

TOPROF 4th MC meeting 5-7 May 2015, Granada, Spain

SWG3.2: Adapting RTTOV for ground-based microwave radiometers

30 March – 1 April, 2015

D. Cimini^(1,2), F. De Angelis⁽²⁾, J. Hocking⁽³⁾, P. Martinet⁽⁴⁾

⁽¹⁾ CNR-IMAA, Potenza, Italy, domenico.cimini@imaa.cnr.it
 ⁽²⁾ CETEMPS, University of L'Aquila, Italy
 ⁽³⁾ MetOffice, Exeter, UK
 ⁽⁴⁾ Météo France, Toulouse, France

Motivations

- The PBL is the single most important under-sampled part of the atmosphere*
 - \circ Surface \rightarrow met data
 - Upper air \rightarrow satellite

- \rightarrow GAP in the PBL
- Particularly important in nowcasting and severe weather initiation
- Four critical atmospheric variables are not adequately measured**
 - o wind profiles,
 - o temperature and humidity profiles (in cloudy areas),
 - o precipitation, snow mass.
- □ Ground-based MWR provide T and H profiles with:
 - High temporal resolution (~1 min),
 - > Low-to-moderate vertical resolution,
 - Information mostly residing in the PBL.

*U.S.NRC Reports; **WMO guidance on observations for NWP

Motivations

- Recent experiments have demonstrated the feasibility and impact of MWR data assimilation (DA)
 DA of temperature and humidity profiles
- Improvements are expected from DA of radiances (Tb)
 A fast forward model is needed
- A fast forward model is available from NWP SAF (MetOffice) for satellite radiometric observations: RTTOV
 - Suitable for microwave radiometers
 - RTTOV can be adapted to work for ground-based obs

*https://www.wmo.int/pages/prog/www/OSY/GOS-RRR.html SWG 3.2 Report – 4th MC meeting – Granada, 5-7 May 2015

Variational approach (such as 3DVAR)

Minimization of a cost function

$$J = \left[y - F(x) \right]^{T} R^{-1} \left[y - F(x) \right] + \left[x - x_{b} \right]^{T} B^{-1} \left[x - x_{b} \right]$$
$$x_{i+1} = x_{i} + \left(B^{-1} + K_{i}^{T} R^{-1} K_{i} \right)^{-1} \left[K_{i}^{T} R^{-1} \left(y - F(x_{i}) \right) - B^{-1} (x_{i} - x_{b}) \right]$$

□ The solution requires

- \circ the forward model (radiative transfer operator) F(x)
- the derivative of F(x), i.e Jacobian K, and its transpose K^T

Objectives of SWG3.2

- Test the ground-based RTTOV (RTTOVgb) direct module
- Modify RTTOVgb to develop the K module
- Test the RTTOVgb K module
- Modify the 1-DVAR tool to handle multi-angle observations within the same observation vector;
- Provide RTTOVgb (including direct and K modules) for the implementation into the modified 1-DVAR scheme.

Testing RTTOVgb direct

- □ RTTOVgb direct was developed during a TOPROF STSM \circ Francesco De Angelis → MetOffice
- RTTOVgb direct is tested against reference radiative transfer model output

Testing RTTOVgb direct

Testing RTTOVgb direct

Developing RTTOVgb K (Jacobian)

- □ The Jacobian (K) may be computed using finite differences
 - This requires 2N+1 forward model calculations
 o (N: number of levels)
 - o "Brute force" method

Developing RTTOVgb K (Jacobian)

- Only the direct and K are needed
- But this implies also the tangent linear (TL) and the adjoint (AD) modules to assure a testing path

	∂R_1	∂R_2	∂R_3		∂R_{m}
$K(x)^T =$	∂T_1	∂T_1	∂T_1		∂T_1
	∂R_1	∂R_2	∂R_3		∂R_m
	∂T_2	∂T_2	∂T_2		∂T_2
				1	
	∂R_1	∂R_2	∂R_3		∂R_m
	∂T_n	∂T_n	∂T_n		∂T _n
	∂R_1	∂R_2	∂R ₃		∂R_m
	∂q_1	∂q_1	∂q_1		∂q_1
	∂R_1	∂R_2	∂R_3		∂R _m
	∂q_2	∂q_2	∂q_2		∂q_2
	:		:	1	:
	∂R_1	∂R_2	∂R_3		∂R_{m}
	∂q _n	∂q _n	∂q_n		∂q _n

Developing chain: TL is derived from the direct \rightarrow AD is derived from the TL \rightarrow K is derived from AD

direct \rightarrow TL \rightarrow AD \rightarrow K

From direct to TL

- □ TL code is derived from the direct code
- TL is the analytic derivative of the radiance (F(x)) wrt the state vector x
 M-D vector, M: number of channels

Tangent Linear Coding Example

Equation:

$$y = a + bx + cx^2 + dx^3 + ez^{1/2}$$

Differential:

 $y' = bx' + 2cxx' + 3dx^2x' + 1/2ez^{-1/2}z'$

Forward Code:

Y = A + B*X + C*X**2 + D*X**3 + E*SQRT(Z)

TL Code:

 $Y_TL = B*X_TL + 2.*C*X*X_TL + 3.*D*X**2.*X_TL &$ * .5*E*Z**(-.5)*Z_TL

SWG 3.2 Report – 4th MC meetir

Testing TL module

Testing TL Model consistency with Forward Model

$$\lim_{\Delta \mathbf{x}^{\pm} \to 0} \frac{FM(\mathbf{x} + \Delta \mathbf{x}) - FM(\mathbf{x})}{TLM(\mathbf{x}, \Delta \mathbf{x})} = 1$$

This looks a lot like the definition of the derivative.

FM(x) = Forward model acting on x $FM(x+\Delta x)$ =perturbed Forward model acting on x+ Δx $TL(x,\Delta x)$ = Tangent Linear model acting on Δx (at x)

From TL to AD

- AD is the transpose of the derivative of the radiance (F(x)) wrt the state vector x
 N-D vector, N: number of levels
- □ AD is derived from the TL by taking the transpose of the TL code

TL

Real Function Bright_TL (V,Radiance,Radiance_TL,BC1,BC2) K2 = C2*V

 $\mathbf{K1} = \mathbf{C1}^*\mathbf{V}^*\mathbf{V}^*\mathbf{V}$

TempTb_TL = K2*Alog(K1/Radiance + 1.)**(-2.) * Radiance_TL/(K1+Radiance) * K1/Radiance (1)

Bright_TL = BC2*TempTb_TL (2)

Return End Function Bright_TL

<u>Adjoint</u>

Subroutine Bright_AD (V,Radiance,Radiance_AD,BC1, BC2,TB,AD) K2 = C2*V K1 = C1*V*V*V !inactive constants TempTb_AD = 0 ! initialize for each invocation TempTb_AD = TempTb_AD + BC2*Tb_AD (2) Radiance_AD = Radiance_AD +

```
K2*Alog(K1/Radiance + 1.)**(-2.)

* TempTb_AD/(K1+Radiance) *

K1/Radiance (1)

Return

End Subroutine Bright AD
```

SWG 3.2 Report - 4th M

From AD to K

- □ K code development is the easiest of the three
- Distribute the AD level derivatives through the number of channels

Testing TL, AD, K consistency

- Method: Construct K from TL and AD and compare
- K_TL, K_AD and K should be exactly the same to within machine precision
- We used the testing suite developed at NWP SAF for RTTOV

Four ways to compute Jacobians

- 1. Brute Force (finite differences)
- 2. Tangent Linear
- 3. Adjoint
- 4. K

Ν

Μ

~ 3

Testing RTTOVgb K consistency

Testing RTTOVgb K consistency

TEMPERATURE

National Research Council of Italy

SWG 3.2 Report – 4th MC meeting – Granada, 5-7 May 2015

Using RTTOVgb into 1DVAR

- Start from the 1-DVAR tool package developed at NWP SAF
- Modified to work with the RTTOVgb
- However, the package does not allow different elevation angles within the same observation vector
- □ The software package was modified to allow the exploitation of a composite observation vector y_o consisting of observations from two or more independent instruments.
- □ The "composite instrument" was modified to exploit a composite observation vector y_o consisting of observations from the same instrument but at different elevation angles.

Using RTTOVgb into 1DVAR

CONCLUSIONS

- Direct module was tested against reference calculations
 o Bias < 0.02 K Std/rms < 0.2 K Max < 0.7 K
- □ TL, AD, and K modules have been developed for RTTOVgb
- TL, AD and K modules were successfully tested
- The NWP SAF 1-DVAR tool was modified to handle multi-angle observations within the same observation vector
- The current version of RTTOVgb is currently being tested within the 1-DVAR tool

Remaining work

- Further testing of RTTOVgb to reduce differences with respect to reference radiative transfer models;
- □ Modify to allow lower elevation angles (now limited to 30°)
- Test 1-DVAR results with colocated radiosonde profiles (or other available reference) to demonstrate the performances

One Dimensional Variational Assimilation Retrieval (1DVAR)

Nonlinear retrieval technique based on Optimal Estimation Method with a first guess taken from a Numerical Weather Prediction (NWP) model output

Assumptions: Moderately non-linear problem, Gaussian-distributed errors Method: Gauss-Newton (Newtonian iteration with small residuals)

```
Cost function*

(to be minimized) J = [y - F(x)]^{T} R^{-1} [y - F(x)] + [x - x_{b}]^{T} B^{-1} [x - x_{b}]

Iterative

solution x_{i+1} = x_{i} + (B^{-1} + K_{i}^{T} R^{-1} K_{i})^{-1} [K_{i}^{T} R^{-1} (y - F(x_{i})) - B^{-1} (x_{i} - x_{b})]

Error covariance A = (B^{-1} + K_{i}^{T} R^{-1} K_{i})^{-1}

Convergence

criterium [F(x_{i+1}) - F(x_{i})]^{T} S^{-1} [F(x_{i+1}) - F(x_{i})] << n(obs)

S = R(R + K_{i} B K_{i}^{T})^{-1} R

*Hewison, 2007 - Standard notation of Ide et al. 1997
```


Radiative Transfer Equation

□ SATELLITE

$$L_{clr} = \tau_{s} * \varepsilon_{s} * B(T_{s}) + \int_{\tau_{s}}^{1} B(T) d\tau + (1 - \epsilon_{s}) * \tau_{s}^{2} * \int_{\tau_{s}}^{1} \frac{B(T)}{\tau^{2}} d\tau$$

Surface to space transmittance

Level to space transmittance

□ GROUND

$$L_{clr} = \tau_{toa} * B(T_{BKG}) + \int_{\tau_{toa}}^{1} B(T) d\tau$$
(A)
(B)

Space to surface transmittance

Level to surface transmittance

(A) = Cosmic term;

(B) = Atmospheric term.

RTE: Ground-based case

(A) $L_{COSMIC} = \tau_{LEV=1} * B(T_{BKG})$ with $\tau_{LEV=1} = \tau_{toa} = \tau_{i=1}$

(B) $L_{ATM} = \int_{\tau_{LEV=1}}^{\tau_{LEVSURF-1}} B(T) d\tau + surf.term = \sum_{i=NLEV-1}^{1} (\int_{\tau_i}^{\tau_{i+1}} B d\tau) + s.t.$

$$\int_{\tau_i}^{\tau_{i+1}} B d\tau = \tau_{i+1} B_{i+1} - \tau_i B_i + \frac{1}{OD_{singlelay}(i)} \Delta B_i \Delta \tau_i =$$

$$= \Delta \tau_i * \left[B_{i+1} + \Delta B_i \frac{1}{OD_{singlelay}(i)} \right] - \tau_i \Delta B_i$$

For Ground-Based:

 $\begin{aligned} \Delta \tau_{i} &= \tau_{i+1} - \tau_{i} \\ \Delta B_{i} &= B_{i} - B_{i+1} \\ OD_{singlelay}(i) &= OD_{i} - OD_{i+1} \end{aligned}$

Developing RTTOVgb K (Jacobian)

- Only the direct and K are needed
- But this implies also the tangent linear (TL) and the adjoint (AD) modules are needed to assure a testing path
- TL is the analytic derivative of the radiance wrt the state vector (M-D vector, M: number of channels)
- □ AD is the transpose of the derivative of the radiance wrt the state vector (N-D vector, N: number of levels)
- K is the transpose of the derivative of the radiance wrt the state vector by channel (N*M matrix)
- Developing chain: TL is derived from the direct \rightarrow AD is derived from the TL \rightarrow K is derived from AD
- TL code inputs linearized temperature profile and outputs linearized brightness temperature
- AD code inputs linearized brightness temperatures and outputs linearized temperature profile