdfs are the same and
the relative entropy is zero. If the observation adds
information to the retrieval, then the posterior pdf occupies
a small portion of the prior pdf volume and the relative
entropy is positive.
[42] The relative entropy can be defined in terms of bits

(base 2 units) by dividing by ln 2. One bit of information
reduces the uncertainty in the retrieved parameters by a
factor of 2, two bits by a factor of 4, etc. For the retrievals

performed over three months of data at Nauru (discussed in
section 6), the median relative entropy over all retrieved
points was 33.7 bits, due primarily to the fact that the radar
reflectivity at each range gate is such a strong constraint on
the integration region. Another way to express this is that
the volume of parameter space, (V, M2,M3, M6), is reduced
from the prior pdf to the posterior pdf typically by a factor
of 233.7 = 1.4  1010.

5. Retrieval Tests

[43] The performance of cloud property retrieval algo-
rithms is often measured by comparing the retrieved cloud
properties to the true cloud properties from in situ aircraft
measurements [Dong et al., 1997; Sassen et al., 1999].
However, the uncertainties in measurements by aircraft
probes (missing small droplets due to instrument thresholds,

Figure 6. Time series of MMCR reflectivity and MWR 31 GHz brightness temperature at Nauru on 21
July 1999. The brightness temperature peaks at 297 K due to rain, then falls off as the water on the dome
evaporates. Note that the signals from the clouds between 01:30 and 02:30 UTC are masked by the signal
from the water on the dome.
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under-counting of large droplets due to poor sampling
efficiency, coincidence and electronic dead-time losses) as
well as disparities in the volumes of air sensed by cloud
radars (about 550 m3 at 1.0 km) and aircraft probes (on the
order of 1.0  10�3m3 for a 30-m height interval during a
typical ramp) [Sassen et al., 1999] mean that the DSD
measured by the aircraft probes is not necessarily represen-
tative of the volume averaged sixth moment measured by
the radar at the same time. Since the prior pdf needs merely
to be representative of the microphysical relationships in
cumulus clouds and not exactly the same droplet size
distributions measured by the remote sensors, the uncer-
tainties and sampling issues are less important in the
development of the prior pdf than in retrieval comparisons.
[44] Another way to assess the performance of a cloud

property retrieval algorithm is to compute simulated
MMCR and MWR input observations from cloud fields
generated by a cloud model. Since the ‘‘true’’ cloud proper-
ties (the cloud model values) are known and the sampling
volume is much closer to that of the radar, the uncertainties
in the retrieval algorithm can be clearly defined, avoiding
the measurement and sampling uncertainties associated with
validating remote sensing retrievals against aircraft in situ
data. In these types of tests, the cloud model results do not
need to be completely accurate simulations of a particular
cloud field as long as the simulated cloud properties are
representative of the general cloud regime being retrieved.
Although we hope to be able to use in situ aircraft measure-
ments to examine the results of our retrieval algorithm in the
future, such data do not currently exist over the ARM site at
Nauru. Therefore we use maritime trade cumulus cloud
fields generated by an explicit binned microphysics large-
eddy simulation (LES) model and a radiative transfer
scheme to simulate observations to test the retrieval algo-
rithm.

5.1. Details of LES Tests

[45] To test the Bayesian retrieval algorithm, we use
results from two different large-eddy simulations of trade
cumulus, in which the total condensation nuclei (CN)
concentration is fixed at 250 cm�3 (case 1) and 150 cm�3

(case 2). The details of the LES model are given in
Appendix B for interested readers. To simulate maritime
trade-wind cumulus similar to that seen at Nauru, we adapt
an idealization from Stevens et al. [2001] of measurements
averaged over the first 5 days of the Atlantic Trade-Wind
Experiment (ATEX), characterized as ‘‘nearly classic’’ trade
cumulus [Augstein et al., 1973]. The model is run for 8 hours
with full output every half hour (model time). The behavior
of the model simulation is characterized in Figure 7, where it
is seen that the cloud fractional coverage is reduced and
precipitation enhanced by the decreased droplet concentra-
tions in case 2. We define ‘‘cloud’’ in the LES results as any
grid point with number concentration greater than 10 cm�3,
liquid water content greater than 0.005 g/m3, and calculated
reflectivity greater than �60 dBZ. Figure 8 shows histo-
grams of the radar reflectivity calculated at each cloudy LES
grid point for the two cases. Case 2 has more drizzle
droplets, as seen by the larger number of points with
reflectivities greater than �10 dBZ.
[46] To create the input data needed for the Bayesian

retrieval algorithm, we calculate the profile of radar reflec-

tivity (dBZ) from the sixth moment of the LES droplet size
distribution, and add random Gaussian noise to simulate a
measurement uncertainty of 1 dBZ. We calculate the bright-
ness temperatures at 23.8 GHz and 31.4 GHz at each
horizontal grid point from the vertical profile of temper-
ature, water vapor, and liquid water content. We add random
Gaussian noise with magnitude 0.5 K to the brightness
temperatures to simulate measurement uncertainty. We
average the temperature and water vapor at each level over
the horizontal grid to create an average ‘‘sounding.’’ The
profile of reflectivities and brightness temperatures at each
horizontal grid point, and the average sounding are input to
the retrieval algorithm for each cloudy scene.

5.2. LES Test Results

[47] To assess the performance of the Bayesian retrieval
algorithm, we compare the retrieved properties to results
obtained from two other retrieval methods. The method of
Frisch et al. [1995] assumes the droplet distribution is
described by a lognormal distribution with the width of
the distribution fixed and number concentration, N, constant
with height. Profiles of liquid water content are determined
from the radar reflectivity by

Figure 7. Evolution of (a) droplet concentration (averaged
over grid cells with cloud water > 0.05 g/kg), (b) liquid
water path (the horizontally averaged column of cloud
water), (c) cloud fractional coverage (the fraction of
columns with cloud optical depth for geometric scatterers
> 2.5), and (d) maximum precipitation flux at the surface for
simulations with total particle concentrations of 250 and
150 cm�3 (solid and dotted lines, respectively). Results are
plotted as instantaneous values every 5 min.
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LðiÞ ¼ CsrwZ
1=2
i N 1=2; ð24Þ

where rw is the density of water, Cs is a constant which
depends on the chosen width of the distribution, and N is
constrained by the integrated liquid water path. For the
Frisch algorithm, we calculate a total liquid water path from
a statistical regression on the two microwave brightness
temperatures.
[48] Liao and Sassen [1994] present a radar-only retrieval

method based on a reflectivity(Z)-LWC regression equation
developed from an adiabatic cloud model for nonprecipitat-
ing cumulus and stratocumulus clouds. This equation is
given by

Zi ¼
3:6

N
LðiÞ1:8; ð25Þ

where L(i) is the liquid water content in g/m3, N is mean
number concentration (cm�3) and Zi (mm6m�3) is the
reflectivity calculated from the model size distributions at
each grid point. By comparison with empirical relation-
ships, they suggest that a value of N = 100 cm�3 may be
appropriate for a variety of liquid phase clouds.
[49] To investigate the sensitivity of the retrievals to the

prior data, we perform two sets of retrievals on the simu-
lated LES observations. The first set represents the perform-
ance of the algorithms assuming that the prior data is well
known, by creating the prior information from the LES
output. The second set of retrievals represents a more
realistic scenario, in which the general cloud type being
retrieved is known, but not the detailed characteristics of the
clouds. For this retrieval, the prior information comes from
in situ data from the SCMS and JHWRP field experiments.
[50] In the first set of retrievals, we create prior pdfs for

the Bayesian algorithm based on the LES size distribution
moments for each of the two cases. The prior pdf and
scatterplots of the moments are shown in Figure 9 for case 1.
For the radar-regression method, the number concentration
is set equal to the average LES number concentration for
each case. For the Frisch method, the regression coefficients
for the LWP/brightness temperature regression are also
determined directly from the LES output. Since the LES
model does not assume a fixed form of the size distribution,
there is no explicit value for the width of the lognormal size
distribution. Therefore we define a lognormal equivalent
width,

s ¼ 1

6
log

p
48

Zi rw
Li r

3
e;i

 !" # !1=2

ð26Þ

where rw is the density of water and Zi is the radar reflectivity,
Li the liquid water content, and re,i the effective radius at the
given grid point, i. We set the width of the lognormal
distribution to the mean of the lognormal equivalent width
for each case. For the Liao-Sassen regression algorithm, we
set N equal to the mean number concentration of each case
(165 cm�3 for case 1 and 102 cm�3 for case 2).
[51] In the second set of retrievals, the prior pdf for the

Bayesian data is described in section 3.2. The coefficients
for the LWP/brightness temperature regression for the
Frisch method are those used operationally for the ARM

statistical LWP retrievals at Nauru. We use two different
values of the lognormal width: s = 0.35, which is the
value given by Frisch et al. [1995] (for stratus clouds); and
s = 0.41, which is the mean value of the lognormal
equivalent width derived from the SCMS/JHWRP in situ
data. For the LWC-Z regression algorithm, we use a
number concentration of 100 cm�3, as given by Liao
and Sassen [1994].
[52] We compare the retrieved parameters to the known

values from the LES model to assess the errors of each
retrieval method. Our primary error statistic is the median
fractional error, which is defined such that for all the
retrievals being combined for an error estimate, 50% have
error less than the median error, and 50% have larger error.
The median fractional retrieval errors for each of the
methods for the two LES cases are shown in Table 1. For
the LWC-Z regression method only liquid water content and
liquid water path can be retrieved. Since fractional errors for
values near zero are meaningless, we apply the fractional

Figure 8. Histograms of radar reflectivity calculated from
the LES size distributions at each grid point for (a) case 1
and (b) case 2.
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error to columns with LWP greater than 5 g/m2 for statistics
on LWP and optical depth, t, and to grid points with LWC
greater than 0.02 g/m3 for statistics on LWC and re.
[53] As expected, the radar-only regression method has

significantly larger retrieval errors than the combined radar-
radiometer methods since it does not have the additional
constraint of the microwave radiometer on the droplet size
distribution. Additionally, the slope of the distribution was
derived from a particular cloud model, which may not be
representative of the LES model used in these tests.
[54] The Bayesian and Frisch methods produce roughly

the same median fractional errors for LWC. For LWP the
Frisch method has smaller errors when using the LES prior
information, but larger errors when the more general prior

information is included. The Bayesian algorithm has sig-
nificantly smaller errors for effective radius and optical
depth. The similar magnitude errors for the LWC and
LWP illustrate that, given the radar reflectivity and a
constraint on the total LWP, retrieved LWC is relatively
insensitive to the assumptions about the size distribution
[Frisch et al., 1998]. However, the effective radius (and
therefore the optical depth) is sensitive to assumptions about
the shape of the size distribution. The retrieved re from the
Frisch method is more sensitive to drizzle, as seen by the
larger errors in re for case 2.
[55] The large errors in effective radius from the Frisch

algorithm are due primarily to the assumption of constant
width in the lognormal distribution. Figure 10 shows histo-

Figure 9. Scatterplots of the cloud droplet moments from the LES cloud fields for case 1. The solid
lines are contours of the bimodal lognormal pdfs fit to the data by maximum likelihood.
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grams of the lognormal equivalent width parameters for the
Bayesian retrieval and the LES output as well as the value
of 0.41 for the Frisch retrieval for case 2. The LES
lognormal equivalent width has a mean of 0.41 and a
standard deviation of 0.11 while the retrieved Bayesian
equivalent width has a mean of 0.34 and standard deviation
of 0.13. While the Bayesian algorithm does not replicate the
true equivalent width exactly, it does reproduce much of the
variability in the parameter, which leads to more accurate
effective radius retrievals. For the Frisch algorithm, using
the mean lognormal width from the prior, 0.41, which
happens to coincide with the mean value from the LES
model, does improve the retrievals compared to using the
value of 0.35. For the Frisch method, assuming a value of
0.41 when the width is actually 0.5 leads to an overestimate
of effective radius by a factor of 1.3 for a given radar
reflectivity and liquid water content. Since the lognormal
width is fixed in the Frisch method, the a priori choice of the
value is important.
[56] These results also show the extent to which a priori

information is important in all of the retrieval algorithms.
The errors in the Frisch method increase for all variables
when the parameters of the algorithm are specified by the
more general prior information rather than taken from the
LES data. In contrast, the errors in the Bayesian method stay
roughly the same for all variables except effective radius.
[57] Table 2 shows the root mean square (RMS) errors for

the Bayesian and Frisch algorithms as well as the mean LES
value for each parameter for comparison. Root mean square
errors are calculated over all retrieved points. The Bayesian
and Frisch algorithms have similar RMS errors for LWC.
The Frisch algorithm has smaller RMS error for LWP than
the Bayesian algorithm when the LES statistical coefficients
are used, but larger error when the ARM coefficients are
used. The Bayesian algorithm has lower RMS errors than

the Frisch algorithm for effective radius and optical depth in
all cases.
[58] One of the advantages of the Bayesian method is that

error bars, defined by one standard deviation, are retrieved
for each parameter. Figure 11 shows the retrieved optical
depths and error bars from the LES test for the two cases
using the Bayesian retrieval algorithm with the prior pdf
determined from the SCMS/JHWRP data.
[59] The LES tests can be used to assess the accuracy of

the retrieved error bars. Following Evans et al. [2002], we
define a normalized error, dq = (qret � qtrue)/sq, where qret
and qtrue are the retrieved and true values of a parameter q,
and sq is the retrieved standard deviation. Table 3 lists the
fraction of cases for which the normalized error is within ±1
and ±3 for each of the retrieved variables in the two cases.
The normalized errors for all parameters are within ±1
approximately 54–69% of the time, and within ±3 for
96–99.7% of the cases, indicating that the error bars are a
reasonable measure of retrieval uncertainty for this test.

6. Retrieval Examples From Nauru

[60] In the previous section we examined the results of the
Bayesian algorithm using cloud fields simulated by an LES
model. In this section we show results from actual retrievals
using data at the Nauru ARM site. We used three months of
Nauru data, from 1 June 1999 to 31 August 1999. This time
period includes the Nauru99 field project which occurred
from 15 June 1999 to 15 July 1999. The ARSCL product
was used to determine cloud boundaries and locations at 10 s
resolution. Cloud phase was based on a simple temperature
thresholding method, with temperatures above �10	C
assumed to be liquid clouds. Retrievals were attempted for
all nonprecipitating liquid water clouds with column max-
imum reflectivities <0 dBZ (a total of 229,000 columns). We
were able to successfully perform retrievals for 225,000
columns, or 98.3% of those attempted. Columns for which
retrievals were unsuccessful were often adjacent to columns
for which retrievals were not attempted due to precipitation
or high reflectivities. Vertical profiles of liquid water con-
tent, visible extinction, and effective radius were retrieved as
well as column liquid water path and optical depth. Figure 12

Table 1. Median Fractional Errors for All Retrieval Algorithms

Over All LES Scenesa

Method re LWC LWP t

Case 1: CN = 250; LES Prior Methods
Bayes 0.096 0.29 0.18 0.22
Frisch s = 0.35 0.13 0.28 0.13 0.22
Frisch s = 0.39 0.14 0.28 0.13 0.24
LWC-Z – 1.3 1.76 –

Case 1: CN = 250; General Prior Methods
Bayes 0.14 0.31 0.18 0.20
Frisch s = 0.35 0.19 0.32 0.24 0.29
Frisch s = 0.41 0.18 0.32 0.24 0.25
LWC-Z – 0.73 1.09 –

Case 2: CN = 150; LES Prior Methods
Bayes 0.098 0.33 0.17 0.22
Frisch s = 0.35 0.22 0.30 0.11 0.25
Frisch s = 0.41 0.20 0.30 0.11 0.27
LWC-Z – 2.07 3.36 –

Case 2: CN = 150; General Prior Methods
Bayes 0.13 0.33 0.17 0.22
Frisch s = 0.35 0.35 0.33 0.24 0.33
Frisch s = 0.41 0.28 0.33 0.24 0.28
LWC-Z – 2.02 3.30 –

aFractional errors for LWC and effective radius, re, are defined where
LWC > 0.02 g/m3; for LWP and optical depth, t, errors are defined where
LWP > 5; g/m2.

Figure 10. Histograms of the lognormal equivalent width
parameter for the Bayesian and Frisch retrievals as well as
the true value from the LES model for case 1.
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shows examples of retrieved liquid water content and
effective radius for shallow cumulus at Nauru as well as a
time series of retrieved liquid water path and optical depth
plus error bars on the retrieved optical depth.

[61] Figure 13 shows histograms of the retrieved effective
radius, liquid water content, and liquid water path, and
Table 4 shows the mean, median, and standard deviation of
the liquid water path, optical depth, liquid water content,

Figure 11. Scatterplots of the optical depths (and error bars) retrieved from the LES cloudy scenes
using the Bayesian algorithm and the prior pdf based on the SCMS/JHWRP in situ data.

Table 2. Mean Value From LES Model and Root-Mean-Square Errors for Frisch and Bayesian Algorithms Over

All LES Scenes for Each Casea

Case 1 Case 2

re, mm LWC, g/m3 LWP, g/m2 t re, mm LWC, g/m3 LWP, g/m2 t

Mean LES value 8.97 0.29 61.3 9.7 11.0 0.33 77.7 10.0
RMS errors

Bayes LES prior 1.6 0.13 18.9 4.0 1.8 0.20 24.7 4.0
Frisch LES coeffs 4.2 0.12 9.1 3.9 7.8 0.18 9.6 5.7
Bayes in situ 2.0 0.14 18.5 3.2 3.3 0.19 24.7 4.0
Frisch ARM coeffs 5.6 0.15 23.7 4.4 10.1 0.19 25.4 7.1
aRMS errors include all retrieved points.
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and effective radius for the retrieved nonprecipitating liquid
clouds at Nauru during this time period. These statistics
show a rather large range in liquid water path, with a
median of only 20.3 g/m2, but a standard deviation of
122.4 g/m2. The mean retrieved effective radius is 7.8 mm,
which is more typical of marine than continental clouds
(e.g., Miles et al. [2000] compiled a large number of in situ
observations and found an average effective radius of 7.1
mm for marine stratus/stratocumulus clouds and 4.1 mm for
continental clouds) and may indicate relatively low aerosol
concentrations over Nauru. The mean retrieved liquid water
content at Nauru is 0.112 g/m3, which is approximately 6%
less than that found for marine stratiform clouds by Miles et
al. [2000]. The retrieved liquid water contents and effective
radius might be biased low as retrievals were not performed
for clouds that were precipitating or had high radar reflec-
tivity.
[62] Optical depth distributions are often modeled by

gamma distributions for radiative transfer applications
[Barker, 1996; Oreopoulos and Barker, 1999]. Figure 14
shows a histogram of the retrieved optical depth and the
appropriate gamma distribution for this data. The normal-
ized gamma distribution is given by

pðtÞ ¼ 1

�ðnÞ
n
m

� �n

tn�1expðnt=mÞ; ð27Þ

where �(n) is the gamma function and n = (m/s)2 is a
measure of the width of the distribution, and m and s are the
mean and standard deviation of the optical depth. For the
retrieved optical depth at Nauru, m and s are given in Table 4
and n = 0.37. These parameters are consistent with those
found by Barker et al. [1996] for Landsat scenes that were
classified as scattered cumulus. For these scenes, the mean
optical depth ranged from 1.036 to 12.059, standard
deviation ranged from 0.750 to 26.565, and gamma
distribution width ranged from 0.189 to 1.235. A few
Landsat scenes classified as broken stratocumulus also had
similar parameters, but the majority of the broken stratocu-
mulus had gamma distribution widths greater than 1.0.

7. Summary and Conclusions

[63] This paper describes a new algorithm for retrieving
optical depth and vertical profiles of liquid water content
and effective radius of liquid water clouds from millimeter
wavelength radar reflectivity and dual-channel microwave
brightness temperatures. Error bars which represent one

standard deviation are also retrieved for each parameter.
This retrieval algorithm is based on Bayes’ theorem of
conditional probability and combines prior information on
cloud microphysics with remote sensing observations. The
algorithm was designed to take advantage of the suite of
remote sensing instruments available at the ARM sites,
which will allow long time series of cloud property retriev-
als.
[64] Prior probability distribution functions for liquid

water clouds at Nauru were developed from in situ aircraft
observations of the second, third, and sixth moments of
droplet size distributions measured with the FSSP and 260X
probes in shallow cumuli over Florida and off the coast of
Hawaii. No assumptions about the form of the droplet size
distribution were made. A forward pdf for observed bright-
ness temperatures from the MWR, based on the Rosenkranz
microwave absorption model, was developed to avoid the
problems with the statistical regression retrievals for liquid
water path. A forward pdf for the radar reflectivity that
includes both calibration error and random noise error was
developed.
[65] The retrieved parameter vector is the mean of the

posterior probability density function. A computational
form of the Bayesian retrieval was described, in which a
change of variables is used to distribute integration points
randomly according to the prior pdf and the observed radar
reflectivity. This drastically reduces the number of integra-
tion points needed for the Monte Carlo calculation.
[66] Retrieval experiments were performed using simu-

lated radar reflectivity and microwave brightness temper-
atures derived from trade cumulus cloud fields from an
LES model with explicit microphysics. For liquid water
clouds with LWC greater than 0.02 g/m3 and LWP greater
than 5 g/m2, the overall median fractional errors for the
Bayesian algorithm using the prior pdf developed from in
situ data are about 0.14 for effective radius, 0.2 for LWP
and optical depth, and 0.3 for liquid water content. These
errors were significantly less than those from existing radar/
radiometer retrieval methods for effective radius and optical
depth and similar in magnitude for LWC and LWP. For the
Bayesian algorithm, the RMS errors were comparable to
those from the Frisch algorithm for LWC and LWP, but
were smaller for re and t when the realistic prior informa-
tion was used. The Bayesian method was shown to be less
sensitive to the source of prior information than the Frisch
retrieval. The retrieval simulations also demonstrated that
the Bayesian algorithm provides reasonable error estimates
on the retrieved parameters.
[67] Retrievals were performed on three months of data

from Nauru. Over 98% of the columns for which retrievals
were attempted produced successful retrievals. Histograms
of retrieved liquid water content, effective radius, liquid
water path, and optical depth were shown.
[68] This paper illustrates the application of the Bayesian

algorithm to trade wind cumulus at Nauru. The algorithm
can be easily applied to other liquid cloud regimes if
suitable microphysical prior pdfs are developed. This paper
also illustrates the use of retrieval simulations to assess
the performance of a cloud property retrieval algorithm.
Although such algorithms are usually ‘‘validated’’ against in
situ measurements of cloud properties, we believe using
simulated observations from cloud models is a better way to

Table 3. Statistics on the Absolute Retrieval Error Normalized by

the Bayes Retrieved Error Barsa

Case 1 Case 2

Fraction d
Within 1s

Fraction d
Within 3s

Fraction d
Within 1s

Fraction d
Within 3s

LWC 0.63 0.997 0.65 0.994
re 0.54 0.977 0.56 0.961
LWP 0.50 0.979 0.59 0.960
t 0.69 0.996 0.66 0.983

aThe fraction of cases with normalized errors between ±1 and ±3 is listed
for each parameter. Results are shown for case 1 and case 2 for the Bayesian
retrieval using the SCMS/JHWRP prior.
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assess the strengths and weaknesses of various algorithms.
Since the ‘‘true’’ cloud properties from the cloud model are
known, errors in the retrieved parameters can be accurately
determined and their causes more easily identified.
[69] The primary purpose of this research is to create a

long-term data set of cloud properties that can be used by

other researchers, for example, for developing cloud param-
eterizations, comparing to model output, or performing
radiative transfer calculations. For such purposes, it is
important that the retrieved properties and derived products
of the algorithm include meaningful error bars so that users
of the retrievals (who are not intimately familiar with the

Figure 12. Examples of Bayesian retrievals at Nauru on 5 June 1999. Time–height cross sections of (a)
retrieved liquid water content and (b) effective radius. (c) Time series of retrieved liquid water path and
optical depth at Nauru. The black line is the ARM retrieved statistical liquid water path during this time.
The blue line is the Bayesian retrieved liquid water path, and the green line is the Bayesian optical depth
plus error bars. See color version of this figure at back of this issue.
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retrieval process) can understand the degree of certainty
associated with each retrieval value.

Appendix A: Equations

[70] A 3-D Gaussian distribution, p(x, y, z), is represented
by nine parameters: the means and standard deviations of
each variable (mx, my, mz, sx, sy, sz) and the correlations
between the variables (rxy, rxz, ryz). If one variable, z, is
known, then the parameters (mx

0, my
0, sx, sy, rxy

0) of the
conditional 2-D distribution, p(x, yjz) can be analytically
related to the parameters of the original distribution by the
following equations.

m0x ¼ mx þ
sxrxzðz� mzÞ

sz
ðA1Þ

s0x ¼ sx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xz

q
ðA2Þ

m0y ¼ my þ
syryzðz� mzÞ

sz
ðA3Þ

s0y ¼ sy þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2yz

q
ðA4Þ

r0xy ¼
rxy � rxzryz

sqrtð1� r2xzÞð1� r2yzÞ
ðA5Þ

Figure 13. Histograms of retrieved (a) effective radius, (b) liquid water content, and (c) liquid water
path for nonprecipitating liquid water clouds at Nauru from June to August 1999.
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[71] To create vertical profiles of M2 and M3 from a given
reflectivity profile, we treat each mode of the prior pdf
separately, and take the logarithm of the parameters so that
we have two 3-D Gaussian distributions. Since we have no
information on vertical correlation of the size distribution
moments, but we know that cloud microphysical properties
exhibit vertical correlation, we use the typical decorrelation
length derived in section 4.2 from the cloud radar at Nauru.
For each point in the Monte Carlo integration, we create two
vectors of random Gaussian deviates (Q1, Q2) which are
vertically correlated in height with the given decorrelation
length. For each radar range gate, i, we generate a random
number that determines which mode to use, and we calcu-
late the parameters of the conditional 2-D Gaussian distri-
bution, p(log M2i, log M3ijlog M6i) for that mode. Then we
generate random values of log M2i and log M3i from the
distribution according to

logM2i ¼ m0M2 þ Q1ðiÞs0M2 ðA6Þ

logM3i ¼ m0M3 þ s0M3 Q1ðiÞr0M2;M3 þ Q2ðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r0M2;M3

q� �
;

ðA7Þ

where mM2
0 , mM3

0 , sM2
0 , sM2

0 , rM2,M3
0 are the parameters of the

conditional 2-D distribution.

Appendix B: Details of LES Model

[72] The dynamics model [Stevens and Bretherton, 1996]
solves the anelastic Navier-Stokes equations [Ogura and
Phillips, 1962] in conservative form using 5 s time steps on
a domain spanning 6.4  6.4 km horizontally and 3 km
vertically, which is uniformly discretized into 64  64  75
grid cells. The boundary conditions are doubly periodic in
the horizontal, and rigid at the top and bottom. Surface
fluxes are parameterized using surface similarity. A sponge
layer at the top of the model dampens trapped buoyancy
waves at altitudes >500 m above the trade inversion, which
is defined as the height of the horizontally averaged surface
of the 6.5 g/kg total water mixing ratio. First-order turbu-
lence closure is used for subgrid-scale mixing [Smagorin-
sky, 1963; Lilly, 1962] with a stability-dependent mixing
length [Deardorff, 1980] modified to account for the effects
of evaporation [Mason and MacVean, 1990]. Large-scale
subsidence is calculated as the product of altitude and a
fixed divergence rate of 4.3  10�6s�1.
[73] To simulate maritime trade-wind cumulus, we adapt

an idealization from Stevens et al. [2001] of measurements
averaged over the first 5 days of the Atlantic Trade-Wind
Experiment (ATEX). The model is idealized with surface

conditions, and soundings from the upstream ship in the
ATEX flotilla. The sea surface temperature is fixed at 298 K,
surface pressure is fixed at 1015 mbar, latitude fixed at 15	,
geostrophic (and initial) winds from Figure 4 of Augstein et
al. [1973] and soundings of temperature and water vapor
mixing ratio averaged from the ATEX measurements by
B. Albrecht to preserve the jumps at the base and top of the
transition layer. Pseudorandom perturbations of temperature
and water vapor mixing ratio are imposed below the
inversion to promote turbulence initially; the amplitude of
the perturbations (which horizontally average to zero) are
0.1 K and 0.025 g/kg, respectively.
[74] Large-scale advective forcings are parameterized to

represent the net influx of cooler, drier air in the equator-
ward flow through the model domain. Following Stevens et
al. [2001], we parameterize these forcings to fade linearly
from a maximum at the surface to zero at the trade inversion.
The surface drying tendency we use (1.3 g/kg/d) is taken
directly from Stevens et al. [2001]. We double the surface
cooling tendency to 2 K/d, which compensates for a clear
sky cooling rate that is half the value imposed by Stevens
et al. [2001].
[75] The aerosol and cloud microphysics model has been

adapted from the 1-D implementation of Ackerman et al.
[1995]. Here the size distributions are resolved into 20 bins
over a range from 0.05 to 20 mm radius for dry condensation
nuclei (CN, assumed to consist of ammonium bisulfate) and
from 1 to 770 mm for cloud droplets. Within each droplet
size bin the model also tracks the dissolved CN. The
microphysics model treats the processes of droplet nuclea-
tion, condensation, evaporation, and coalescence (between
droplets only), as described in detail by Ackerman et al.
[1995]. The dynamics model treats the transport (including
sedimentation) of all microphysics fields, and the micro-
physics model is called once per dynamic time step to adjust
the model variables for changes due to microphysical
processes. As done by Kogan [1991], the dynamical forcing
of supersaturation is uniformly spread over a number of
substeps. Instead of using a fixed number of substeps, we
choose a substep duration separately at each grid point such
that the Courant number for condensation in the smallest

Table 4. Statistics of the Retrieved Parameters for Nonprecipitat-

ing Liquid Water Clouds at Nauru From June to August 1999

Parameter Mean Median Standard Deviation

LWP, g/m2 58.2 20.3 122.4
Optical depth 9.2 4.5 15.1
LWC, g/m3 0.112 0.066 0.144
re, mm 7.82 7.17 3.18

Figure 14. Histogram of retrieved liquid water path for
nonprecipitating liquid water clouds at Nauru from June to
August 1999. A gamma distribution (dotted line) whose
parameters are given in the text is also shown.
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bin with droplet concentrations >0.1 cm�3; the smallest
substep (0.1 s) is taken when the dynamically forced
supersaturation will cross zero or nucleation of droplet
will exceed 1 cm�3.
[76] The model domain is initially cloud free. For case 1,

we initialize a spatially uniform, lognormal distribution of
CN with a number concentration of 250 cm�3, and a
geometric mean radius and standard deviation of 0.1 mm
and 1.2. The total particle number concentration at each grid
point is fixed by diagnosing the CN distribution from the
droplet number concentration and the initial CN distribution
after every substep. For case 2, the initial CN distribution
has a number concentration of 150 cm�3.
[77] Radiative transfer is calculated for each column once

every minute during the simulation using a two-stream
model [Toon et al., 1989] in which water vapor continuum
absorption has been modified [Clough et al., 1989]. By
treating longwave radiation only, we are effectively simu-
lating nocturnal conditions. Aerosol and cloud optical
properties are computed through Mie calculations using
the complex index of refraction for liquid water compiled
by Ackerman et al. [1995]. We specify the emissivity of the
sea surface to be unity, and fix the overlying water vapor
column at 1 g/cm2.
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Figure 12. Examples of Bayesian retrievals at Nauru on 5 June 1999. Time–height cross sections of (a)
retrieved liquid water content and (b) effective radius. (c) Time series of retrieved liquid water path and
optical depth at Nauru. The black line is the ARM retrieved statistical liquid water path during this time.
The blue line is the Bayesian retrieved liquid water path, and the green line is the Bayesian optical depth
plus error bars.
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