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1.  Introduction
(1.a)  Motivation for radiometric atmospheric profiling

In spite of their inaccuracies, cost, sparse temporal sampling, and logistical difficulties, radio-
sondes (RAOBs) are still the fundamental method for atmospheric temperature, wind, and water
vapor profiling. A better technology has been pursued for decades, but until now, no accurate con-
tinuous all-weather technology has been demonstrated. The highly stable frequency agile Radio-
metrics radiometer temperature and water vapor profilers (the subject of this study) rival the
accuracy of RAOBs, while giving continuous profiles. We also have the capability to profile cloud
liquid water, a capability absent in RAOBs. There are no other sensor systems that can profile
cloud liquid.

Applications for this passive profiling capability include weather forecasting and nowcasting,
detection of aircraft icing and other aviation related meteorological conditions, determination of
density profiles for artillery trajectory and sound propagation determinations, refractivity profiles
for radio ducting prediction, corrections to VLBI and GPS measurements, atmospheric radiation
flux studies, and measurement of water vapor densities as they affect hygroscopic aerosols and
smokes.

This report details our Phase I efforts and the findings. For the reader/reviewer with limited
time, the most salient findings and conclusions regarding the performance and design of the pro-
filing instrument are contained in this introductory Chapter 1, Chapter 4 (comparison of perfor-
mance of the retrieval methods), Chapter 5 (hardware design of the profiling radiometer),
Chapter 6 (conclusions), and Appendix B (sample retrieved profiles).

(1.b)  Microwave Profiling Methodology - Background

(1.b.1)  Profiling of Temperature
Radiometric temperature profiling can be accomplished by measuring the brightness spectrum

at points along the side of the oxygen feature at 60 GHz (Westwater, 1965). By scanning outward
from line center, where the opacity is so great that all signal originates from just above the antenna,
onto the wing of the line, where the radiometer “sees” deeper (higher) into the atmosphere, altitude
information is obtained. Emission at any altitude is proportional to local temperature; thus the tem-
perature profile can be retrieved. Either shoulder of this feature is suitable for retrieval of temper-
ature profile information. 

(1.b.2)  Profiling of Water Vapor
Information on the vertical distribution of water vapor is contained in the intensity and shape of

the emission from pressure broadened water vapor lines. At high altitude, the emission from water
vapor is in a narrow line, and at low altitudes this line is pressure broadened. The intensity of emis-
sion is proportional to vapor density. Scanning the emission profile and mathematically inverting
the observed data can therefore yield water vapor profiles.

The water vapor line at 183 GHz is used for vapor profiling from satellites. The high opacity of
this line hides the unknown emission emenating from the earth’s surface, eliminating this error
soruce but precluding profiling to low altitudes. The line at 22 Ghz is too transparent for effective
profiling from satellites but is suitable for ground-based profiling.



7

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Because of the spatial and temporal variability of water vapor, it is implied that the same sample
of sky must be observed for all spectral frequencies for water vapor profiling. This would require
that only one elevation angle be utilized, and that all frequencies be simultaneously observed.
However, observing at a multitude of frequencies simultaneously is not practical. Also, there is ad-
ditional information to be gained by observing at several elevation angles. Further, just as a RAOB
is a line trajectory sample, a radiometric observation along a single path is not representative of the
water vapor distribution. Averaging with numerous observation cycles and at several elevation an-
gles may therefore be justified. Kalman filtering techniques may be effective in improving re-
trieved profiles.

(1.b.3)  Profiling of Cloud Liquid
While profiling of water vapor and temperature are accomplished utilizing resonances, cloud

liquid has no spectral features, but instead contributes to the brightness temperature in the micro-
wave region as (frequency)2. To obtain altitude information, profiling of cloud liquid must there-
fore be accomplished by measuring its contribution to known (or measured) atmospheric spectral
features whose opacity varies with frequency. For instance, as described above, the atmospheric
temperature profile can be obtained by scanning either side of the 60 GHz oxygen feature. Scan-
ning from line center outward onto either of the wings of the feature moves the observation deeper
and deeper into the atmosphere, yielding altitude information on atmospheric temperature. Cloud
liquid water, if present, contributes more to the high frequency side (60 to 75 GHz) of this feature
than to the low frequency side (45 to 60 GHz) and skews the line shape. Therefore, scanning both
sides of the line yields information on the temperature and cloud liquid profiles. There is also liquid
profile information in the 22 to 29 GHz + 52 to 59 GHz tuning bands, as will be shown herein.

(1.c)  The Radiometrics microwave radiometer design
Radiometrics Corporation has developed an advanced passive microwave radiometer design

based on a highly stable tunable synthesized local oscillator in the receiver. This design overcomes
errors induced by receiver frequency drift in other current generation designs, while allowing ob-
servation of a large number of frequencies across wide tuning ranges. The number of eigenvalues
in the radiometer observations, and therefore the information content, is thereby maximized. The
result is more accurate and resolute atmospheric temperature, pressure, water vapor, and cloud liq-
uid profiles. U.S. patent on the synthesized design and on a highly accurate cryogenic calibration
target has been issued, and Canadian and European patents are pending. A previously issued Ra-
diometrics patent covers our gain-stable receiver design.

Various local oscillators (YIG, DRO, varactor tuned Gunn, and others) have been proposed by
others for tunable radiometers and have been previously investigated by Radiometrics. All suffer
from frequency drift and uncertainty in the frequency output which result in error in the retrieved
atmospheric profile. A 10 MHz oscillator drift in a 60 GHz temperature profiler, for instance, re-
sults in a 1C error in the retrieved profile. YIG oscillator designs can drift as much as 30 MHz (3C
profile error). Phase lock looping tunable oscillators can bring stability down to several Hz, while
coincidentally bringing the design into the realm of our synthesized receiver patent coverage. YIGs
and Gunns are power consumptive and therefore dissipate significant heat.

Digital signal processing (DSP) methods have been investigated and rejected by Radiometrics
because of the limited sampling bandwidth and high cost of DSP at high frequencies (wide band-
widths), while offering no advantage over other methods. Additionally, block down conversion is
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required to bring the receiver information into the frequency range of current DSP technology; this
requires a highly stable (synthesized) local oscillator. So DSP methods require additional high cost
hardware over Radiometrics’ design, while limiting performance.

Our radiometer is a total power receiver with a highly stable noise diode as a gain reference. The
resolving power (called delta T) of this design is superior to autocorrelation, Dicke, balanced
Dicke, and noise adding receivers. This design has evolved over more than 10 years, and has re-
sulted in a highly accurate and capable, yet economical, profiling radiometer design.

(1.d)  The Army ASL Phase I development effort reported herein
In this Phase I effort, Radiometrics has applied our above design to a water vapor profiling ra-

diometer concept. This design effort included identifying vendor sources for critical items such as
the antenna isolator to span the tuning range, the tunable synthesizer, the frequency quadrupler, and
the broadband biased mixer. The performance of the radiometer, based on the performance of each
of the individual receiver components, was theoretically determined.

Based on the expected performance of a synthesized total power radiometer, we have performed
eigenvalue analysis to determine the optimum frequency tuning range, and frequency/elevation an-
gle ensemble within said tuning range. We expanded the eigenvalue analysis beyond the original
scope of the proposal by determining the optimum frequency ensemble for the existing White
Sands/Radiometrics microwave temperature profiler (MTP). The major part of the Phase I effort
was to investigate mathematical inversion methods to convert the radiometer observables (the
power spectrum measured by the radiometer) into water vapor profiles. We simulated retrieval of
3 years of temperature, water vapor, and cloud liquid profiles based on RAOBs from Denver, Okla-
homa City, and West Palm Beach. Four promising mathematical inversion methods were applied:
the Newton’s method retrieval of Han/Westwater, neural networking, direct inversion of the Van-
Vleck pressure broadening model, and Bayesian maximum probability methods. The direct inver-
sion of the VanVleck model requires no a priori statistical knowledge. Standard statistical
retrievals were also accomplished for use as a benchmark. Results of this intercomparison is in-
cluded herein.

We also investigated the application of monolithic microwave integrated circuit (MMIC) tech-
nology to radiometers. MMIC technology is now being commercially produced for the telecom-
munications industry; conversion of commercially available receivers may be possible and would
reduce the size and cost of radiometers while increasing robustness.

We have, through this Phase I effort, demonstrated the feasibility of constructing a water vapor
profiling radiometer based on our current total integrated water vapor and temperature profiling ra-
diometer design. The modeling that we performed in Phase I demonstrated an impressive ability to
retrieve water vapor profiles in all weather conditions. We further determined the ability of a hy-
pothetical combined MTP/water vapor profiler, having the ability to tune across wavebands in the
20 to 30 GHz and in the 45 to 60 and 60 to 75 GHz ranges, to retrieve profiles of cloud liquid.

(1.e)  Personnel performing this contract
The personnel performing this contract are Dr. Fredrick Solheim, PI, John R. Godwin, Science 
Team, and Dr. Randolph Ware, Science Team. Consultants are Dr. Ed Westwater and Dr. Yong 
Han of NOAA ETL and Steve Keihm and Dr. Ken Marsh of JPL.
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2.  Selection and eigenvalue analysis of the observables of the proposed 
radiometer
(2.a)  Determination of receiver tuning bandwidth hardware capability

We have determined that we can build a K band receiver that will tune across 7.2 GHz. Critical
to this capability are: availability of a synthesizer that can span the required frequencies, an antenna
isolator that will perform across 20 to 29 GHz and at 31.4 GHz, and a biased mixer that is also ca-
pable across this range. We have identified a mixer, antenna isolator, and antenna feed horn that
will operate adequately across this waveband. The receiver noise figure is estimated to be no more
than 0.7 dB higher than our existing 23.8 and 31.4 GHz dual channel receiver (about 5 dB).

We calculated eigenvalues for two placements of this K band tuning capability and found that
22 to 29 GHz is equal to or superior to 20 to 27 GHz in information content for the three atmo-
spheric parameters to be profiled.

We have also determined that we can build a V band receiver that will tune across at least 6 GHz
or 9 GHz, depending upon whether we quadruple the LO drive or double and then triple (2x3=6).
We have identified a mixer and antenna isolator that will operate over 50 to 60 GHz. Eigenvalue
analysis tells us that, for profiling of cloud liquid, a frequency below the V band (50 to 75 GHz) is
desirable. Although 48 GHz is below the recommended operating frequency of WR15 waveguide,
it is still above the cutoff frequency of 39.4 GHz for this waveguide and therefore might be utilized
at slightly higher losses (negligible for short waveguide runs). Eigenvalue analysis was therefore
based on a tunable bandwidth of 48 to 59 GHz as well as 52 to 59 GHz.

The variation of antenna beamwidth with frequency can cause nonrepresentative sampling of
the sky, especially in the presence of cloud. To obtain better retrievals, averaging or Kalman filter-
ing of the observed data can be performed. This may be necessary in any case for elevation scans
as different parts of the sky are being observed. We may consider antenna designs that have con-
stant beamwidth across their bandwidth, but the gain in improved retrievals may be slight. Constant
beamwidth feedhorns have been constructed at lower frequencies (Hogg et al., 1979, Hogg et al.,
1983, Thomas et al., 1986). Such feedhorns are difficult to construct, and are therefore expensive.

(2.b)  Determination of radiometer frequencies with maximum information content
Our first task in determining an optimum inversion method was to determine the nonredundant

frequency ensemble that contains a maximum of information on the water vapor profile. 

Rather than intuitively choosing frequency ensembles and calculating eigenvalues, we per-
formed a more definitive search by determining and ranking eigenvalues for an ensemble of 37 fre-
quencies spaced at 200 MHz across a 7.2 GHz tuning range.Singular value decomposition (SVD,
equivalent to eigenvalue analysis) was applied in this determination. Two tuning bandwidths were
selected: 22.035 to 29.235 GHz (assumed to be better for vapor profiling) and 20.035 to 27.235
GHz (deemed interesting to research the water vapor line shape and strength model parameters).
Radiometrics can obtain isolator, mixer, and other receiver hardware to span either of these ranges,
and can therefore build a synthesized radiometer for either range of frequencies. The frequency
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range options for the K band receiver are shown below in Figure 1.   

FIGURE 1. The tuning bandwidth options explored. The 20 to 27 GHz option would allow 
determination of the line shape and strength parameters. The 22 to 29 Ghz option yields slightly 
more information on the water vapor, temperature, and cloud liquid profiles.

 RAOBs from Norman Oklahoma were separated into cloudy and clear conditions. This site was
chosen because of its wide range of water vapor values and profile structures. Although optimum
frequency ensembles are expected to differ for differing climatologies, we expect these differences
to be slight. We also expect climatology to have little or no effect upon our selection of the place-
ment of the tuning limits of the radiometer.

An average profile, based on all RAOBs, was generated and eigenvalues determined for this
profile, but it was felt that the average profile was lacking in detail and structure of individual pro-
files, and the resultant frequency ensemble would favor smooth profiles and lack the ability to re-
trieve structure. So eigenvalues for each of about 2000 RAOB profiles were calculated using
NOAA ETL’s Radiative Transfer Software. For increased signal relative to the instrument error,
14.5 and 30 degree elevation angles were utilized in addition to zenith. It is envisioned that a num-
ber of observation cycles at several azimuth angles will be performed and averaged to remove
gross anisotropy from the profile measurement.

As a first step in our SVD analysis, the weighting functions W as defined by Westwater (1993)
for each of the candidate frequencies for each RAOB sounding were numerically calculated:    

This was accomplished using NOAA ETL weighting function software.The weighting function
specifies the brightness temperature sensitivity for a particular radiometer frequency. The eigen-
values were then determined from SVD analysis. An example of the scatter plots of the eigenvalues
for all of the soundings is shown in FIGURE 2. These scatter plots determined the frequencies with
maximum information content and their ranking. SVD analysis was then performed on these fre-
quency ensembles to determine the number of independent observations contained in observations
at these frequencies.
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FIGURE 2. Scatter plots of water vapor profile eigenvalues for 22.035-29.235 GHz without 31.4 GHz, all clear 
cases and all cloudy cases (top two panels). Scatter plots for sequentially less significant eigenvalues (lower 
panels).

Westwater and Han independently performed eigenvalue analysis on the covariance matrices of brightness
temperatures with matching results.
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(2.c)  Ancillary Information on Cloud Base Altitude and/or Temperature
As is demonstrated in a recent publication by Han and Westwater (1995), knowing cloud base

altitude and temperature (and therefore water vapor density) is a very strong constraint in retrieval
of water vapor profiles. This is also a strong constraint in cloud liquid profile retrieval. Such con-
straints greatly improve profiles above what the eigenvalues indicate.

Cloud base temperature information can be obtained from a passive IR camera. Cloud base
height can be obtained from a ceilometer. Knowing the temperature profile allows either hardware
method to determine both cloud base temperature and altitude. It is therefore suggested that such
hardware be included with the radiometric instrument for optimum profiling ability. The cloud
base temperature is important to cloud profile retrieval, and the IR camera would probably give a
better measure of this temperature than determining it from ceilometer and retrieved temperature
profile.

(2.d)  Additional Profile Information from Historical RAOBs
With the exception of the direct retrieval method utilizing solely surface meteorological and ra-

diometer spectral information, all of the retrieval methods incorporated statistical information on
the behavior of the several profile types that was obtained from a history of RAOBs. Although the
eigenvalue analysis below determines the number of independent measurements obtained from the
radiometric spectral information, the ability to retrieve and resolve profiles by these methods is
greatly enhanced by the statistical information. This is evidenced by the FIGURE 7., wherein sam-
ple profile retrievals are compared to the RAOB sounding and to neural network retrievals. Note
the increased resolution and accuracy obtained by inclusion of climatological information.

(2.e)  Multiple elevation angles vs. single elevation angle
We have determined eigenvalues for frequency/elevation angle ensembles containing three el-

evation angles and containing 1 elevation angle. The sky was assumed stratified in all retrieved pa-
rameters. In addition to adding to the number of eigenvalues by adding observations, there is
information in the difference in brightness between elevation angles at each frequency. Because
the temperature profile varies only slowly spatially (except in the vicinity of frontal and other fea-
tures), the gain in eigenvalues with the use of several elevation angles is greater than the spatial
noise. This results in a resultant decrease in rms retrieval noise. This is not true for water vapor
because of the scale of water vapor features. We find that fourier transform of the measured spatial/
temporal spectrum of water vapor reveals features of the scale of 1 km and less. Use of multiple
elevation angles therefore dictates some form of averaging the observations be applied. We find,
however, that the rms errors in the retrieved vapor profiles for zenith only observations and for
three-angle observations are nearly the same (FIGURE 3.). This demonstrates that single-angle re-
trievals may be preferred to decrease the effect of inhomogeneity, and in fact, profiles could be re-
trieved separately for each of the elevation angles and the results compared.

The spatial inhomogeneity of cloud liquid water is more exacerbated than water vapor. Howev-
er, we likewise find that single angle cloud liquid retrievals are nearly as resolute as three-angle
retrievals that assume stratification.
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FIGURE 3. RMS errors for zenith only and for three-angle water vapor profile retrievals. 
Retrievals are all-season; not binned into seasons.

(2.f)  Eigenvalues and frequency ensemble for the three types of profiles
In addition to the proposed analysis on the K band channels for water vapor profiling, we further

undertook the SVD analysis for the following purposes.

• Water vapor profiling using the K+V bands

• Temperature profiling using the V band and using the K+V bands

• Cloud liquid water profiling using the K band and using the K+V bands

• Cloud liquid profiling using both sides of the 60 GHz oxygen feature

• Cloud liquid profiling using both sides of the 60 GHz oxygen feature and the K band

The frequency ranking in this report was accomplished as follows. Weighting functions for all
frequencies at 200 MHz intervals within the tuning waveband and at elevation angles 90 (1 air
mass), 30 (2 air masses), and 14.5 degrees (4 air masses) for each RAOB from Norman OK 1992
were calculated. Norman was chosen because of its wide variance in weather conditions. The fre-
quency containing the most information (i.e. the frequency whose weighting function has the larg-
est response integrated over altitude) was preselected (e.g., 22.235 for water vapor and 14.5
degrees when elevation angles were included in the selection process), and SVD analysis was then
performed to find the eigenvalues resulting from adding each (remaining) frequency to the current
frequency complement. The eigenvalues (which are all real and positive since they are from a co-
variance matrix) are then summed for all RAOBS and the frequency with the largest sum was then
included in the frequency complement, and the process repeated to find the next frequency. 

Results are summarized in tables below for profiling the three atmospheric parameters.
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The existing White Sands/Radiometrics microwave temperature profiler (MTP) scans from
52.8 to 58.8 GHz. For comparison purposes and to further optimize their performance of this MTP,
eigenvalue analysis to determine optimum observing frequencies was performed on this receiver
tuning range.

(2.g)  Frequency Ranking by Profile Information Content
The frequencies/elevations are ranked in the tables below in order of information content for

each of the three profile types. These rankings should not be taken as absolute but as representative
only, as they are based on Norman Oklahoma soundings and are therefore based on a specific cli-
matology. The frequency/elevation angle ranking will slightly differ for different sites. However,
ground-based weighting functions for the three atmospheric parameters considered herein are far
from unique, and adjacent frequency/elevation choices are highly correlated and give essentially
the same information content. Therefore, the optimal frequency/elevation ensemble for Norman is
probably optimal for a wide variance of climatologies. It should also be noted that there are many
possible subsets of a large, highly dependent set of weighting functions that span the same space
equally well. In particular, the choice of a different preselected frequency will result in different
frequency complements. The number of eigenvalues given a set cutoff will remain the same al-
though marginal eigenvalues may drift slightly above and below the cutoff. Also, the choice of
poor frequencies (i.e. those whose weighting functions are essentially zero) will cause the frequen-
cy selection algorithm to produce unpredictable results.

Sample weighting functions up to 10 km for a clear case and for a cloudy case are shown after
each table of frequency/elevation rankings. Note that these weighting functions are for a single
sounding and therefore have some high frequency response in some of the weighting functions due
to clouds, inversions, and other profile features.
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FIGURE 4. Water vapor profiling weighting functions down to first cutoff associated with the the 
22 to 29 and 48 to 59 GHz elevation scanning capability (last column in the table above).

TABLE 1. Ranking of water vapor profiling preferred angle/frequency combinations. 0.5K instrument error 
values are above break in columns; 0.2K instrument error values include all values in columns. Boldface 
indicates preselected (beginning) values.

22 to 29 GHz
at 14.5 deg.

22 to 29 GHz,
elevation scans

22 to 29 and
48 to 59 GHz,

at zenith

22 to 29 and
48 to 59 GHz,
at 14.5 deg.

22 to 29 and
48 to 59 GHz,

elevation scans

22 to 29 and
52 to 59 GHz,

elevation scans

  clear        cloud 

22.235   22.235

23.035   23.035

22.435   22.035

26.235   27.035

23.835   23.835

22.635   22.635

         clear            cloud 

14.5  22.235    14.5  22.235

14.5  23.035    14.5  23.035

14.5  22.435    14.5  22.035

14.5  26.235    14.5  27.035

14.5  23.835    14.5  23.835

14.5  22.635    30.0  22.635

clear         cloud   

22.235     22.235

23.035     23.035

22.435     22.435

48.220     48.220

24.035     24.035

53.330     52.850

52.850     52.280

52.280     51.760

51.760     53.330

51.250     51.250

50.730     50.300

50.300     50.730

49.780     53.850

clear          cloud 

22.235    22.235

23.035    23.035

22.435    22.035

26.236    27.035

23.835    23.835

48.220

               22.635

50.300    48.220

49.780    48.740

48.740    49.780

49.260

50.730

     clear          cloud   

90.0  22.235     90.0  22.235

14.5  23.835     14.5  23.635

30.0  22.635     30.0  22.635

14.5  48.220     14.5  29.235

30.0  22.035     30.0  22.035

14.5  26.035     90.0  51.760

30.0  50.300     90.0  52.280

14.5  49.780     30.0  50.730

30.0  51.250     90.0  51.250

14.5  48.740     90.0  52.850

30.0  50.730     30.0  50.300

30.0  51.760     30.0  49.260

90.0  52.850     30.0  24.635

     clear          cloud   

90.0  22.235   90.0  22.235

14.5  23.835    14.5  23.635

30.0  22.635    30.0  22.635

14.5  29.235    14.5  29.235

30.0  22.035    30.0  22.035

90.0  52.850    90.0  51.760

30.0  51.760    90.0  52.280

90.0  52.280    90.0  52.850

90.0  53.330    90.0  53.330

14.5  23.235    14.5  24.635

90.0  53.850    90.0  53.850
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FIGURE 5. Cloud liquid profiling weighting functions associated with the 22 to 29, 48 to 59, and 
63 to 73 GHz elevation scanning capability (last column in the table above).

TABLE 2. Ranking of cloud liquid water profiling preferred angle/frequency combinations. 0.5K instrument 
error values are above break in columns; 0.2K instrument error values include all values in columns. Boldface 
indicates preselected (beginning) values.

22 to 29 GHz,
elev. scans

22 to 29 and
49 to 59 GHz,

 zenith

22 to 29 and
49 to 59 GHz,

 30 deg

22 to 29 and
49 to 59 GHz,

 14.5 deg

22 to 29 and
49 to 59 GHz

elev. scans

48 to 59 and
 63 to 73 GHz,

 zenith

22 to 29, 
48 to 59

63 to 73 GHz,
 elev. scans

22 to 29, 
52 to 59

62 to 69 GHz
 elev. scans

14.5  29.235
14.5  22.035

30.0  26.635

29.235
52.280
22.035
54.400

56.660 

29.235
50.730
22.035

53.330
54.940

29.235
48.220
22.035

52.850
54.400

14.5  29.235
30.0  49.260
14.5  51.760
30.0  22.035

14.5  53.850

73.380
48.220
66.000

63.800

90.0  73.380
14.5  24.035
30.0  48.220
14.5  68.700

14.5  65.500
30.0  29.235

90.0   69.74
14.5   22.035
14.5   68.70
14.5   48.74

14.5   65.50
90.0   29.235
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FIGURE 6. Temperature profiling weighting functions down to first cutoff associated with the 22 
to 29 and 48 to 59 GHz elevation scanning capability (last column in the table above). 

TABLE 3. Ranking of temperature profiling preferred angle/frequency combinations. 0.5K instrument error 
values are above break in columns; 0.2K instrument error values include all values in columns. Boldface 
indicates preselected (beginning) values.

23.8 and 31.4 GHz
+ 48 to 59 GHz

zenith

23.8 and 31.4 GHz
+ 48 to 59 GHz
elevation scans

22 to 29 and
49 to 59 GHz

zenith

22 to 29 and
49 to 59 GHz

elevation scans

22 to 29 and
52 to 59 GHz

elevation scans

clear        cloud 

58.80       58.80

54.94       48.22

 56.66      54.94

 50.73      56.66

                53.33

 53.33

 56.02      31.4

         clear        cloud     

14.5  58.80      14.5  58.80

30.0  56.02      14.5  54.40

90.0  54.94      14.5  31.40

14.5  56.66      90.0  54.94

14.5  48.74      14.5  56.66

                        14.5  50.30

90.0  53.33

30.0  57.29     90.0  53.33

 clear        cloud 

58.80      58.80

54.94      48.22

56.66      54.94

50.73      56.66

               53.33

53.33

56.02      22.235

               51.76

       clear         cloud     

14.5  58.80      14.5  58.80

30.0  56.02      14.5  54.40 

90.0  54.94      14.5  29.235

14.5  56.66      90.0  54.94 

14.5  48.74      14.5  56.66 

                          14.5  50.30

90.0  53.33

30.0  57.29      90.0  53.33 

                        14.5  22.235

                        30.0  57.29 

       clear         cloud     

14.5  58.80      14.5  58.80 

30.0  56.02       14.5  54.40  

90.0  54.94       14.5  29.235 

14.5  56.66       90.0  54.94 

                        14.5  56.66 

90.0  53.33 

14.5  29.235      14.5  51.76  

30.0  57.29       90.0  53.33 

                         14.5  22.235 
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TABLE 4. Eigenvalues available with 7.2 GHz tuning range in the K band and 10.2 GHz the V 
band. Clear and cloudy condition cases yield essentially the same number of eigenvalues.

Atmospheric parameter profiled
and

radiometer frequency ranges

Eigenvalues for
0.5K/100K = .005

Eigenvalues for
0.2K/200K = .001

Water vapor profiler

22 to 29 GHz, elevation scans

22 to 29  GHz, 14.5 deg.

22 to 29 and 48 to 59 GHz, zenith

22 to 29 and 48 to 59 GHz. 14.5 deg.

22 to 29 and 48 to 59 GHz. elev. scans

22 to 29 and 52 to 59 GHz. elev. scans

clear/cloud

5/5

5/5

5/5

6/5

5/5

5/5

clear/cloud

6/6

6/6

13/13

11/9

13/13

12/12

Cloud liquid profiler

22-29 GHz elevation scans

22-29 and 48-59 GHz zenith

22-29 and 48-59 GHz 30 deg.

22-29 and 48-59 GHz 14.5 deg.

22 to 29 and 48-59GHz GHz elevation scans

48-59 and 63-73 GHz zenith

22-29, 48-59 and 63-73 GHz elevation scans

22-29, 52-59 and 61-68 GHz elevation scans

cloud

2

4

3

3

4

3

4

4

cloud

3

5

5

5

5

4

6

5

Temperature profiler

Existing 23.8, 31.4, and 52.85 to 58.8 GHz:

•11 V band frequencies

•11 V band at 90, 30, 14.5 deg.

Proposed radiometer:

23.8, 31.4, and 48 to 59 GHz, zenith

23.8, 31.4, and 48 to 59 GHz, elevation scans

22 to 29 and 48 to 59 GHz, zenith

22 to 29 and 48 to 59 GHz, elevation scans

22 to 29 and 52 to 59 GHz, elevation scans

clear/cloud

5/5

5/5

4/5

5/6

4/5

5/6

4/5

clear/cloud

6/6

7/8

6/6

7/7

6/7

6/9

5/8

accuracyK )
observable K )( )
-----------------------------------------⎝
⎛

⎠
⎞ accuracyK )

observable K )( )
-----------------------------------------⎝
⎛

⎠
⎞
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(2.h)  The frequency and elevation angle ensemble for combined temperature/water vapor/
cloud liquid profiling

Eigenvalues and the associated frequency/angle combinations were determined for simulta-
neous profiling of water vapor, cloud liquid, and temperature. We constructed the frequency/ele-
vation angle ensemble for our proposed water vapor profiling and for our proposed temperature/
water vapor profiling instrument. Table 5 below lists the selected values for water vapor profiling.     

In the case of the vapor+temperature profiler, assembling an ensemble that satisfied the eigen-
value requirements for the two different profile types to be retrieved was required. Operationally
there exist biases and noise in the calibration of the radiometer receiver at each frequency. There
exists information from the differences in measured brightnesses from the angular measurements
at each frequency. Therefore, although there is only one elevation angle for each of the selected
frequencies, we may elect to observe each of the selected frequencies at all elevation angles. Be-
cause the radiometer receiver can steer to frequencies in a few milliseconds, while the mirror ele-
vation changes take several seconds, the instrument cycle time is not significantly increased by
including all selected frequencies at each elevation angle. There is a countervailing argument, how-
ever, based on spatial variability of water vapor and cloud liquid (see Chapter 3.). The frequency
ensemble for simultaneously profiling all three parameters is in Table 6 below.

   22 to 29 GHz, elevation scans   

         clear            cloud 

14.5  22.235    14.5  22.235

14.5  23.035    14.5  23.035

14.5  22.435    14.5  22.035

14.5  26.235    14.5  27.035

14.5  23.835    14.5  23.835

14.5  22.635    30.0  22.635

TABLE 5. Frequencies for water vapor profiling. Note that all 
elevation angles selected in the eigenvalue analysis are at 14.5 degrees 
(4 air masses).
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TABLE 6. Frequencies for temperature , water vapor, and cloud liquid 
water profiling.

22 to 29 and 52 to 59 GHz elevation scans

22.035
22.235
22.635
23.835

29.235*
51.760*
52.280
54.400
54.940
56.020
56.660
58.800

*cloud liquid profiling frequencies
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3.  Description of the various retrieval methods tested
Ten years of RAOBs from Denver, Oklahoma City, and West Palm Beach Florida were used as

the training set. The subsequent three years of RAOBs for each of these sites were used as the test
set. Neural networking was applied to all three sites and all three profile types. The Bayesian meth-
od was applied to water vapor profiles at Denver. The Han/Westwater statistical regression and
Newton iterative method was applied to Oklahoma temperature and water vapor profiles. The RMS
errors used to corrupt the observables were 0.5° K for brightness temperatures and surface temper-
ature, 3 mb for surface pressure, 1% for surface relative humidity and 0.1km for cloud base data
(we later learned that ceilometers are considerably more accurate than this). These corrupted ob-
servables were utilized in all inversion methods tested herein.

Year-round retrievals were utilized in all cases to conserve CPU time. Had the retreivals been
binned into seasons or months, we would expect a significant improvement in the rms retrieval er-
rors ( Figures 8, 9, and 10) and in the individual profiles (Appendix B).

(3.a)  Han/Westwater Newtonian iteration retrieval method
Two methods developed at NOAA/ETL were applied to retrieval of profiles and associated pa-

rameters from brightness temperature and in situ surface measurements. The first is described in
this section and follows the methods described in Han and Westwater (1995). The second method
is described in the following section. For both methods, the simulated measurements included sur-
face temperature, water vapor, pressure, and cloud base height as well as the 12 zenith brightness
temperatures in TABLE 6. From these measurements, the following quantities were retrieved: wa-
ter vapor profile, temperature profile, and integrated liquid. From the water vapor and temperature
profiles, various integrated quantities can also be derived. Such quantities could include layer-av-
eraged water vapor, precipitable water vapor, geopotential height and thickness.

The relationship between the measurements, represented by the m-dimensional measurement
vector y, and the quantities to be retrieved, represented by the n-dimensional profile vector x, may
be expressed as

y=F(x)

 which is, in general, nonlinear. This expression may be viewed as a mapping of a profile vector in
the n-dimensional profile space into the m-dimensional measurement space. The retrieval process
solves the above equation and derives the profile x from the measurement y. It is important to note
that in the problem encountered here, for a given measurements vector y, there are an infinite num-
ber of profile vectors that satisfy the above expression. Thus, a unique solution does not exit. Ad-
ditional information about x is required to constrain the solution.   One such information source is
a statistical ensemble of a large number of historic radiosonde profiles. A technique that incorpo-
rates such a statistical constraint is the Newtonian iteration inversion method. The (k+1)th iteration
solution can be expressed as     

 where xk is the kth solution, y is the measurement vector with an error covariance matrix Se, Kk,
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calculated as 

contains weighting functions evaluated at the kth estimate xk of x, and yk=F(xk). The statistical
constraint is represented by the xs and Sx, the mean and covariance matrix of the statistical ensem-
ble.   Implementation of this method is the following.

 The profile vector has 99 elements. The first 49 elements are water vapor density at the levels
zi=I*0.25 km, I=0,48; the next 49 elements represent temperature profile having the same vertical
coordinates; the last element is the integrated liquid. The measurement vector has 14 elements. The
first 12 elements are brightness temperature measurements at the specified 12 frequencies. The last
two elements are surface vapor density and temperature.

 The weighting functions associated with the brightness temperatures were calculated analyti-
cally using a NOAA ETL routine (see Schroeder and Westwater, 1991 and 1992). The weighting
function associated with the integrated liquid is calculated using a perturbation method. In calcu-
lating the weighting functions, the integrated liquid is distributed moist-adiabatically from the
cloud base.

   The statistical information may be used more efficiently by the classification of the statistical
ensemble according to the cloud base heights, which can be identified from the relative humidity
profiles. The statistical ensemble is divided into several subensembles, each of which contains only
the radiosonde profiles having the same cloud base height. For each subensemble, xs and Sx are cal-
culated.

    The retrieval process starts with the calculation of the initial profile x0. By using a regression
method, the profile portion of the initial estimate x0 of x is obtained from surface water vapor and
temperature measurements and the integrated liquid portion is obtained from the two brightness
temperatures at 23.835 and 29.235. The next step is to identify a set of {xs, Sx}i by the cloud base
height measurement. Then the iteration starts. For this experiment, the iteration is terminated at
k=2.

(3.b)  Regression retrieval method by Han/Westwater 
This method uses the traditional linear statistical inversion method summarized by Westwater

(1993) and Rodgers (1976). The independent vector y contains the 12 brightness temperatures, sur-
face vapor density, and surface temperature. The dependent vector x contains the water vapor pro-
file, temperature profile, and integrated liquid. The dependent vector is obtained linearly from the
independent vector as

x=a+by

where a and b are obtained from a statistical ensemble of radiosonde profiles using multivariate
regression methods. 

It is noted that the Newton iteration method explored by Han/Westwater yields slightly better
results than the regression method due to the cloud base height data included in the iteration meth-
od. It is also noted that the cloud base height data utilized in the iteration method improves inte-
grated liquid retrievals significantly in comparison with the regression method that does not use
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the cloud base height data.

(3.c)  Neural networking
All neural networks were standard feed-forward networks with 3 layers: input, 1 hidden, and

output, with full connection between adjacent layers. A standard back-propagation algorithm was
used for training. The training data sets were derived from 10 years of RAOBs for each of the three
sites. Depending on the size of the data set, each RAOB was corrupted by Gaussian noise 1 to 4
times to decrease the sensitivity of the network to noise in the data (the limitation on data set size
was due to available computer memory - the data sets ranged in size from 7000 to 20000 sound-
ings). During training, the data were presented in randomized order approximately 5000 times. For
clear RAOBs, there were 39 input nodes: 36 brightness temperatures, surface temperature, vapor
density and pressure, 39 hidden nodes and 47 output nodes representing the output profile every
0.1 km from 0 to 1 km and every 0.25 km from 1 to 10 km. For cloudy conditions the cloud base
information was represented by a 1 (or two 1’s if two cloud bases were present) in a set of 47 height
bins (at the same heights as the output profile) for a total of 86 input nodes. These networks had 86
hidden nodes and 47 output nodes. By adding a set of short-cut connections directly from the input
nodes to the output nodes this allowed the cloud base information to directly affect the correspond-
ing output profile altitude. For cloud liquid, networks with only zenith brightness temperatures
were used (these had 62 input, 62 hidden and 47 output nodes). Their performance retrieving cloud
liquid was equal to the networks with all 36 brightness temperatures, confirming our eigenvalue
analysis that showed both data sets contained the same number (4) of independent measurements.
No seasonal data segregation was performed - we would expect improved performance if it were.

The error of the retrieved vapor density error at the surface improved from 0.4 g/m3 to 0.3 g/m3

for Oklahoma with RH error improved from 2% to 1%. For a perfectly trained net we would expect
about 0.15 to 0.2 g/m3 error for 1% RH measurement error for OKC average surface absolute hu-
midity of 5-6 g/m3. 

(3.d)  Direct inversion of the VanVleck line shape model
 The direct inversion was performed by first calculating what is essentially a matrix of weighting

functions from the expressions in Appendix A and a first guess water vapor profile (exponential
decay starting at the surface vapor density). Then the pseudo-inverse of this matrix was calculated
using a singular value decomposition (SVD). The SVD can actually define an infinite number of
pseudo-inverses since the problem is under-determined - the weighting functions do not uniquely
determine the water vapor profile. The pseudo-inverse is used with the observed brightness tem-
peratures to calculate a correction to the water vapor profile. This process is iterated until the error
between predicted and observed brightness temperatures reaches some limit. In order to obtain
convergence, it was necessary to limit the number of singular values to one or two. To eliminate
oscillations in the solution, it was filtered after each iteration. Unfortunately, both of these tech-
niques tend to eliminate detail from the retrieved profile. With more singular values and less filter-
ing the algorithm sometimes produces good results but also fails to converge on many profiles.
What is needed is a way of selecting among the solutions produced by the pseudo-inverse those
which are most likely. The Bayesian method described below accomplishes this selection. A priori
information is required. An example of the value of a priori information to retrieval is demonstrat-
ed by the comparison between the direct inversion and neural network methods is shown in FIG-
URE 7.
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FIGURE 7. Sample direct inversion vapor density retrievals. Note the improvement of the neural 
network,  which included a priori RAOB sounding data, over the direct inversion.

(3.e)  Bayesian maximum probability method
The Bayesian algorithm was developed at JPL primarily for calibration of the wet tropospheric path de-

lay during VLBI and radio science measurements such as the planned Gravitational Wave Search Exper-
iment (GWE) using the NASA Cassini spacecraft. Simulations at JPL demonstrated the superiority of the
Bayesian inversion methods over linear regression for the precise monitoring of path delay variations us-
ing microwave radiometers (Keihm and Marsh, 1996).

 The model-based algorithm uses Bayes' rule to estimate the most probable value P of the state vector,
a (e.g., vapor densities), given an observable vector, y, which consists of the brightness temperature mea-
surements and surface meteorology data:

P(a|y) = P(y|a)P(a)/P(y)

Gaussian statistics are assumed. The state vector, which defines the temperature and vapor density pro-
files over a vertical grid, is represented as a Karhunen-Loeve expansion, using eigenvectors derived from
the a priori covariance of the state vector a. The state vector covariance matrix is calculated from a repre-
sentative radiosonde data archive. An advantage of the Karhunen-Loeve representation is that it can reduce
the number of independent unknowns. If the eigenvalues of the a priori covariance matrix are ordered by
decreasing value, it often happens that only a fraction are significant; the rest represent noise. The inver-
sion problem then reduces to estimating a smaller set of variables, the computational burden is reduced,
and the accuracy of the inversion can increase if the elements of the state vector covariance matrix are not
well determined from the radiosonde archive.

In practice, given a set of observables, the state vector is iterated, and the corresponding theoretical ob-
servables are computed, until the “most probable” (maximization of equation above) profile solution is ob-
tained. In qualitative terms, the “most probable” profile solution is that which minimizes the residuals
between measured and computed observables while best conforming to the constraints of the a priori sta-
tistics. For the current work the simulations performed on the Denver clear radiosonde data base revealed
no significant advantage of the Bayesian technique for retrieval of discrete value vapor density profiles
over the regression method. 
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4.  Comparison of performance of the Retrieval Methods
(4.a)  Retrieved temperature, water vapor, and liquid water profiles

The rms errors of the various retrieval methods for each of the three profile types (temperature,
water vapor, liquid water) are shown in FIGURES 8, 9, and 10. The standard deviation of the pa-
rameters as measured by the RAOBs are also plotted. The rms error relative to this standard devi-
ation indicates how much the profile is improved over an a priori mean profile. The average profile
is also plotted to show fractional errors in the retrieved values.These retrievals were based on all-
season retrievals; a better result (lower rms errors) would have been obtained if the retrievals had
been binned into seasons or months.

 With the exception of the VanVleck inversion, the retrieval methods tested are roughly equiv-
alent. Neural networking demonstrated a superior ability to resolve high frequency features. In
terms of temperature retrievals, the performance of the various algorithms is comparable. Excellent
retrieval performance is generally found for non-inversion and ground based inversion profiles. El-
evated inversions at the 0.5 km level or higher are generally smoothed in the algorithm solutions.
Retrieval error rms values generally range from 1-2 K over the 1-5 km height intervals for the three
sites' simulations. The standard deviation of the profiles in the RAOB ensemble (inherent variabil-
ity) is the measure of rms error in simply choosing a mean profile. Relative to the inherent vari-
abilty of temperature, the tested observational system typically provides factor of 4-6 improvement
in estimation accuracy over the 1-5 km range. An exception to this relative performance improve-
ment is found in the West Palm Beach temperature retrievals above 3 km, due to the low inherent
variability of temperatures at this site. The temperature retrieval performance degrades only slight-
ly for cloudy (versus clear) conditions with the most significant differences found at the Oklahoma
site. 

With the exception of the direct retrieval based on the VanVleck pressure broadening model,
the various water vapor profiling algorithm performances were also comparable. Vapor density re-
trieval accuracies better than 1 gm/m3 were generally obtained at all sites and altitudes. Drier sites
(such as Denver) exhibit ~ 0.6 g/m3 errors or less at all altitudes. Relative to the inherent variability
at each site, the algorithm retrieval errors showed a factor of ~ 5 improvement for Denver and
Oklahoma and a factor of ~ 2-3 improvement for the West Palm Beach simulations over the 0-3
km height range (where most of the water vapor resides). Only slight degradation in retrieval ac-
curacy occurred for cloudy conditions. Elevated vertical structure on scales of ~ 1 km or is gener-
ally smoothed by the algorithm vapor profile retrievals, consistent with the expectations based on
the eigenvalue analysis for the simulated observational system. 

Cloud liquid profile improvements are not as dramatic, but this is due in part to the structure of
clouds. Slight altitude offsets in profile features between the actual and retrieved profiles can in-
duce large rms errors when the retrieved parameter is changing rapidly with altitude. This is espe-
cially true of highly layered profiles such as cloud liquid water where the densities can change
abruptly with altitude at the cloud margins (see the cloud liquid retrieval rms error plots, Figures
8, 9, 10). The rms error evaluations are therefore not highly representative of ability to retrieve lay-
ered structure. We have therefore included a large number of individual profile retrievals in Ap-
pendix B for a subjective demonstration and comparison of retrieval capability.

(4.b)  Improvement of retrieved total integrated water vapor and liquid water 
There is a need for high precision measurement of total integrated liquid water and water vapor
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values for propagation delay determination for geodesy and other applications. Therefore, the ef-
fect of the number of brightness temperature observables upon retrieval of coarse resolution (1 km
slab thickness) and total integrated liquid water and water vapor were investigated. The effect upon
the total integrated vapor value for Denver clear RAOB cases is shown in TABLE 7. below. Note
that the reduction in rms errors approximately follows a square root law on the number of observ-
ables, as might be expected if statistical reduction of noise is the determining factor. Additionally,
there is some information on the distribution of water vapor along the temperature profile con-
tained in the spectral brightness observables; because the brightness depends upon the physical
temperature of the water vapor as well as its density, knowledge of its temperature can give a better
retrieval. The Bayesian method may be taking advantage of this; further investigation is necessary.

TABLE 7. Total integrated vapor rms errors, cm, for clear Denver soundings.

linear regression
(Han/Westwater

Bayesian max. prob.
(Keihm/Marsh)

Neural networking
(Godwin)

Training set (16765 soundings)

2 channels (23.835, 29.235) at zenith 0.036

5 channels at zenith 0.026

12 channels at zenith 0.022

24 channels (zenith+air mass = 2) 0.016

36 channels (zenith + air mass=2 & 3) 0.012

Verification set (~2000 soundings)

12 channels, zenith 0.015

24 channels (zenith+air mass = 2) 0.012

36 channels (zenith +air mass=2 & 3) 0.010 0.011 0.029



27

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

FIGURE 8. Comparison of neural network and Bayesian rms errors for Denver all-season retrievals. 
Binning the retrievals seasonally would significantly reduce the rms errors. The profile variances from the 
RAOBs and the average profile are also shown.
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FIGURE 9. Comparison of neural network, Newtonian, and statistical regression rms errors for Norman 
Oklahoma all-season retrievals. The profile variances from the RAOBs and the average profile are also 
shown.
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FIGURE 10. Neural network rms errors for West Palm Beach Florida all-season retrievals. The profile 
variances from the RAOBs and the average profile are also shown.
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5.  Design of the advanced profiler
(5.a)  Instrument sequence and cycle time

For the water vapor profiler, the envisioned observation scheme is as follows (all six selected fre-
quencies at each observation angle):

•blackbody
•blackbody + noise diode 
•air mass = 4, left side of instrument
•air mass = 4, right side of instrument
•blackbody
•blackbody + noise diode 

The blackbody measurements are repeated to average instrument gain and offset drift. Instrument
cycle time is about 1.2 minutes.

For the water vapor + temperature profiler + cloud liquid profiler, the proposed observation
scheme is to observe all twelve selected frequencies at 1, 2, and 4 air masses (90, 30, and 14.5 de-
grees) in the following routine:

•blackbody
•blackbody + noise diode 
•air mass = 1, zenith
•air mass = 2, left side of instrument
•air mass = 4, left side of instrument
•air mass = 1, zenith
•air mass = 2, right side of instrument
•air mass = 4, right side of instrument
•blackbody
•blackbody + noise diode 

Estimated instrument cycle time for 1 second observations at each frequency is about 3 minutes.

(5.b)  IF bandwidth of the water vapor profiler
The IF bandwidth of the Radiometrics two channel WVR-1100 total integrated water vapor and

liquid water radiometer is 400 MHz edge to edge, with 100 MHz straddling line center excluded to
eliminate Gunn oscillator phase noise. The water vapor profiler will use a low phase noise tunable
frequency synthesizer rather than Gunn oscillators, allowing the excluded centerband to be narrowed
to 10 MHz or so. 

The theoretical resolution of the radiometer is:        

where Tsys is the receiver equivalent temperature, B is the IF bandwidth, and  is the observation
time. The loss in resolution of the radiometer due to the narrowed bandwidth can be recovered by
proportionately longer observation times. Not considered in this equation are the gain and offset drift
of the receiver during the instrument observation cycle, the repeatability of the noise diode gain ref-
erence, and other observational noise. Actual measurements of the WVR-1100 demonstrate a reso-
lution of about 0.2K, about twice the theoretical value above.

∆T Tsys

Bτ
-----------=

τ
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Whereas the WVR-1100 receives portions of the spectrum with very little curvature as a function
of frequency, the water vapor profiler will scan portions of the spectrum with significant curvature.
Because of finite IF bandwidth, this curvature skews the brightness observations toward the hinge
point at 23.8 GHz, and the amount of skew is dependent upon brightness (water vapor). We will there-
fore narrow the IF bandwidth to minimize this observational bias, and increase the spectral resolution
of the receiver. The criterion we use is that the skew at the most aggravated point in the spectrum for
a very wet sky be less than the resolution, delta T, of the radiometer. This determination was accom-
plished by numerically integrating (averaging) the antenna brightness for a wet sky between frequen-
cies equidistant from a line centered at 22.7 GHz (a region of maximum curvature) until the difference
between this average and the line center exceeds 0.2K. We find that we can utilize an edge-to-edge
bandwidth of 250 MHz without incurring a bias in excess of the targeted instrument resolution. 

FIGURE 11. Brightness temperature as function of IF bandwidth at 22.7 gHz for a wet RAOB. 
Dotted lines show 250 MHz bandwidth results in about 0.2 °K change from brightness temperature at 
center frequency.

(5.c)  MMIC Technology
We have investigated the applicability of a commercially produced MMIC transceiver to radiome-

ter applications. This receiver has a noise figure well under 4 dB, whereas our current waveguide K
band (23.8 & 31.4) receiver has a noise figure of about 5 dB. This equates to a receiver system tem-
perature of about 350K as opposed to 630K. Current production operates from 38.6 to 40 GHz and has
a 140 MHz IF bandwidth. Our radiometer design would require a bandwidth of about 100 MHz. De-
velopment is proceeding on a K band (28 GHz transceiver; the receiver of this transceiver is a candi-
date for a frequency agile water vapor profiler). The receiver consumes 11 watts, comparable to our
current Gunn-based total integrated water vapor radiometer, but occupies about 6 cubic inches as com-
pared with 60 cubic inches of our current receiver front end. 

The manufacturer feels that this MMIC receiver design can be modified to frequency agile radiom-
eter applications. This would require eliminating automatic gain control, addition of amplification be-
tween the antenna and receiver, and detection of the IF output of the current receiver. The result would
be a lower cost, smaller, and more robust radiometer. Radiometrics is discussing a sourcing arrange-
ment with the manufacturer.
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6.  Conclusions and further findings resulting from this Phase I effort
(6.a)  Conclusions regarding the inversion methods

In addition to the ability of the inversion methods to accurately retrieve temperature and water
vapor profiles, we found through eigenvalue analysis and through application of neural network
inversion methods that we can retrieve profiles of cloud liquid. No other passive remote sensing
technologies can accomplish this; radar techniques function only with dense and precipitating
clouds.

Inclusion of statistical information into the inversion process from a history of RAOBs great-
ly increases the accuracy and resolution of the retrieved profiles (see FIGURE 7.). The number of
eigenvalues contained in the radiometric spectral information therefore does not truly reflect (sig-
nificantly underestimates) the resolution and accuracy attainable when statistical/historical infor-
mation is included.

Spatial variability in the sky, especially for vapor and cloud liquid retrievals, can induce large
retrieval errors if multiple elevation angles are utilized. However, we find that retrievals utilizing
the three elevation angles (90, 20, and 14.5 degrees) only slightly reduce the rms errors in the re-
trieved profiles relative to utilizing zenith only observations. Also, a separate profile can be re-
trieved from each elevation angle. 

There are no great differences in the ability of the various inversion methods that include sta-
tistical information to retrieve profiles of temperature, water vapor, and cloud liquid water.

Improved total integrated values of liquid water and water vapor are realized by the radiometer
design herein over two channel radiometers, presumably because of the greater number of observ-
ables. Additionally, the Bayesian method outperformed the other techniques tested in retrieving to-
tal integrated vapor. It is thought that the Bayesian method may better determine water vapor
density relative to the temperature profile, yielding a better estimation of the vapor density from
the brightnesses.

(6.b)  Conclusions regarding the hardware for the proposed radiometer receiver

(6.b.1)  The waveguide receiver 
We have identified and investigated sources of microwave components necessary to construct-

ing a radiometer receiver capable of tuning 22 to 29 GHz. These components include a broadband
biased mixer, antenna isolator, Moreno crossguide coupler for the noise diode reference, and gaus-
sian optical antenna. This tuning also requires a frequency agile local oscillator. We identified a
highly stable synthesized LO system that is capable of this tuning bandwidth, and with sufficient
output power. 

We have analyzed the observation requirements, and estimate the water vapor profiling instru-
ment cycle time at less than 2 minutes.

We estimate the water vapor profiling instrument to have the physical specifications shown in
TABLE 8.
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(6.b.2)  MMIC receiver
Radiometrics is entering into an agreement with a manufacturer of MMIC millimeter wave and

microwave transceivers to develop a MMIC radiometer. Radiometrics has recently obtained a 38
GHz transceiver for testing of gain and offset stability. This manufacturer is currently developing a
28 GHz transceiver. Although this transceiver only tunes 1.5 GHz, the design of the receiver may be
amenable to broadening to a 6 or 7 GHz tuning bandwidth. A radiometer based on this MMIC re-
ceiver would be smaller, more robust, and less costly than the existing waveguide technology.

TABLE 8. Expected specifications of the water vapor profiler

Profiler function or parameter

Sample time User selectable for all instrument functions

Cycle time < 2 minutes

Resolution 0.25K

Accuracy 0.5K

Size 50x28x76cm

Weight 20 kg

Power 100 watts max
110 or 220 vac, 50 to 440 cps

Environmental -20 to +50C
0 to 100% RH noncondensing

Sky coverage all sky

Data output (to screen and data file) water vapor profiles (g/m3) to 10 km
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Appendix B

FIGURE 12. Sample neural network temperature profile retrievals for clear conditions at Denver 
Colorado using all-season retrieval coefficients.
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FIGURE 13. Sample neural network temperature profile retrievals for cloudy conditions at 
Denver Colorado using all-season retrieval coefficients.
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* FIGURE 14. Sample Bayesian and neural network water vapor profile retrievals for clear 

conditions at Denver Colorado using all-season retrieval coefficients.
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FIGURE 15. Sample neural network water vapor profile retrievals for cloudy conditions at Denver 
Colorado using all-season retrieval coefficients.
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* FIGURE 16. Sample neural network cloud liquid water profile retrievals for Denver Colorado 

using all-season retrieval coefficients.
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FIGURE 17.  Sample neural network, Newtonian iteration, and statistical regression temperature 
profile retrievals for clear conditions at Norman, Oklahoma using all-season retrieval 
coefficients.
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FIGURE 18. Sample neural network, Newtonian iteration, and statistical regression temperature 
profile retrievals for cloudy condition at Norman, Oklahoma using all-season retrieval 
coefficients.
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FIGURE 19. Sample neural network, Newtonian iteration, and statistical regression vapor 
density profile retrievals for clear conditions at Norman, Oklahoma using all-season retrieval 
coefficients.
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FIGURE 20. Sample neural network, Newtonian iteration, and statistical regression vapor 
density profile retrievals for cloudy conditions at Norman, Oklahoma using all-season retrieval 
coefficients. 
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FIGURE 21. Sample neural network cloud liquid profile retrievals at Norman Oklahoma using 
all-season retrieval coefficients.
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FIGURE 22. Sample neural network temperature profile retrievals for clear conditions at West 
Palm Beach Florida using all-season retrieval coefficients.
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FIGURE 23. Sample neural network temperature profile retrievals for cloudy conditions at West 
Palm Beach Florida using all-season retrieval coefficients.
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* FIGURE 24. Sample neural network water vapor profile retrievals for clear conditions at West 

Palm Beach Florida using all-season retrieval coefficients.
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FIGURE 25. Sample neural network water vapor profile retrievals for cloudy conditions at West 
Palm Beach Florida using all-season retrieval coefficients.
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* FIGURE 26. Sample neural network cloud liquid water profile retrievals for West Palm Beach 

Florida using all-season retrieval coefficients.
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