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Abstract – The potential of ground-based multispectral microwave radiometers in retrieving rainfall 
parameters is investigated by coupling physically oriented models and retrieval methods with a large set of 
experimental data. Measured data come from rain events that occurred in the USA at Boulder, Colorado, and 
at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site in Lamont, 
Oklahoma. Rain cloud models are specified to characterize both non-raining clouds, stratiform and 
convective rainfall. Brightness temperature numerical simulations are performed for a set of frequencies 
from 22 to 60 GHz at zenith angle, representing the channels currently deployed on a commercially available 
ground-based radiometric system. Results are illustrated in terms of comparisons between measurements and 
model data in order to show that the observed radiometric signatures can be attributed to rainfall scattering 
and absorption. A new statistical inversion algorithm, trained by synthetic data and based on principal 
component analysis is also developed to classify the meteorological background, to identify the rain regime, 
and to retrieve rain rate from passive radiometric observations. Rain rate estimate comparisons with 
simultaneous rain gauge data and rain effect mitigation methods and results are also discussed. 
 
Keywords: Microwave radiometry, rainfall, ground-based remote sensing, atmospheric retrieval, radiative 
transfer. 
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I. INTRODUCTION 
 
Ground-based microwave radiometry has been mainly investigated for estimating temperature, water vapor 
and cloud liquid profiles in the absence of precipitation [1]-[2]. The increasing use of multi-frequency 
radiometers in ground-based meteorological and receiving stations has raised the question of their potential 
for retrieving rainfall parameters [3]-[8]. This feature is even more appealing if the ground-based microwave 
radiometer can be equipped by automatic scanning in order to cover a large atmospheric volume in a manner 
similar to radar systems. Indeed, synergetic use of radiometric rain retrieval methods with weather radar 
systems is another important application, especially with constrained path-attenuation mitigation techniques 
[8]. 
 Ground-based microwave radiometry as compared to radar has the advantage of lower procurement 
and maintenance costs, with the disadvantage that the rain product is not range-resolved. On the other hand, 
rainfall retrieval by satellite-based microwave radiometry is limited by its relatively coarse spatial resolution 
as well as beam filling effects and a relatively low sensitivity over land, but has the advantage of global 
coverage [9]. Finally, rain gauges make a point measurement of rainfall at ground level. Indeed, the extreme 
variability of precipitation in time and space lends difficulty to its accurate retrieval since all known methods 
have their strengths and weaknesses for meteorological and hydro-geological applications. In a synergetic 
approach ground-based microwave radiometry is a potentially useful complementary tool [6]-[8]. 
 The exploitation of ground-based microwave radiometry raises both modeling and experimental 
issues. From a modeling point of view, the approach to rainfall signature characterization requires a thorough 
insight into the electromagnetic interaction between the microwave radiation and the scattering medium 
since the radiometric response depends on the various radiative sources along the observation path [5], [7]. 
With respect to an empirical inversion technique trained by measured observables and parameters [4], [6], 
the accuracy of a physically based retrieval approach relies on modeling capability to take into account 
multiple scattering and atmospheric inhomogeneity due to hydrometeors in different phases [7]-[8], [10]. 
From an experimental point of view, one of the main problems of ground-based radiometric retrieval of 
rainfall is contamination generated by liquid water on the receiving antenna. In order to solve this problem, 
hardware solutions [11], [12] or robust inversion techniques [5], [8] can be foreseen. 

An appealing objective of current research is to extract rainfall signatures and parameters in a 
quantitative way from multispectral ground-based microwave radiometric measurements. Previous work 
used observations from a three-channel microwave radiometer [5], [8]. As explained in Sect. II, in this work 
we use observations from 12-channel radiometers that are currently operational in various sites around the 
world [13]. Rain events that occurred at Boulder, Colorado, and near Lamont, Oklahoma, at the Atmospheric 
Radiation Measurement (ARM) Program Southern Great Plains (SGP) site have been analyzed on a temporal 
period including nearly one year of continuous measurements. Observations from a rain gauge at the same 
location were coordinated with the radiometric measurements.  
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In order to exploit the information content of the 12-channel radiometric system, we have adopted a 
retrieval approach based on a physical radiative model able to characterize both stratiform and convective 
precipitation, including spherical liquid, melt, and ice hydrometeors [5], [8]. The model is further described 
in Sect. III. By varying and properly tuning the forward model parameters at the measurement sites in a 
physically based manner, a synthetic cloud radiative database has been derived that is based on the 
downwelling simulated brightness temperatures (TB’s), the associated mean radiative temperature and the 
total path-attenuation. In addition, a new non-linear statistical inversion procedure has been developed that is 
based on successive steps where rainfall is (1) detected, (2) classified with respect to its regime, and (3) 
estimated in terms of columnar water and rain rate. Results are illustrated by means of comparisons between 
multispectral measurements and model data in order to show that the observed radiometric signatures can be 
attributed to rainfall scattering and absorption. Finally in Sect. IV, rain rate radiometric estimates are 
compared with available simultaneous rain gauge data, showing the potential of the technique to retrieve 
rainfall parameters, followed by a discussion about the limitations of this intercomparison and on possible 
effects of antenna water-film mitigation techniques.  
 
 
 

II. EXPERIMENTAL DATA 
 
As already mentioned, in order to interpret and test rainfall model simulations and rain rate estimates, a fairly 
large set of measurements, acquired by MicroWave Radiometer Profilers (MWRP’s) manufactured by 
Radiometrics Corp., has been used.  

The MWRP radiometer observes the radiation intensity at 12 frequencies in a region of the 
microwave spectrum that is dominated by atmospheric emissions from water vapor, cloud liquid water, and 
molecular oxygen. The 12 observation frequencies (i.e., 22.035, 22.235, 23.835, 26.235, 30.00, 51.250, 
52.280, 53.850, 54.940, 56.660, 57.290, 58.800 GHz) were chosen by an eigenvalue analysis to optimize 
retrieval accuracy. Using neural network inversion algorithms the MWRP provides temperature and 
humidity soundings up to 10 km height and low resolution cloud liquid soundings [9]. The radiometric 
profiler includes a vertical infrared sensor and surface temperature, humidity, pressure sensors. A rain 
detector, based on resistive changes of a printed circuit in presence of rain, is also included to identify the 
presence of liquid water on the radiometer antenna.  
 As an example, Fig. 1 shows the operational real-time output printed on the screen by the proprietary 
MWRP data acquisition and processing software (VizMet®). Contour plots show time-height cross sections 
of atmospheric temperature, relative humidity and liquid water retrievals. Time series of temperature, 
relative humidity, and pressure at the instrument level are shown on the left. Time series of infrared cloud 
temperature, rain detection, integrated content of vapor and liquid are shown at the bottom. An estimate of 
the cloud base height is also plotted in the upper contour panel. Thus, the operational output allows the user 
to monitor in real-time ten fields of meteorological interest simultaneously. Data were collected during 19 
July 2003, in Boulder, Colorado, USA, including the occurrence of a rain shower which started at roughly 
0400 UTC, as revealed by the rain detector, and lasted for about 20 minutes. 
 Rainfall has a distinct signature on radiometric measurements which appears in a different way if 
considering either a window or an absorption channel. Fig. 2 shows the time series of MWRP radiometric 
observations at its 12 frequency channels during the same period as in Fig. 1. A signature of more than 200 
K is shown by the window channels. Rain occurrence causes the large increase of measured TB’s in the low 
frequency channels and saturation/depression in the oxygen absorbed band. This behavior is due to the 
predominance of either emission or scattering in the TB signature from ground with respect to the clear-air 
value, as we will point out in the next section.  

For a preliminary statistical validation, about one year of MWRP radiometric observations at the 
ARM SGP site, from June 2001 to June 2002, have been analyzed in this work. A tipping-bucket rain gauge, 
part of the ARM Surface Meteorological Observation System (SMOS) has been also available. The rain 
gauge was located at about 500 m from the MWRP, providing data with a temporal resolution of half an hour 
and a precision of 0.254 mm with an uncertainty of ±0.254 mm. It should be noted that 500 m may be a 
significant fraction of the correlation distance of convective rainfall (about few kilometers). Unfortunately, 
no other rain gauges closer to the radiometer and with a faster response were available.  

Fig. 3 characterizes the set of observations in terms of TB histograms at different frequencies. It is 
evident from the dual-mode distribution of low-frequency TB’s that rain cases represent just a small fraction 
of the entire data set. According to the rain gauge, for the entire data set the total fraction of time when rain 
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was observed is 174 hours. Channels with strong absorption, like the ones near the oxygen complex centered 
at 60 GHz, show a small range of variability, since they are close to saturation. On the other hand, channels 
with weak absorption, such as in the 20-30 GHz range, show a much larger range of variability, since the 
signals go from 10-20 K to saturation. A detailed analysis of the rainfall microwave signature will be carried 
out when comparing measured and simulated data in the next section. 
 
 
 
III. RADIOMETRIC SIGNATURE OF RAINFALL 
 
A general theoretical framework for modeling of brightness temperatures generated by clouds and 
hydrometeors and measured by a microwave radiometer is given by radiative transfer integro-differential 
equation (RTE) [8], [14]. In the following sections, we briefly summarize characteristics of forward models 
employed in this work, together with a comparison with measured TB’s. 
 
A. RAIN RADIATIVE MODELS 
 
A vertically stratified atmosphere with its lowest level at z=0 (surface) and highest level at z=H (generally 
around 30 km) is here considered. For convenience we can define a vertical coordinate in terms of optical 
thickness τν at frequency ν such that τν=τ0=keνH at z=H and τν=0 at z=0 with keν the extinction coefficient at 
frequency ν. It is also convenient to introduce the zenith-angle cosine µ=|cos(θ)| with θ the zenith angle.  
 It is instructive to derive an analytical form of RTE in case of a uniform scattering slab with known 
optical thickness τ0, temperature T0, albedo w0 and phase function p0. For a plane-parallel geometry, the 
unpolarized azimuthally-symmetric down-welling brightness temperature TB(0,µ), observed from ground at a 
frequency ν, can be formally expressed by (e.g., [7], [8]): 
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where TBG is the cosmic background temperature (about 2.73 K for microwaves) and T0 the physical 
temperature. The second term of (1) represents thermal emission, while the third term is sometimes referred 
to as a multiple scattering source. The atmosphere is generally assumed to consist of L adjacent 
homogeneous layers in which volumetric albedo w, extinction coefficient ke and phase function p are taken to 
be constant within layers. Note that the numerical solution of (1) assumes knowledge of boundary conditions 
which implicitly affect the final solution. 
 The previous equation indicates that when the layer albedo tends to zero, we get the well-known 
solution for ground-based observations of clear air and non-scattering clouds. When the layer albedo is larger 
than zero, depending on frequency and layer rain rate, then the equivalent layer temperature (i.e., T0(1-t) with 
t=exp(-τ0/µ) the atmospheric transmittance) tends to be diminished by the increase of the albedo itself, while 
the incoherent multiple scattering tends to be increased. The solution of (1) when w0=0 represents the “clear-
air background” of the radiometric measurement. This “clear-air background” can play a role in the 
interpretation of ground-based measurements when considering window (e.g., 20-30 and 50-53 GHz) or 
absorption (e.g., 54-60 GHz) channels. For window channels the observed clear-air TB’s are fairly low, 
whereas for absorption channels the TB’s are relatively high. Note that TB(0,µ) due to rainfall is fairly well 
correlated with atmospheric optical thickness which is, in its turn, well correlated to columnar rain water 
contents [3], [5], [8]. The latter, with some time delay (up to 10 minutes depending on rain regime), is related 
to surface rain rate, typically measured by rain gauge sensors at ground [15]. 

In previous works we described a technique to use cloud-resolving model output to physically 
constrain the vertical correlation of hydrometeor content within cloud layers [8], [5], [15]. Briefly speaking, 
the gross vertical distribution of four species of hydrometeors including cloud droplets, raindrops, graupel 
particles, and snow particles, has been modeled. Cloud structures have been vertically resolved, within each 
cloud class, in seven homogeneous layers with fixed levels and a vertical resolution of about 1-1.5 km. The 
cloud data set, classified into stratiform rain clouds (nimbostratus, Ns, including strato-cumuli as well), 
convective rain clouds (cumulonimbus, Cb), stratiform non-raining clouds (stratus, St), cumuliform non-
raining clouds (cumulus, Cu), and clear-air (Cl), has been then extended by means of a Monte Carlo 
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statistical procedure. Meteorological variables, such as temperature, humidity and pressure profiles, have 
been assumed to be uniformly variable around their mean values within a given percentage. Microwave 
gaseous absorption has been computed by means of the Liebe model [16]. The land-surface emission has 
been characterized by a Lambertian emissivity model, depending on randomly-variable surface humidity 
(giving emissivity values between 0.85 and 0.95).  

The hydrometeor shapes have been assumed all spherical and characterized by inverse-exponential 
particle size distributions (PSD’s) (see [8] for further details). In the logarithmic plane the intercept of a PSD 
has been derived from the assigned equivalent water content within each layer, while the slope has been 
parameterized to surface rain-rate using a Marshall-Palmer, a Sekhon-Srivastava and a Gunn-Marshall PSD 
for raindrops, ice graupel and snow, respectively. For stratiform rain clouds, a melting layer has been 
modeled by choosing a water-coated ice-particle model. Indeed, oblateness of raindrops can cause a 
depolarization signal, depending on cloud stage and wind circulation [7], but it is here considered a second-
order effect. Mie absorption and scattering functions have been numerically computed by imposing 
hydrometeor diameter ranges and densities [8]. 

In order to generate a fairly large data set to cover a wide range of climatic conditions, the synthetic 
clouds have been embedded in various meteorological environments which have been tuned to the specific 
measurement site by collecting available radiosoundings. All meteorological profiles have been supposed to 
be standard and varied in a random way, with a uniform statistics, around mean values of surface and vertical 
gradient parameters depending on the season. Mean surface temperatures from 273 to 303 K have been 
imposed with steps of 5 K and a uniform variability of 10 K around the mean values with a standard gradient 
of 7.5 K/km (with a uniform variability of 15%). Mean pressure profile have been supposed to be 
exponential with a surface value of 980 hPa (SPG site reference value) and a uniform variability of 1% of the 
mean value together with a scale height of 7 km. Humidity was assumed to be close to saturation with an 
exponential profile having a mean surface value between 7 and 14 g/m3, according to the season, with a 
uniform variability of 15% of the mean value and a scale height of 1.5 km. When imposing the variability of 
meteorological profiles, the vertical distribution of rain and ice layers has been modified accordingly by 
imposing some physical criteria such as the absence of ice below the freezing level (except for an explicit 
melting layer), the prevention of super-saturation, the absence of water above the glaciation level and the 
limitation of the vertical extension of the rain cloud by using a reduction factor proportional to the 
temperature difference between the synthetized mean profile and the initial one.  

By using the coupled rainfall and radiative transfer model described above, a large classified data set 
has been simulated, consisting of several thousands of cloud structures together with related brightness 
temperatures at given frequencies and observation angles. More precisely, the overall simulated dataset, 
adopted in this work, consists of 35 classes, each with 1000 structures, derived from: (1) 7 meteorological 
(macrophysical) classes spanning from 0 to 30°C of mean surface temperature with steps of 5°C (named as 
m0, m5, m10, m15, m20, m25, m30), and (2) within each meteorological class, 5 cloud (microphysical) 
classes categorized as Cl, St, Cu, Ns and Cb genera. The number of 1000 cloud structures has been chosen as 
a compromise between computation efficiency and current radiometric system accuracy. The analysis has 
included the frequency bands of the operational multi-channel radiometer MWRP. The observation angle has 
been chosen in accordance to the application, in principle between 0 and 90° elevation. Here we will show 
results only for zenith observations in order to be able to compare simulations with radiometric and rain 
gauge measurements, as discussed in the next sections. 
 
 
B.  COMPARISON WITH RADIOMETRIC DATA 
 
A way to represent the ensemble of multispectral signatures in a compact way is to perform a principal 
component (PC) analysis (e.g., [20]). If TB is a column vector made by 12 TB’s measured at the MWRP 
frequencies (in GHz) at zenith, that is TB=[TB(22.035), TB(22.235, TB(23.835), TB(26.235), TB(30.00), 
TB(51.250), TB(52.280), TB(53.850), TB(54.940), TB(56.660), TB(57.290), TB(58.800)]’, then TB can be 
expanded as follows: 

 

Bi
i

BiBB P eTT ∑
=

>=<−
12

1

                                                                      (2) 

 



 6 

where the angular brackets stands for ensamble average, PBi is the i-th principal component (i=1-12), and eBi 
is the corresponding i-th eigenvector (i=1-12) or empirical orthogonal function (EOF’s) of the TB auto-
covariance matrix. As known, if λi is the i-th eigenvalue associated to i-th EOF, then its normalization to the 
eigenvalue sum represents the dataset explained variance. Note that the convention is such that PC’s are 
ordered with PB1 explaining the higest relative variance. 

As an example, by taking into consideration all the simulated dataset, in order to explain the 99% of 
the variance only the first 3 principal components are needed, with PB1, PB2 and PB3 explaining 96%, 2% and 
1% of the total variance corresponding to an associated standard deviation of 213, 28 and 6 K, respectively. 
The information content carried by the first 3 EOF’s is shown in Fig. 4 by plotting the elements of eBi with 
respect to the frequency band. 

It is worth mentioning that EOF1 is mostly affected by a combination of liquid water and water 
vapor emission, EOF2 tends to weight temperature sounding channels and EOF3 responds basically to water 
vapor channel. Considering that EOF elements are proportional to the TB-PC correlation coefficients, we 
note that the first PC is fairly correlated with the window-frequency and water-vapor absorption TB’s, the 
second PC is correlated with water-vapor absorption and 60-GHz more transparent channels, while the third 
PC is correlated with 60-GHz absorbed channels and cloud-liquid channel at 30 GHz. It should be stressed 
that, when we consider only a cloud class dataset for a given meteorological surface condition, the 
contribution of oxygen-band channels to the third PC tends to be negligible. 
 A valuable objective to verify the simulation outputs is to compare radiometric measurements, 
introduced in Sect. II, with the synthetic data set, described in the previous section. This comparison can give 
an indication of the realism and physical consistency of the ground-based radiometric simulations over a 
wide span of microwave frequencies. 

Fig. 5 shows rainfall spectral signature in terms of scatter plots of TB’s at different frequencies. 
About one year of radiometric observations at ARM SGP site are involved in this plot. TB’s from the 
simulated dataset are shown in black, while measurements are shown in gray (number of points are 35000 
for the simulations and 37569 for the measurements). In the top panel, which shows low frequency TB’s, 
non-raining cases are concentrated below 100 K, while raining cases cover the range up to 300 K mainly 
dominated by hydrometeor emission (see (1)). On the other hand, for higher frequency, non-raining cases are 
clustered in the middle of the distribution, thus indicating the presence of both emission (i.e., TB’s increase) 
and scattering  (i.e., TB’s decrease) signature mechanisms. 

Fig. 5 demonstrates that simulations are able to represent a reasonable range of measured TB’s, both 
for weak absorption (20-30 GHz) and strong absorption (55-60 GHz) frequencies. By comparing simulated 
and measured data, we can appreciate a similar TB behavior. The similarity between the synthetic and the 
observed data distributions gives us some confidence in using the first as a training set for estimating rain 
rate from the set of observations.  
 
 
 

IV. RADIOMETRIC ESTIMATION OF RAINFALL 
 

The inversion technique introduced in this work has been developed mainly by focusing on the 
multispectral nature of MWRP radiometric measurements and on its operational real-time features. Based on 
previous work [5], [8], [18], we here have developed a new inversion technique suited for the MWRP 
multispectral observations. Such technique, when trained with simulations and applied to observations, 
provides estimates of a variety of rainfall parameters, such as columnar hydrometeor content and rain rate. In 
this work, we do not attempt to estimate a rain water profile, even though in principle it could be performed 
with some approximations [10]. This potential and capability to easily generalize and extend the results is 
one of the major advantages of a physically based inversion algorithm with respect to an empirical one. 
 Radiometer-based rain rate can be validated when measurements from a collocated rain gauge are 
provided, as discussed in sub-section B. This intercomparison is affected by several problems. Indeed, the 
type of measurements are profoundly different: one can provide the rain water along a slant column, while 
the other the accumulated water at a ground point. A major problem concerning rainfall ground-based 
observation by radiometers is related to the instrument antenna exposure to hydrometeor fall, which can 
contaminate TB measurements. Water films forming on the antenna have resulted with a possible significant 
impact on observed TB’s [11]. The effects on the retrievals of water films on the antenna and an experimental 
demonstration of how to substantially reduce them by hardware solutions are discussed elsewhere [12], [19]. 
Here we do not consider such hardware-corrected MWRP data and concentrate on the exploitation of a 
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statistical estimator sufficiently robust to unknown noise, such as TB’s due to antenna water films, being 
aware that this would imply a slightly less expected accuracy [8]. 
 
 
A.  INVERSION TECHNIQUE 
 
The inversion procedure, designed for MWRP, is structured in three subsequent steps, specifically extended 
and tuned for this application but easily extendible to any other sensor configuration. The three foreseen 
steps are the following: 
i) classify the meteorological background scenario; 
ii) detect rainfall and classify the cloud genera and, eventually, rain regime (stratiform or convective); 
iii) estimate the rain columnar water contents and surface rain rate. 

The entire inversion algorithm is formulated in terms of PC’s. As justified in the previous section, 
the first 3 PC’s (and EOF’s) are sufficient in our case to explain more than 99% of the total variance. The PC 
transformation has several advantages, mainly its robustness to unknown noise and higher accuracy in best 
fitting predictands to predictors – the latter feature generally due to the lower degree of non-linearity of the 
fitting model [21], [9], [20]. These properties have been numerically proven by using the illustrated synthetic 
dataset as well.  

Once a measured TBm vector (where “m” stands for measurement) is available, the measured PC’s 
vector PBm is basically computed by inverting (4), that is: 
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where E(c) is the 3x12 matrix whose rows are represented by the first 3 EOF’s and “(c)” stands for the class. 
Note that, for each classification step, the matrix E is different as it is derived from different datasets – for 
step i), we use 35000 (i.e. 35x1000) records, while for step ii) and iii) we operate on 5000 (i.e, 5x1000) and 
1000 records, respectively. 
  For the first two classification steps, a Maximum a posteriori probability (MAP) criterion has been 
used [8]. Briefly speaking, if c is the cloud class, then the conditional probability density function (PDF) of 
considered class c given a measurement PBm

(c) can be expressed through the Bayesian theorem. If the metrics 
is assumed to be a multivariate Gaussian PDF, then the MAP estimation of cloud class c reduces to the 
following maximization: 
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where SP

(c) is the PC-converted measurement auto-covariance matrix of class c and det is the matrix 
determinant, while mP

(c) is the PC mean value vector of class c and p(c) represents the a priori discrete PDF 
of class c. The computation of the mode in (4) requires to know the mean value of the radiometric principal 
component mP

(c) and its auto-covariance SP
(c) at each classification step. This statistical characterization of 

each cloud class can be derived from the generated synthetic data set, while the prior PDF p(c) can be used to 
subjectively weight each class as a function of other available information. For simplicity, we have assumed 
p(c) as uniform in this work. Note that TB (and then PC) probability density is a truncated-Gaussian within 
each cloud class, but the ensemble of all classes is not necessarily Gaussian [8]. Since we have assumed a 
Guassian metrics for each class distance, the inherent error is not critical. The verification of the long-term 
statistics of each cloud class through measured data is beyond the scopes of this paper and, indeed, not an 
easy task due to the lack of reference data apart from visual inspections. 
  As an example of the expected accuracy of the classification step, we have performed a simulated 
analysis on synthetic measurements, divided in the already mentioned 5 classes (Cl, St, Cu, Ns, Cb). A 
similar analysis was also performed in Marzano et al. [8] using window channels only. Table I shows the so-
called confusion matrix of cloud classification from radiometric data, expressed in error percentage and 
giving the number of correctly classified clouds on the diagonal and mis-classified clouds on the off-diagonal 
elements. Elements on the rows are the “true” inputs and those on the columns are the “estimated” outputs. 
Ideally the confusion matrix should be a diagonal matrix with all elements equal to 100%. The sum of each 
row is equal to 100%, as expressed by the last column. From Table I it emerges that clear cases are always 
well detected, while non raining clouds (St and Cu) are very often mis-classified as clear sky due to their thin 
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opacity. Stratiform rainfall can be confused with cumulus clouds, while convective rain is fairly well 
identified. 
  At step iii), after discriminating among cloud class and having identified rain regime, a polynomial 
regression algorithm can be applied, using the data belonging to the selected rainfall class as a training set. 
This procedure implies that regression coefficients must be computed for each rainfall class. We have 
chosen, after an optimization analysis among fitting models, a polynomial expression in terms of selected 
principal components. Within each class c, assuming a cubic form, surface rainfall rate R(c) can be directly 
estimated from TB measurements, converted in PC’s through (3), by means of:  
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where ajk (j=1:3) are the regression coefficients and PBmk stands for the measured k-th principal component. 
Similar expressions can be written for columnar hydrometeor contents Ch

(c) (with h=c ,r ,g, i for cloud, rain, 
graupel, and ice hydrometeor, respectively), that is: 
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being  bjkh (j=1:3) the proper regression coefficients. 
 
 
B.  COMPARISON WITH RAIN GAUGES 
 
A way to check the consistency between modeled and measured data sets is to show the relationship between 
rain rate and TB in the weak absorption region (20-50 GHz), as in Fig. 6. Here black dots represent TB and 
rain rate extracted from the overall simulated database, while gray dots correspond to TB measured by the 
MWRP and rain rate estimates obtained from radiometric measurements applying the inversion technique 
previously described.  
 In order to assess the quality of our retrieval, we can consider the detection from the MWRP rain 
binary sensor as a test for the technique to correctly distinguish between rain and no-rain cases. Finally, the 
quantitative estimate of rain rate can be tested by comparing with measurements from a collocated rain 
gauge. In Fig. 7 (left), a time series of about 12 hours of rain rate estimates from MWRP observations is 
plotted, together with the rain sensor detection. The latter can only be 0 (no rain detected) or 1 (rain 
detected), although we multiply values by 10 for enhancing the figure clarity. It is evident that the estimate 
based on radiometric observations senses rain for a shorter period than does the rain detector. Although this 
might seem to be a rain rate estimator problem, it is actually an advantage of the MWRP technique. In fact, 
this effect is probably due to residual water droplets laying on top of the MWRP, which are misinterpreted 
by the rain detector. On the other hand, the retrieval algorithm we have developed is able to interpret this 
water as residual and to estimate actual rainfall.  
 Fig. 7 (right) can further justify this latter explanation since it shows, for the same case study, 
measurements from the collocated rain gauge. Rain sensor detections are now shown with their original 
values (0/1), while rain rate estimates had to be averaged into 30-min accumulated rain in order to match the 
rain gauge time sampling. Rain gauge measurements clearly confirm the duration of the rain shower sensed 
by radiometric observations, but also show a good quantitative agreement with the radiometric estimates.  
 Similar to Fig. 7, four time series of rain rate at ARM SGP central facility, extending for one to three 
days, are plotted in Fig. 8. Note that averaging for 30 minutes has substantially reduced the dynamical range 
available for rain rate. By comparing with rain gauge measurements, it is evident that radiometric estimates 
follow quite well both the detection of rain and the values of rain rates, although there are some differences 
mainly attributable, in our opinion, to their diverse mode of precipitation sensing. 
 In order to have a statistical comparison between radiometric estimates and rain gauge measurements 
we have aligned the two data sets and averaged them into 30-min bins. This filtering operation results in 
14,716 bins when both measurements were available. A first analysis concerning the capability of the 
proposed technique to detect rain is performed on the whole set, and reported in Table II. Here we use the 
statistics indexes as defined in [9] to measure the Probability of Detection of Rain (PODR), the Probability 
of Detection of No-Rain (PODNR) and the False Alarm Ratio (FAR). From Table I we see that the discussed 
technique shows an excellent PODNR and fairly good PODR and FAR. The last two indexes might be also 
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slightly affected by time-space variation of the rain field, since the MWRP and the rain gauge were sitting 
some hundreds meters apart (see Sect. II).  
 A further analysis concerns the ability of the proposed technique to retrieve quantitatively the value 
of rain rate, once raining conditions have been detected. Thus, we have limited the set of observations to 
those classified as rain, a selection which drastically reduces the number of bins to 98. This data set is plotted 
in Fig. 9 and has been used to obtain Table III. It is evident that there is a fairly good correlation (about 
0.82) between the two measurements, although the statistics is limited by the relative small range of 
variation. The bias and standard deviation of the error are about 0.9 and 1.8 mm, respectively, which results 
in a root mean square of about 2.0 mm. This error is attributable to the combination of the uncertainty for 
rain gauge measurements (±0.25 mm, according to the manufacturer), the uncertainty related to the retrieval 
technique, which depends on the rain rate [8]-[10], but also in large extent to the different features of the two 
observing systems.  
 
 
 

V. SUMMARY AND FUTURE DEVELOPMENTS  
 
A large set of ground-based multi-frequency radiometric measurements and simulations for different 
precipitation regimes has been analyzed. The modeled frequencies have been selected in order to match the 
set of channels currently available on an operational ground-based radiometric system. Rain events occurred 
in Boulder, Colorado and at the ARM SGP site have been analyzed in terms of comparisons between 
measurements and model data. This comparison has in a way validated that the observed radiometric 
signatures can be attributed to rainfall scattering and absorption.   

We have discussed and applied a three-step non-linear inversion technique, based on principal 
components decomposition to estimate rain rate from radiometric observations. This statistical inversion 
approach is advantageous mainly because of its robustness to unknown noise and higher accuracy in best 
fitting predictands to predictor. The proposed technique relies on the generated cloud radiative data base to 
train the non-linear regression algorithm. This feature makes the technique easy to generalize and to extend 
to applications with other observing systems. The consistency of simulations with both measurements and 
retrievals has been proven as well.  
 Retrieval results have been presented comparing time series of radiometric estimates with rain sensor 
detections and rain gauge measurements. These results are encouraging, showing the potential of this 
approach, and indicating that the use of the considered radiometric system together with the proposed 
inversion technique are not too much affected by water films over the antenna. Statistical indexes for rain 
detection and estimate show reasonable agreement, although the analysis is limited by the relative small 
range of variation available.  

A final remark can be highlighted in terms of a provocative question: do we need a radiometric 
estimate of rainfall rate at the ground if you can have a gauge there? Would not gauge measurements be 
more accurate after all? Indeed, we are interested in the rain water content of the atmosphere more than its 
rate at surface. For historical and practical reasons we need to validate our estimators with rain gauge data, 
but the aim is not to replace rain gauges but to add estimated rainfall contents to microwave radiometer 
products as a new feature. This would open to ground-based radiometry a unique potentiality as an all 
weather instrument for atmospheric monitoring. We hope that the results here presented can contribute to 
support the use of ground-based multi-frequency microwave radiometry for rain monitoring.  

Future developments of this work will regard both modeling and empirical issues. Indeed, the 
solution of the forward problem might be improved by considering a more sophisticated melting layer and 
including depolarization effects, while the quality of observations could be further improved if the formation 
of water film on the antenna is prevented by instrument hardware upgrades (e.g., [11], [12]). Finally, further 
work shall be devoted to the analysis of a larger set of rainfall cases in various climatological conditions, 
possibly spanning a larger range of rainfall variation, and to the comparison with other rain sensors, such as 
weather radars. 
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TABLE CAPTIONS 
 

Table I: Confusion matrix of cloud classification, expressed in percentage for Cl, St, Cu, Ns and Cb cloud 
genera, giving the number of correctly classified clouds on the diagonal and mis-classified clouds on the off-
diagonal elements. Rows are inputs and columns are outputs (the sum of each row is equal to 100%, as 
expressed by the last column). 
 
Table II: Statistics indexes for rain detection, as defined in [9]. The entire data set of 14,716 raining and non 
raining cases has been used for this analysis during the considered year (June 2001 – June 2002)..  
 
Table III: Statistics indexes for rain estimate, as defined in [9]. The data set consists of 98 raining cases 
during the considered year (June 2001 – June 2002). 

 
FIGURE CAPTIONS 

 
Figure 1: An example of the operational MWRP output. Plots refer to data collected during 19 July 2003, in 
Boulder, Colorado, USA. A rain shower happened roughly at 0400 UTC. Contour plots show time-height 
cross sections of atmospheric temperature (top), relative humidity (middle) and liquid water (bottom). 
Surface temperature, relative humidity, and pressure are shown on the left. Infrared cloud temperature, rain 
detection, integrated content of vapor and liquid are shown on the bottom. 
 
Figure 2: Time series of TB observed by the MWRP twelve channels during the same event as in Fig. 1. For 
each channel, the corresponding frequency (GHz) is shown on top of each subplot. It is evident how  rainfall 
greatly effects the low frequency channels (22.2 to 53.8 GHz), while has a relatively small impact on 
strongly absorbed frequencies (56.6 to 58.8 GHz). 
 
Figure 3: Spectral signature in terms of the histograms of TB measured by MWRP at different frequencies. 
The whole data set, spanning over about one year (June 2001 - June 2002), has been used in this plot. In the 
top panel, which shows low frequency channel Tb’s, is evident that raining cases are just a small sub sample 
of the whole data set.  
 
Figure 4: First three relevant spectral empirical orthogonal functions (EOF) from the simulated dataset. 
EOF1 spans 96% of the total variance, while 2% and 1% for EOF2 and EOF3, respectively.  
 
Figure 5: Rainfall spectral signature in terms of scatter plots between TB at different frequencies. Simulated 
data set are shown in black, while about one year of measurements (June 2001 – June 2002) are shown in 
gray. 
 
Figure 6: Scatter plots between TB and rain rate for the six MWRP lower frequency channels (22.235 to 
51.25 GHz). Black dots represent simulated rain rate and TB, while gray dots show radiometric observations 
and the respective rain rate estimates. 
 
Figure 7: Left: Time series of MWRP estimated rain rate. Dashed gray line, representing rain sensor 
detection (0/1), has been multiplied by 10 for convenience. Right: Time series of 30-minute accumulated rain 
for the same case. Dashed gray line represents rain sensor detection (0/1). Dash-dotted gray line represents 
measurements from a rain gauge, while the solid black line represents radiometric estimates. 
 

Figure 8: More rain events are shown. As in Fig. 6, dash-dotted gray line represents 30-minute accumulated 
rain as measured by the rain gauge, while the solid black line represents radiometric estimates. Dashed gray 
line represents the rain sensor detection (0/1). 

Figure 9: Scatter plot of 30-min accumulated rain (mm) as measured by the rain gauge (SMOS) and as 
estimated by the MWRP. The sample size is reduced to 98 cases. 



 14 

 
 
Table I: Confusion matrix of cloud classification, expressed in percentage for Cl, St, Cu, Ns and Cb cloud 
genera. Rows are inputs and columns are outputs (the sum of each row is equal to 100%, as expressed by the 
last column). 
 
Cloud class Cl St Cu Ns Cb Total (%) 

Cl 89 11 0 0 0 100 
St 44 36 20 0 0 100 
Cu 29 14 56 1 0 100 
Ns 1 2 26 69 2 100 
Cb 0 0 8 10 82 100 

 
 
Table II: Statistics indexes for rain detection, as defined in [9]. The entire data set of 14,716 raining and non 
raining cases has been used for this analysis during the considered year (June 2001 – June 2002). 
  

Analysis Index Acronym Worst value Best Value Value 
Probability Of Detection of No Rain PODNR 0 1 0.99 
Probability Of Detection of Rain PODR 0 1 0.55 
False Alarm Ratio FAR 1 0 0.43 
 
 
Table III: Statistics indexes for rain estimate, as defined in [9]. The data set consists of 98 raining cases 
during the considered year (June 2001 – June 2002). 
 

Analysis Index Acronym Worst value Best Value Value 
Error Bias [mm/h] EB ±∞ 0 0.92 
Error Standard Deviation [mm/h] STD ∞ 0 1.80 
Error Root Mean Square [mm/h] RMS ∞ 0 2.03 
Correlation coefficient COR 0 1 0.82 
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Figure 1: An example of the operational MWRP output. Plots refer to data collected during 19 July 2003, in 
Boulder, Colorado, USA. A rain shower happened roughly at 0400 UTC. Contour plots show time-height 
cross sections of atmospheric temperature (top), relative humidity (middle) and liquid water (bottom). 
Surface temperature, relative humidity, and pressure are shown on the left. Infrared cloud temperature, rain 
detection, integrated content of vapor and liquid are shown on the bottom. 

 
Figure 2: Time series of TB observed by the MWRP twelve channels during the same event as in Fig. 1. For 
each channel, the corresponding frequency (GHz) is shown on top of each subplot. It is evident how rainfall 
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greatly effects the low frequency channels (22.2 to 53.8 GHz), while has a relatively small impact on 
strongly absorbed frequencies (56.6 to 58.8 GHz). 
 

 
Figure 3: Spectral signature in terms of the histograms of TB measured by MWRP at different frequencies. 
The whole data set, spanning over about one year (June 2001 - June 2002), has been used in this plot. In the 
top panel, which shows low frequency channel Tb’s, is evident that raining cases are just a small sub sample 
of the whole data set.  
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Figure 4: First three relevant spectral empirical orthogonal functions (EOF) from the simulated dataset. 
EOF1 spans 96% of the total variance, while 2% and 1% for EOF2 and EOF3, respectively.  
 

 
Figure 5: Rainfall spectral signature in terms of scatter plots between TB at different frequencies. Simulated 
data set are shown in black, while about one year of measurements (June 2001 – June 2002) are shown in 
gray.  
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Figure 6: Scatter plots between TB and rain rate for the six MWRP lower frequency channels (22.235 to 
51.25 GHz). Black dots represent simulated rain rate and TB, while gray dots show radiometric observations 
and the respective rain rate estimates. 

 
 
 

 

 
Figure 7: Left: Time series of MWRP estimated rain rate. Dashed gray line, representing rain sensor 
detection (0/1), has been multiplied by 10 for convenience. Right: Time series of 30-minute accumulated rain 
for the same case. Dashed gray line represents rain sensor detection (0/1). Dash-dotted gray line represents 
measurements from a rain gauge, while the solid black line represents radiometric estimates. 
 

 

 
Figure 8: More rain events are shown. As in Fig. 6, dash-dotted gray line represents 30-minute accumulated 
rain as measured by the rain gauge, while the solid black line represents radiometric estimates. Dashed gray 
line represents the rain sensor detection (0/1). 
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Figure 9: Scatter plot of 30-min accumulated rain (mm) as measured by the rain gauge (SMOS) and as 
estimated by the MWRP. The sample size is reduced to 98 cases. 
 


